Abstract

The main drawback of fiber lasers is their high sensitivity to fluctuation in the properties of their surroundings, where even a minuscule fluctuation in the ambient parameters can destabilize them. In this paper, a new passive feedback mechanism inherent to Brillouin fiber lasers (BFLs) is presented and studied. This mechanism, stemming from the interplay between thermal optical-length variations and the gain-line induced frequency dependent lasing power, triggers unexpected and counter-intuitive phenomena such as self-frequency-stabilization, multi-stability, and memory effects. This feedback sheds light on the dynamic behavior of BFLs and can be controlled and modified by engineered the gain lineshape.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers

Carlos Montes, Derradji Bahloul, Isabelle Bongrand, Jean Botineau, Gérard Cheval, Abdellatif Mamhoud, Eric Picholle, and Antonio Picozzi
J. Opt. Soc. Am. B 16(6) 932-951 (1999)

Self-seeded multiwavelength Brillouin–erbium fiber laser

Y. J. Song, L. Zhan, J. H. Ji, Y. Su, Q. H. Ye, and Y. X. Xia
Opt. Lett. 30(5) 486-488 (2005)

High-power, high signal-to-noise ratio single-frequency 1 μm Brillouin all-fiber laser

Jing Wang, Yubin Hou, Qian Zhang, Dongchen Jin, Ruoyu Sun, Hongxing Shi, Jiang Liu, and Pu Wang
Opt. Express 23(22) 28978-28984 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53(6), 1021–1039 (1974).
    [Crossref]
  2. A. El-Taher, O. Kotlicki, P. Harper, S. Turitsyn, and J. Scheuer, “Secure key distribution over a 500 km long link using a Raman ultra-long fiber laser,” Laser Photonics Rev. 8(3), 436–442 (2014).
    [Crossref]
  3. O. Kotlicki and J. Scheuer, “Dark states ultra-long fiber laser for practically secure key distribution,” Quantum Inform. Process. 13(10), 2293–2311 (2014).
    [Crossref]
  4. A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
    [Crossref]
  5. J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
    [Crossref] [PubMed]
  6. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  7. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
    [Crossref]
  8. J. AuYeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE J. Quantum Electron. 14(5), 347–352 (1978).
    [Crossref]
  9. R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22(6), 294–296 (1973).
    [Crossref]
  10. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [Crossref]
  11. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  12. D. R. Ponikvar and S. Ezekiel, “Stabilized single-frequency stimulated Brillouin fiber ring laser,” Opt. Lett. 6(8), 398–400 (1981).
    [Crossref] [PubMed]
  13. C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
    [Crossref] [PubMed]
  14. E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66(11), 1454–1457 (1991).
    [Crossref] [PubMed]
  15. Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
    [Crossref]
  16. A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
    [Crossref]
  17. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
    [Crossref]
  18. A. Rosen, R. Weill, B. Levit, V. Smulakovsky, A. Bekker, and B. Fischer, “Experimental observation of critical phenomena in a laser light system,” Phys. Rev. Lett. 105(1), 013905 (2010).
    [Crossref] [PubMed]
  19. C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
    [Crossref] [PubMed]
  20. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
  21. M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38(11), 1866–1868 (2013).
    [Crossref] [PubMed]
  22. L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique,” Ann. Phys. 17, 21 (1922).
  23. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  24. T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin Scattering in Optical Fibers for the Generation of Millimeter Waves,” J. Lightwave Technol. 24(1), 295–304 (2006).
    [Crossref]
  25. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7(10), 509–511 (1982).
    [Crossref] [PubMed]
  26. T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [Crossref]
  27. Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica 3(5), 510 (2016).
    [Crossref]
  28. L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” SPIE Proc. 3330, 301–314 (1998).
    [Crossref]
