Abstract

The subwavelength mode volumes of plasmonic filters are well matched to the small size of state-of-the-art active pixels in CMOS image sensor arrays used in portable electronic devices. Typical plasmonic filters exhibit broad (> 100 nm) transmission bandwidths suitable for RBG or CMYK color filtering. Dramatically reducing the peak width of filter transmission spectra would allow for the realization of CMOS image sensors with multi- and hyperspectral imaging capabilities. We find that the design of 5 layer metal-insulator-metal-insulator-metal structures gives rise to multi-mode interference phenomena that suppress spurious transmission features and give rise to single transmission bands as narrow as 17 nm. The transmission peaks of these multilayer slot-mode plasmonic filters (MSPFs) can be systematically varied throughout the visible and near infrared spectrum, leading to a filter that is CMOS integrable, since the same basic MSPF structure can operate over a large range of wavelengths. We find that MSPF filter designs that can achieve a bandwidth less than 30 nm across the visible and demonstrate experimental prototypes with a FWHM of 70 nm, and we describe how experimental structure can be made to approach the limits suggested by the model.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-band plasmonic color filters for visible-to-near-infrared image sensors

Atsutaka Miyamichi, Atsushi Ono, Hiroki Kamehama, Keiichiro Kagawa, Keita Yasutomi, and Shoji Kawahito
Opt. Express 26(19) 25178-25187 (2018)

Highly selective ultraviolet aluminum plasmonic filters on silicon

Ahmed M. Morsy, Michelle L. Povinelli, and John Hennessy
Opt. Express 26(18) 22650-22657 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Khoso and K. Kamra, “Smartphones: A Supercomputer in Your Pocket,” http://www.northeastern.edu/levelblog/2016/04/21/smartphones-supercomputer-in-your-pocket/ .
  2. “Sensors Overview,” https://developer.android.com/guide/topics/sensors/sensors_overview.html .
  3. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [PubMed]
  4. S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
    [PubMed]
  5. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
    [PubMed]
  6. B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
    [PubMed]
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).
  8. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 03547 (2006).
  9. Q. Chen, X. Hu, L. Wen, Y. Yu, and D. R. S. Cumming, “Nanophotonic Image Sensors,” Small 12(36), 4922–4935 (2016).
    [PubMed]
  10. H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full Color Generation Using Silver Tandem Nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
    [PubMed]
  11. A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
  12. L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19(14), 13073–13080 (2011).
    [PubMed]
  13. T. Hirayama, “CMOS Image Sensor Evolution: Past, Present, and Future,” in SEMICON Europa (2016).
  14. W.-Y. Jang, Z. Ku, J. Jeon, J. O. Kim, S. J. Lee, J. Park, M. J. Noyola, and A. Urbas, “Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array,” Sci. Rep. 6, 34876 (2016).
  15. A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18, 590–598 (2007).
  16. E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Opt. Sci. Technol. SPIE’s 48th Annu. Meet. 5159, 380–391 (2004).
  17. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [PubMed]
  18. D. B. Mazulquim, K. J. Lee, J. W. Yoon, L. V. Muniz, B.-H. V. Borges, L. G. Neto, and R. Magnusson, “Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly,” Opt. Express 22(25), 30843–30851 (2014).
    [PubMed]
  19. Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
  20. H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: A platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).
  21. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16(12), 9222–9238 (2008).
    [PubMed]
  22. A. Mazor, D. J. Srolovitz, P. S. Hagan, and B. Bukiet, “Columnar growth in thin films,” Phys. Rev. Lett. 60(5), 424–427 (1988).
    [PubMed]
  23. A. A. Maradudin and D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392–1415 (1975).
  24. O. J. Martin, K. Thyagarajan, and C. Santschi, “A New Fabrication Method for Aluminum and Silver Plasmonic Nanostructures,” in Workshop on Optical Plasmonic Materials (The Optical Society of America, 2014).
  25. A. Joshi-Imre and S. Bauerdick, “Direct-Write ion beam lithography,” J. Nanotechnol. 2014, 170415 (2014).

2017 (1)

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full Color Generation Using Silver Tandem Nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[PubMed]

2016 (3)

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

W.-Y. Jang, Z. Ku, J. Jeon, J. O. Kim, S. J. Lee, J. Park, M. J. Noyola, and A. Urbas, “Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array,” Sci. Rep. 6, 34876 (2016).

Q. Chen, X. Hu, L. Wen, Y. Yu, and D. R. S. Cumming, “Nanophotonic Image Sensors,” Small 12(36), 4922–4935 (2016).
[PubMed]

2015 (1)

Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).

2014 (3)

D. B. Mazulquim, K. J. Lee, J. W. Yoon, L. V. Muniz, B.-H. V. Borges, L. G. Neto, and R. Magnusson, “Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly,” Opt. Express 22(25), 30843–30851 (2014).
[PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[PubMed]

A. Joshi-Imre and S. Bauerdick, “Direct-Write ion beam lithography,” J. Nanotechnol. 2014, 170415 (2014).

2013 (1)

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[PubMed]

2012 (1)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[PubMed]

2011 (1)

2010 (2)

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[PubMed]

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: A platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).

2008 (1)

2007 (1)

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18, 590–598 (2007).

2006 (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 03547 (2006).

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

1993 (1)

1988 (1)

A. Mazor, D. J. Srolovitz, P. S. Hagan, and B. Bukiet, “Columnar growth in thin films,” Phys. Rev. Lett. 60(5), 424–427 (1988).
[PubMed]

1975 (1)

A. A. Maradudin and D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392–1415 (1975).

Atwater, H. A.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[PubMed]

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16(12), 9222–9238 (2008).
[PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 03547 (2006).

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).

Bauerdick, S.

A. Joshi-Imre and S. Bauerdick, “Direct-Write ion beam lithography,” J. Nanotechnol. 2014, 170415 (2014).

Borges, B.-H. V.

Bozhevolnyi, S. I.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Bukiet, B.

A. Mazor, D. J. Srolovitz, P. S. Hagan, and B. Bukiet, “Columnar growth in thin films,” Phys. Rev. Lett. 60(5), 424–427 (1988).
[PubMed]

Burgos, S. P.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[PubMed]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).

Chen, Q.

Q. Chen, X. Hu, L. Wen, Y. Yu, and D. R. S. Cumming, “Nanophotonic Image Sensors,” Small 12(36), 4922–4935 (2016).
[PubMed]

Cullen, P. J.

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18, 590–598 (2007).

Cumming, D. R. S.

Q. Chen, X. Hu, L. Wen, Y. Yu, and D. R. S. Cumming, “Nanophotonic Image Sensors,” Small 12(36), 4922–4935 (2016).
[PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 03547 (2006).

Downey, G.

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18, 590–598 (2007).

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Frey, L.

Frias, J. M.

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18, 590–598 (2007).

Gao, H.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: A platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Gowen, A. A.

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18, 590–598 (2007).

Guo, L. J.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[PubMed]

Hagan, P. S.

A. Mazor, D. J. Srolovitz, P. S. Hagan, and B. Bukiet, “Columnar growth in thin films,” Phys. Rev. Lett. 60(5), 424–427 (1988).
[PubMed]

Halas, N. J.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[PubMed]

Hérault, D.

Hu, X.

Q. Chen, X. Hu, L. Wen, Y. Yu, and D. R. S. Cumming, “Nanophotonic Image Sensors,” Small 12(36), 4922–4935 (2016).
[PubMed]

Jang, W.-Y.

W.-Y. Jang, Z. Ku, J. Jeon, J. O. Kim, S. J. Lee, J. Park, M. J. Noyola, and A. Urbas, “Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array,” Sci. Rep. 6, 34876 (2016).

Jeon, J.

W.-Y. Jang, Z. Ku, J. Jeon, J. O. Kim, S. J. Lee, J. Park, M. J. Noyola, and A. Urbas, “Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array,” Sci. Rep. 6, 34876 (2016).

Joshi-Imre, A.

A. Joshi-Imre and S. Bauerdick, “Direct-Write ion beam lithography,” J. Nanotechnol. 2014, 170415 (2014).

Kim, J. O.

W.-Y. Jang, Z. Ku, J. Jeon, J. O. Kim, S. J. Lee, J. Park, M. J. Noyola, and A. Urbas, “Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array,” Sci. Rep. 6, 34876 (2016).

Kristensen, A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Ku, Z.

W.-Y. Jang, Z. Ku, J. Jeon, J. O. Kim, S. J. Lee, J. Park, M. J. Noyola, and A. Urbas, “Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array,” Sci. Rep. 6, 34876 (2016).

Lee, K. J.

Lee, S. J.

W.-Y. Jang, Z. Ku, J. Jeon, J. O. Kim, S. J. Lee, J. Park, M. J. Noyola, and A. Urbas, “Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array,” Sci. Rep. 6, 34876 (2016).

Lezec, H. J.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16(12), 9222–9238 (2008).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).