  29. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  30. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [Crossref] [PubMed]
  31. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “cw Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
    [Crossref]
  32. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16(6), 393–395 (1991).
    [Crossref] [PubMed]
  33. J. C. Yong, L. Thevenaz, and B. Y. Kim, “Brillouin fiber laser pumped by a DFB laser diode,” J. Lightwave Technol. 21(2), 546–554 (2003).
    [Crossref]
  34. Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow Linewidth Brillouin Fiber Laser,” IEEE Photonics Technol. Lett. 26(20), 2058–2061 (2014).
    [Crossref]
  35. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
    [Crossref]
  36. S. Norcia, S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, and R. Frey, “Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals,” Opt. Lett. 28(20), 1888–1890 (2003).
    [Crossref] [PubMed]
  37. G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J. F. Lampin, “Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer,” Opt. Lett. 36(11), 2044–2046 (2011).
    [Crossref] [PubMed]
  38. S. Shahi, S. W. Harun, and H. Ahmad, “Multi-wavelength Brillouin fiber laser using Brillouin-Rayleigh scatterings in distributed Raman amplifier,” Laser Phys. Lett. 6(10), 737–739 (2009).
    [Crossref]
  39. J. W. Gifford, “Some Temperature Refraction Coefficients of Optical Glass,” Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 91, 319–321 (1915).
    [Crossref]
  40. A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4(4), e282 (2015).
    [Crossref]
  41. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” in Proc. SPIE 1169, 98–107 (1990).
    [Crossref]
  42. Y.-J. Kim, U.-C. Paek, and B. H. Lee, “Measurement of refractive-index variation with temperature by use of long-period fiber gratings,” Opt. Lett. 27(15), 1297–1299 (2002).
    [Crossref] [PubMed]
  43. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  44. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
    [Crossref] [PubMed]
  45. D. Jacob, A. Oberdorfer, and F. Mitschke, “Self-stabilizing additive-pulse mode-locking due to thermo-optical non-linearity in an optical fiber,” Appl. Phys. B 66(3), 271–276 (1998).
    [Crossref]
  46. S. Loranger, V. Lambin-Iezzi, M. Wahbeh, and R. Kashyap, “Stimulated Brillouin scattering in ultra-long distributed feedback Bragg gratings in standard optical fiber,” Opt. Lett. 41(8), 1797–1800 (2016).
    [Crossref] [PubMed]
  47. K. S. Abedin, P. S. Westbrook, J. W. Nicholson, J. Porque, T. Kremp, and X. Liu, “Single-frequency Brillouin distributed feedback fiber laser,” Opt. Lett. 37(4), 605–607 (2012).
    [Crossref] [PubMed]
  48. V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
    [Crossref]
  49. O. Kotlicki and J. Scheuer, “Ultra-Stable Non-Isolated Brillouin Fiber Laser Using Real-Time Control,” J. Lightwave Technol. 34(9), 2111–2117 (2016).
    [Crossref]
  50. A. E. Siegman, Lasers (University Science Books, 1986).
  51. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 7th Edition (Wiley, 2011), Chapter 5, pp. 280–285.
  52. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 7th Edition (Wiley, 2011), Table 1.1, p. 8.

2016 (3)

2015 (2)

A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
[Crossref]

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4(4), e282 (2015).
[Crossref]

2014 (3)

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow Linewidth Brillouin Fiber Laser,” IEEE Photonics Technol. Lett. 26(20), 2058–2061 (2014).
[Crossref]

A. El-Taher, O. Kotlicki, P. Harper, S. Turitsyn, and J. Scheuer, “Secure key distribution over a 500 km long link using a Raman ultra-long fiber laser,” Laser Photonics Rev. 8(3), 436–442 (2014).
[Crossref]

O. Kotlicki and J. Scheuer, “Dark states ultra-long fiber laser for practically secure key distribution,” Quantum Inform. Process. 13(10), 2293–2311 (2014).
[Crossref]

2013 (2)

2012 (3)

K. S. Abedin, P. S. Westbrook, J. W. Nicholson, J. Porque, T. Kremp, and X. Liu, “Single-frequency Brillouin distributed feedback fiber laser,” Opt. Lett. 37(4), 605–607 (2012).
[Crossref] [PubMed]

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

2011 (3)

2010 (2)

A. Rosen, R. Weill, B. Levit, V. Smulakovsky, A. Bekker, and B. Fischer, “Experimental observation of critical phenomena in a laser light system,” Phys. Rev. Lett. 105(1), 013905 (2010).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

2009 (2)

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

S. Shahi, S. W. Harun, and H. Ahmad, “Multi-wavelength Brillouin fiber laser using Brillouin-Rayleigh scatterings in distributed Raman amplifier,” Laser Phys. Lett. 6(10), 737–739 (2009).
[Crossref]

2008 (2)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

2007 (1)

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

2006 (2)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin Scattering in Optical Fibers for the Generation of Millimeter Waves,” J. Lightwave Technol. 24(1), 295–304 (2006).
[Crossref]

2004 (1)

2003 (2)

2002 (1)

1998 (1)

D. Jacob, A. Oberdorfer, and F. Mitschke, “Self-stabilizing additive-pulse mode-locking due to thermo-optical non-linearity in an optical fiber,” Appl. Phys. B 66(3), 271–276 (1998).
[Crossref]

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1991 (2)

S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16(6), 393–395 (1991).
[Crossref] [PubMed]

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66(11), 1454–1457 (1991).
[Crossref] [PubMed]

1990 (1)

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[Crossref]

1989 (1)

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

1988 (1)

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[Crossref]

1982 (1)

1981 (1)

1978 (2)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

J. AuYeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE J. Quantum Electron. 14(5), 347–352 (1978).
[Crossref]

1976 (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “cw Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

1974 (1)

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53(6), 1021–1039 (1974).
[Crossref]

1973 (1)

R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22(6), 294–296 (1973).
[Crossref]

1972 (1)

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[Crossref]

1922 (1)

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique,” Ann. Phys. 17, 21 (1922).

Abedin, K. S.

Ahmad, H.

S. Shahi, S. W. Harun, and H. Ahmad, “Multi-wavelength Brillouin fiber laser using Brillouin-Rayleigh scatterings in distributed Raman amplifier,” Laser Phys. Lett. 6(10), 737–739 (2009).
[Crossref]

Akalin, T.

Akhmediev, N.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

Ania-Castañón, J. D.

A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Antman, Y.

Aoki, Y.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[Crossref]

Ashkin, A.

R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22(6), 294–296 (1973).
[Crossref]

Astle, H. W.

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53(6), 1021–1039 (1974).
[Crossref]

AuYeung, J.

J. AuYeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE J. Quantum Electron. 14(5), 347–352 (1978).
[Crossref]

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Bacquet, D.

Bao, X.

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow Linewidth Brillouin Fiber Laser,” IEEE Photonics Technol. Lett. 26(20), 2058–2061 (2014).
[Crossref]

M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38(11), 1866–1868 (2013).
[Crossref] [PubMed]

Barthélémy, A.

A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
[Crossref]

Beck, A.

Bekker, A.

A. Rosen, R. Weill, B. Levit, V. Smulakovsky, A. Bekker, and B. Fischer, “Experimental observation of critical phenomena in a laser light system,” Phys. Rev. Lett. 105(1), 013905 (2010).
[Crossref] [PubMed]

Blake, M.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Boscolo, S.

A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
[Crossref]

Botineau, J.

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66(11), 1454–1457 (1991).
[Crossref] [PubMed]

Brillouin, L.

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique,” Ann. Phys. 17, 21 (1922).

Brito-Silva, A. M.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Burresi, M.

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4(4), e282 (2015).
[Crossref]

Carmon, T.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Chen, L.

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow Linewidth Brillouin Fiber Laser,” IEEE Photonics Technol. Lett. 26(20), 2058–2061 (2014).
[Crossref]

M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38(11), 1866–1868 (2013).
[Crossref] [PubMed]

Chodorow, M.

Chraplyvy, A. R.

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[Crossref]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Clain, A.

de Araújo, C. B.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

de Matos, C. J. S.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

de S Menezes, L.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Desfarges-Berthelemot, A.

A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
[Crossref]

Dolfi, D.

Ducournau, G.

El-Taher, A.