Link, S.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Luo, X.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[PubMed]

Magnusson, R.

Maradudin, A. A.

A. A. Maradudin and D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392–1415 (1975).

Martin, O. J.

O. J. Martin, K. Thyagarajan, and C. Santschi, “A New Fabrication Method for Aluminum and Silver Plasmonic Nanostructures,” in Workshop on Optical Plasmonic Materials (The Optical Society of America, 2014).

Martin, O. J. F.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full Color Generation Using Silver Tandem Nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[PubMed]

Marty, M.

Mazor, A.

A. Mazor, D. J. Srolovitz, P. S. Hagan, and B. Bukiet, “Columnar growth in thin films,” Phys. Rev. Lett. 60(5), 424–427 (1988).
[PubMed]

Mazulquim, D. B.

Michailos, J.

Mills, D. L.

A. A. Maradudin and D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392–1415 (1975).

Mortensen, N. A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Muniz, L. V.

Neto, L. G.

Nordlander, P.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[PubMed]

Noyola, M. J.

W.-Y. Jang, Z. Ku, J. Jeon, J. O. Kim, S. J. Lee, J. Park, M. J. Noyola, and A. Urbas, “Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array,” Sci. Rep. 6, 34876 (2016).

O’Donnell, C. P.

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18, 590–598 (2007).

Odom, T. W.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: A platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).

Pacifici, D.

Park, J.

W.-Y. Jang, Z. Ku, J. Jeon, J. O. Kim, S. J. Lee, J. Park, M. J. Noyola, and A. Urbas, “Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array,” Sci. Rep. 6, 34876 (2016).

Parrein, P.

Pellé, C.

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 03547 (2006).

Raby, J.

Santschi, C.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full Color Generation Using Silver Tandem Nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[PubMed]

O. J. Martin, K. Thyagarajan, and C. Santschi, “A New Fabrication Method for Aluminum and Silver Plasmonic Nanostructures,” in Workshop on Optical Plasmonic Materials (The Optical Society of America, 2014).

Srolovitz, D. J.

A. Mazor, D. J. Srolovitz, P. S. Hagan, and B. Bukiet, “Columnar growth in thin films,” Phys. Rev. Lett. 60(5), 424–427 (1988).
[PubMed]

Sweatlock, L. A.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16(12), 9222–9238 (2008).
[PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 03547 (2006).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Thyagarajan, K.

O. J. Martin, K. Thyagarajan, and C. Santschi, “A New Fabrication Method for Aluminum and Silver Plasmonic Nanostructures,” in Workshop on Optical Plasmonic Materials (The Optical Society of America, 2014).

Urbas, A.

W.-Y. Jang, Z. Ku, J. Jeon, J. O. Kim, S. J. Lee, J. Park, M. J. Noyola, and A. Urbas, “Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array,” Sci. Rep. 6, 34876 (2016).

Walters, R. J.

Wang, H.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full Color Generation Using Silver Tandem Nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[PubMed]

Wang, S. S.

Wang, X.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full Color Generation Using Silver Tandem Nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[PubMed]

Wang, Y.

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[PubMed]

Wen, L.

Q. Chen, X. Hu, L. Wen, Y. Yu, and D. R. S. Cumming, “Nanophotonic Image Sensors,” Small 12(36), 4922–4935 (2016).
[PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[PubMed]

Xu, T.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[PubMed]

Yan, C.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full Color Generation Using Silver Tandem Nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[PubMed]

Yang, J. K. W.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Yokogawa, S.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[PubMed]

Yoon, J. W.

Yu, Y.

Q. Chen, X. Hu, L. Wen, Y. Yu, and D. R. S. Cumming, “Nanophotonic Image Sensors,” Small 12(36), 4922–4935 (2016).
[PubMed]

Zhang, J.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full Color Generation Using Silver Tandem Nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[PubMed]

Zhao, H.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full Color Generation Using Silver Tandem Nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[PubMed]

Zheng, B. Y.

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[PubMed]

Zhou, W.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: A platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).

ACS Nano (2)

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[PubMed]

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full Color Generation Using Silver Tandem Nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[PubMed]

ACS Photonics (1)

Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).

Adv. Funct. Mater. (1)

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: A platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).

Adv. Mater. (1)

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[PubMed]

Appl. Opt. (1)

J. Nanotechnol. (1)

A. Joshi-Imre and S. Bauerdick, “Direct-Write ion beam lithography,” J. Nanotechnol. 2014, 170415 (2014).

Nano Lett. (1)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[PubMed]

Nat. Commun. (1)

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[PubMed]

Nat. Rev. Mater. (1)

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Opt. Express (3)

Phys. Rev. B (2)

A. A. Maradudin and D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392–1415 (1975).

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 03547 (2006).