A. El-Taher, O. Kotlicki, P. Harper, S. Turitsyn, and J. Scheuer, “Secure key distribution over a 500 km long link using a Raman ultra-long fiber laser,” Laser Photonics Rev. 8(3), 436–442 (2014).
[Crossref]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Eyal, A.

Ezekiel, S.

Fischer, B.

A. Rosen, R. Weill, B. Levit, V. Smulakovsky, A. Bekker, and B. Fischer, “Experimental observation of critical phenomena in a laser light system,” Phys. Rev. Lett. 105(1), 013905 (2010).
[Crossref] [PubMed]

Flatae, A. M.

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4(4), e282 (2015).
[Crossref]

Fotiadi, A. A.

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

Frey, R.

Geng, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Gomes, A. S.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Grelu, P.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

Hannover, D.

Harper, P.

A. El-Taher, O. Kotlicki, P. Harper, S. Turitsyn, and J. Scheuer, “Secure key distribution over a 500 km long link using a Raman ultra-long fiber laser,” Laser Photonics Rev. 8(3), 436–442 (2014).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Harun, S. W.

S. Shahi, S. W. Harun, and H. Ahmad, “Multi-wavelength Brillouin fiber laser using Brillouin-Rayleigh scatterings in distributed Raman amplifier,” Laser Phys. Lett. 6(10), 737–739 (2009).
[Crossref]

Hill, K. O.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “cw Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

Horiguchi, T.

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Huignard, J.-P.

Ippen, E. P.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[Crossref]

Jacob, D.

D. Jacob, A. Oberdorfer, and F. Mitschke, “Self-stabilizing additive-pulse mode-locking due to thermo-optical non-linearity in an optical fiber,” Appl. Phys. B 66(3), 271–276 (1998).
[Crossref]

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Jiang, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Johnson, D. C.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “cw Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

Junker, M.

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Kaiser, P.

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53(6), 1021–1039 (1974).
[Crossref]

Kalt, H.

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4(4), e282 (2015).
[Crossref]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Kashyap, R.

Kawasaki, B. S.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “cw Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

Kermène, V.

A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
[Crossref]

Kim, B. Y.

Kim, Y.-J.

Kotlicki, O.

O. Kotlicki and J. Scheuer, “Ultra-Stable Non-Isolated Brillouin Fiber Laser Using Real-Time Control,” J. Lightwave Technol. 34(9), 2111–2117 (2016).
[Crossref]

O. Kotlicki and J. Scheuer, “Dark states ultra-long fiber laser for practically secure key distribution,” Quantum Inform. Process. 13(10), 2293–2311 (2014).
[Crossref]

A. El-Taher, O. Kotlicki, P. Harper, S. Turitsyn, and J. Scheuer, “Secure key distribution over a 500 km long link using a Raman ultra-long fiber laser,” Laser Photonics Rev. 8(3), 436–442 (2014).
[Crossref]

Kremp, T.

Krupa, K.

A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
[Crossref]

Lambin-Iezzi, V.

Lampin, J. F.

Lecaplain, C.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

Lee, B. H.

Legrand, O.

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66(11), 1454–1457 (1991).
[Crossref] [PubMed]

Levit, B.

A. Rosen, R. Weill, B. Levit, V. Smulakovsky, A. Bekker, and B. Fischer, “Experimental observation of critical phenomena in a laser light system,” Phys. Rev. Lett. 105(1), 013905 (2010).
[Crossref] [PubMed]

Leycuras, C.

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66(11), 1454–1457 (1991).
[Crossref] [PubMed]

Li, Y.

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow Linewidth Brillouin Fiber Laser,” IEEE Photonics Technol. Lett. 26(20), 2058–2061 (2014).
[Crossref]

Limpert, J.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Liu, X.

London, Y.

López-Mercado, C. A.

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

Loranger, S.

Martinez Gámez, M. A.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Mégret, P.

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

Mezentsev, V. K.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Mito, I.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[Crossref]

Mitschke, F.

D. Jacob, A. Oberdorfer, and F. Mitschke, “Self-stabilizing additive-pulse mode-locking due to thermo-optical non-linearity in an optical fiber,” Appl. Phys. B 66(3), 271–276 (1998).
[Crossref]

Montes, C.

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66(11), 1454–1457 (1991).
[Crossref] [PubMed]

Motil, A.

Nicholson, J. W.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Nilsson, J.

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Nocentini, S.

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4(4), e282 (2015).
[Crossref]

Norcia, S.

Oberdorfer, A.

D. Jacob, A. Oberdorfer, and F. Mitschke, “Self-stabilizing additive-pulse mode-locking due to thermo-optical non-linearity in an optical fiber,” Appl. Phys. B 66(3), 271–276 (1998).
[Crossref]

Ou, Z.

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow Linewidth Brillouin Fiber Laser,” IEEE Photonics Technol. Lett. 26(20), 2058–2061 (2014).
[Crossref]

Paek, U.-C.

Pang, M.

Parmeggiani, C.

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4(4), e282 (2015).
[Crossref]

Payne, D. N.

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Peled, Y.

Peytavit, E.

Picholle, E.

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66(11), 1454–1457 (1991).
[Crossref] [PubMed]

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Ponikvar, D. R.

Porque, J.

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Rosen, A.

A. Rosen, R. Weill, B. Levit, V. Smulakovsky, A. Bekker, and B. Fischer, “Experimental observation of critical phenomena in a laser light system,” Phys. Rev. Lett. 105(1), 013905 (2010).
[Crossref] [PubMed]

Saxena, B.

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow Linewidth Brillouin Fiber Laser,” IEEE Photonics Technol. Lett. 26(20), 2058–2061 (2014).
[Crossref]

Scheuer, J.

O. Kotlicki and J. Scheuer, “Ultra-Stable Non-Isolated Brillouin Fiber Laser Using Real-Time Control,” J. Lightwave Technol. 34(9), 2111–2117 (2016).
[Crossref]

O. Kotlicki and J. Scheuer, “Dark states ultra-long fiber laser for practically secure key distribution,” Quantum Inform. Process. 13(10), 2293–2311 (2014).
[Crossref]

A. El-Taher, O. Kotlicki, P. Harper, S. Turitsyn, and J. Scheuer, “Secure key distribution over a 500 km long link using a Raman ultra-long fiber laser,” Laser Photonics Rev. 8(3), 436–442 (2014).
[Crossref]

Schneider, T.

Shahi, S.

S. Shahi, S. W. Harun, and H. Ahmad, “Multi-wavelength Brillouin fiber laser using Brillouin-Rayleigh scatterings in distributed Raman amplifier,” Laser Phys. Lett. 6(10), 737–739 (2009).
[Crossref]

Shalaby, B. M.

A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
[Crossref]

Shaw, H. J.

Smith, S. P.

Smulakovsky, V.

A. Rosen, R. Weill, B. Levit, V. Smulakovsky, A. Bekker, and B. Fischer, “Experimental observation of critical phenomena in a laser light system,” Phys. Rev. Lett. 105(1), 013905 (2010).
[Crossref] [PubMed]

Soto-Crespo, J. M.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

Spirin, V. V.

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

Staines, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Stokes, L. F.

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22(6), 294–296 (1973).
[Crossref]

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[Crossref]

Szriftgiser, P.

Tajima, K.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[Crossref]

Tateda, M.

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Thevenaz, L.

J. C. Yong, L. Thevenaz, and B. Y. Kim, “Brillouin fiber laser pumped by a DFB laser diode,” J. Lightwave Technol. 21(2), 546–554 (2003).
[Crossref]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Thévenaz, L.

Tomes, M.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

Tonda-Goldstein, S.

Tonello, A.

A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
[Crossref]

Tünnermann, A.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Tur, M.

Turitsyn, S.

A. El-Taher, O. Kotlicki, P. Harper, S. Turitsyn, and J. Scheuer, “Secure key distribution over a 500 km long link using a Raman ultra-long fiber laser,” Laser Photonics Rev. 8(3), 436–442 (2014).
[Crossref]

Turitsyn, S. K.

A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Vahala, K.

Wahbeh, M.