Phys. Rev. Lett. (1)

A. Mazor, D. J. Srolovitz, P. S. Hagan, and B. Bukiet, “Columnar growth in thin films,” Phys. Rev. Lett. 60(5), 424–427 (1988).
[PubMed]

Sci. Rep. (1)

W.-Y. Jang, Z. Ku, J. Jeon, J. O. Kim, S. J. Lee, J. Park, M. J. Noyola, and A. Urbas, “Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array,” Sci. Rep. 6, 34876 (2016).

Small (1)

Q. Chen, X. Hu, L. Wen, Y. Yu, and D. R. S. Cumming, “Nanophotonic Image Sensors,” Small 12(36), 4922–4935 (2016).
[PubMed]

Trends Food Sci. Technol. (1)

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18, 590–598 (2007).

Other (5)

E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Opt. Sci. Technol. SPIE’s 48th Annu. Meet. 5159, 380–391 (2004).

T. Hirayama, “CMOS Image Sensor Evolution: Past, Present, and Future,” in SEMICON Europa (2016).

M. Khoso and K. Kamra, “Smartphones: A Supercomputer in Your Pocket,” http://www.northeastern.edu/levelblog/2016/04/21/smartphones-supercomputer-in-your-pocket/ .

“Sensors Overview,” https://developer.android.com/guide/topics/sensors/sensors_overview.html .

O. J. Martin, K. Thyagarajan, and C. Santschi, “A New Fabrication Method for Aluminum and Silver Plasmonic Nanostructures,” in Workshop on Optical Plasmonic Materials (The Optical Society of America, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematics of MIM and MIMIM filter structures. All dark grey metal layers are Ag and 70 nm thick, except for the 50 nm center metal layer of the MIMIM filter. All light grey insulating layers are 70 nm of SiO2 (b) Comparison between MIM and MIMIM transmission behavior shows similar FWHM but enhanced suppression of the secondary peak in the MIMIM case.
Fig. 2
Fig. 2 (a) Superposition of the transmission behavior of filters with varying slit pitches. As slit pitch increases the narrowband transmission peak is controllably shifted to longer wavelengths (b) The relationship between FWHM, peak position, and sideband to peak ratio. The blue axis illustrates the ratio of FHWM to the peak position. The dashed line sets the threshold of a 30nm FWHM, and the dotted line illustrates the ratio of the transmission peak’s FWHM to the peak position. The dotted line is beneath the dashed line for the entire visible spectrum, indicating that all filters fulfill the criteria for hyperspectral imaging. The orange dotted line illustrates the ratio between the sideband and main intensity peaks, showing the best filters are also in the visible part of the spectrum.
Fig. 3
Fig. 3 (a) Experimentally determined transmission of a single MIMIM filter (b) Simulated dependence of transmission on taper of slits (c) Top down and cross-sectional SEMs of the MSPF filter (d) TEM micrograph showing the layer thicknesses and roughness of the five layers of the filter.
Fig. 4
Fig. 4 (a) Simulated polarization response varying from 0° (blue) to 90° (green) (b) The simulated polarization response was confirmed experimentally, with a 0° measurement (blue), a 30° measurement (teal), and a 45° measurement (green) (c) A transmission spectrum for a crossed MSPF structure with incident polarization oriented at 30° from the original grating normal (d) Superposition of transmission curves spanning 0° to 90° for a crossed MSPF structure showing complete polarization insensitivity.
Fig. 5
Fig. 5 (a) Fields resulting after a TM plane wave, incident in the negative x direction, scatters at a single slit and couples into MIM modes propagating in the z direction (b) An FFT of the fields at a single excitation frequency shows multiple modes resolved by wavenumber (c) Cross section through the FFT data at a select wavenumber reveals the spatial mode profile.
Fig. 6
Fig. 6 (a) By taking FFTs of a sweep of single frequency excitations, a dispersion curve can be constructed that illustrates the behavior of both active modes (b) Universal curve analysis confirms that the SPP mode on the top surface of the MSPF filter is predominantly responsible for the filters transmission behavior. The various colors of the transmission curves correspond to different peak intensity positions that have all been normalized by the SPP dispersion curve. G1 is the lowest order reciprocal lattice vector and a corresponds to the pitch of the slits.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f(k)= F(z) e ikz dz

Metrics