Wang, Z.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Weill, R.

A. Rosen, R. Weill, B. Levit, V. Smulakovsky, A. Bekker, and B. Fischer, “Experimental observation of critical phenomena in a laser light system,” Phys. Rev. Lett. 105(1), 013905 (2010).
[Crossref] [PubMed]

Westbrook, P. S.

Wiegele, S.

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4(4), e282 (2015).
[Crossref]

Wiersma, D.

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4(4), e282 (2015).
[Crossref]

Yang, L.

Yariv, A.

J. AuYeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE J. Quantum Electron. 14(5), 347–352 (1978).
[Crossref]

Yaron, L.

Yong, J. C.

Zadok, A.

Zarinetchi, F.

Zeng, H.

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4(4), e282 (2015).
[Crossref]

Zilka, E.

Zong, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Ann. Phys. (1)

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique,” Ann. Phys. 17, 21 (1922).

Appl. Phys. B (1)

D. Jacob, A. Oberdorfer, and F. Mitschke, “Self-stabilizing additive-pulse mode-locking due to thermo-optical non-linearity in an optical fiber,” Appl. Phys. B 66(3), 271–276 (1998).
[Crossref]

Appl. Phys. Lett. (3)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “cw Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[Crossref]

R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22(6), 294–296 (1973).
[Crossref]

Bell Syst. Tech. J. (1)

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53(6), 1021–1039 (1974).
[Crossref]

IEEE J. Quantum Electron. (1)

J. AuYeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE J. Quantum Electron. 14(5), 347–352 (1978).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow Linewidth Brillouin Fiber Laser,” IEEE Photonics Technol. Lett. 26(20), 2058–2061 (2014).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

J. Lightwave Technol. (7)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[Crossref]

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[Crossref]

J. C. Yong, L. Thevenaz, and B. Y. Kim, “Brillouin fiber laser pumped by a DFB laser diode,” J. Lightwave Technol. 21(2), 546–554 (2003).
[Crossref]

T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin Scattering in Optical Fibers for the Generation of Millimeter Waves,” J. Lightwave Technol. 24(1), 295–304 (2006).
[Crossref]

O. Kotlicki and J. Scheuer, “Ultra-Stable Non-Isolated Brillouin Fiber Laser Using Real-Time Control,” J. Lightwave Technol. 34(9), 2111–2117 (2016).
[Crossref]

Laser Photonics Rev. (1)

A. El-Taher, O. Kotlicki, P. Harper, S. Turitsyn, and J. Scheuer, “Secure key distribution over a 500 km long link using a Raman ultra-long fiber laser,” Laser Photonics Rev. 8(3), 436–442 (2014).
[Crossref]

Laser Phys. Lett. (2)

S. Shahi, S. W. Harun, and H. Ahmad, “Multi-wavelength Brillouin fiber laser using Brillouin-Rayleigh scatterings in distributed Raman amplifier,” Laser Phys. Lett. 6(10), 737–739 (2009).
[Crossref]

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

Light Sci. Appl. (2)

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4(4), e282 (2015).
[Crossref]

A. Tonello, A. Barthélémy, K. Krupa, V. Kermène, A. Desfarges-Berthelemot, B. M. Shalaby, S. Boscolo, S. K. Turitsyn, and J. D. Ania-Castañón, “Secret key exchange in ultralong lasers by radiofrequency spectrum coding,” Light Sci. Appl. 4(4), e276 (2015).
[Crossref]

Nat. Photonics (2)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Opt. Express (3)

Opt. Lett. (9)

G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J. F. Lampin, “Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer,” Opt. Lett. 36(11), 2044–2046 (2011).
[Crossref] [PubMed]

S. Norcia, S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, and R. Frey, “Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals,” Opt. Lett. 28(20), 1888–1890 (2003).
[Crossref] [PubMed]

D. R. Ponikvar and S. Ezekiel, “Stabilized single-frequency stimulated Brillouin fiber ring laser,” Opt. Lett. 6(8), 398–400 (1981).
[Crossref] [PubMed]

L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7(10), 509–511 (1982).
[Crossref] [PubMed]

S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16(6), 393–395 (1991).
[Crossref] [PubMed]

Y.-J. Kim, U.-C. Paek, and B. H. Lee, “Measurement of refractive-index variation with temperature by use of long-period fiber gratings,” Opt. Lett. 27(15), 1297–1299 (2002).
[Crossref] [PubMed]

K. S. Abedin, P. S. Westbrook, J. W. Nicholson, J. Porque, T. Kremp, and X. Liu, “Single-frequency Brillouin distributed feedback fiber laser,” Opt. Lett. 37(4), 605–607 (2012).
[Crossref] [PubMed]

M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38(11), 1866–1868 (2013).
[Crossref] [PubMed]

S. Loranger, V. Lambin-Iezzi, M. Wahbeh, and R. Kashyap, “Stimulated Brillouin scattering in ultra-long distributed feedback Bragg gratings in standard optical fiber,” Opt. Lett. 41(8), 1797–1800 (2016).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. A (2)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Phys. Rev. Lett. (5)

A. Rosen, R. Weill, B. Levit, V. Smulakovsky, A. Bekker, and B. Fischer, “Experimental observation of critical phenomena in a laser light system,” Phys. Rev. Lett. 105(1), 013905 (2010).
[Crossref] [PubMed]

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66(11), 1454–1457 (1991).
[Crossref] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

Quantum Inform. Process. (1)

O. Kotlicki and J. Scheuer, “Dark states ultra-long fiber laser for practically secure key distribution,” Quantum Inform. Process. 13(10), 2293–2311 (2014).
[Crossref]

Science (1)

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Other (7)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” in Proc. SPIE 1169, 98–107 (1990).
[Crossref]

A. E. Siegman, Lasers (University Science Books, 1986).

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 7th Edition (Wiley, 2011), Chapter 5, pp. 280–285.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 7th Edition (Wiley, 2011), Table 1.1, p. 8.

J. W. Gifford, “Some Temperature Refraction Coefficients of Optical Glass,” Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 91, 319–321 (1915).
[Crossref]

L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” SPIE Proc. 3330, 301–314 (1998).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       This video shows experimentally the unique properties of the laser dynamics. It presents the temporal evolution of the RF spectrum of the heterodyne beating signal between the pump and the Brillouin lasing.
» Visualization 2       This video compares between the behavior of the lasing frequency in the vicinity of the peak of the gain line, where the thermal feedback is minimal and its behavior elsewhere.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A schematic of the experimental setup. Inset: A typical down-converted laser spectrum as measured using heterodyne detection in relation to the location of the gain line center.
Fig. 2
Fig. 2 The experimentally measured shift in lasing frequency in response to successive perturbations (marked using numbered arrows).
Fig. 3
Fig. 3 A measurement of the depleted pump following a single round trip inside the cavity as a function of the frequency detuning between the lasing mode and the peak of the gain line.
Fig. 4
Fig. 4 A Schematic of the thermal feedback process. ΔLext indicates an external perturbation, ΔLtherm indicates a thermal feedback response while the designation above each lineshape indicates its sequence within the process and location with respect to the peak of the gain line. Brighter Lorentzian lineshapes indicate higher temperatures.
Fig. 5
Fig. 5 The simulated shift in lasing frequency in response to the same set of perturbations shown in Fig. 2.
Fig. 6
Fig. 6 The response of the system to a small signal saw-tooth perturbation of different frequencies.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϕ= k 0 ( n 0 + dn dT ΔT )( 1+αΔT ) L 0
G( ν )= Δν/2 ν 2 + ( Δν/2 ) 2 1 1+ I( t ) I sat
R c ( ν )= 1 1t e ik( ν )L( t )
Δ T ( t )=β I laser ( t )
Bi= hLc k
T( t )= T +( T i T ) e t τ therm
ΔT( t )=Δ T ( t t d )+[ ΔT( t t d )Δ T ( t t d ) ] e t d τ therm
Δ L therm ( t )=γΔT( t )
L( t )= L 0 +Δ L therm ( t )+Δ L pert ( t )

Metrics