Abstract

We report on high quality InAs/InP quantum dot optical amplifiers for the 1550 nm wavelength range operating over a wide temperature range of 25 to 100 °C. A temperature dependent shift of the peak gain wavelength at a rate of 0.78 nm/K is observed. Consequently, two possible modes of operation are performed for a systematic device characterization over the entire temperature range. In the first mode, the signal wavelength is tuned to always match the peak gain wavelength while in the second mode, the signal wavelength is kept constant as the gain spectrum shifts with the temperature. Static characteristics, such as gain spectra and saturation levels, as well as dynamical properties, are presented. Distortion-less amplification of a single 28 Gbit/s signal and cross-talk free amplification of two channels, detuned by 2 nm, were demonstrated over the entire temperature range.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers

A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal, I. Cestier, I. Kalifa, E. Mentovich, G. Eisenstein, and J.P. Reithmaier
Opt. Express 26(5) 6056-6066 (2018)

Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 µm

Aaron J. Zilkie, Joachim Meier, Peter W. E. Smith, Mo Mojahedi, J. Stewart Aitchison, Philip J. Poole, Claudine Nì. Allen, Pedro Barrios, and Daniel Poitras
Opt. Express 14(23) 11453-11459 (2006)

Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers

M.S. Tahvili, L. Du, M.J.R. Heck, R. Nötzel, M.K. Smit, and E.A.J.M. Bente
Opt. Express 20(7) 8117-8135 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).
  2. H. Schmeckebier, C. Meuer, and D. Bimberg, “Quantum dot semiconductor optical amplifiers at 1.3 μm for applications in all-optical communication networks,” Semicond. Sci. Technol. 26, 014009 (2011).
  3. T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95, 1757–1766 (2007).
  4. O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
  5. T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi 238, 301–304 (2003).
  6. A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
  7. A. Bilenca and G. Eisenstein, “On Noise Properties of Linear and Nonlinear Quantum Dot Semiconductor Optical Amplifiers: The Impact of Inhomogeneously Broadened Gain and Fast Carrier Dynamics,” IEEE J. Quantum Electron. 40, 690–702 (2004).
  8. A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct Observation of The Coherent Spectral Hole in The Noise Spectrum of a Saturated InAs/InP Quantum Dash Amplifier Operating Near 1550 nm,” Opt. Express 16(3), 2141–2146 (2008).
    [PubMed]
  9. R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).
  10. A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross Talk Free Multi channel Processing of 10 Gbit/s Data Via Four Wave Mixing in a 1550 nm InAs/InP Quantum Dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
    [PubMed]
  11. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).
  12. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optiocal amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).
  13. S. Banyoudeh, “Temperature-Insensitive High-Speed Directly Modulated 1.55um Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).
  14. T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely High Temperature (220°C) Continuous-Wave Operation of 1300-nm-range Quantum-Dot Lasers,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (2011).
  15. D. Arsenijevic, C. Liu, A. Payusov, M. Stubenrauch, and D. Bimberg “Temperature-dependent characteristics of single-mode InAs submonolayer quantum-dot lasers,” IEEE Photonics Technol. Lett. 24, 906–908 (2012).
  16. S. Banyoudeh and J. P. Reithmaier, “High-density 1.54-μm InAs/InGaAlAs/InP(100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).
  17. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
  18. T. W. Berg and J. Mork, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82, 3083–3085 (2003).
  19. I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

2017 (1)

I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

2016 (1)

S. Banyoudeh, “Temperature-Insensitive High-Speed Directly Modulated 1.55um Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).

2015 (1)

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54-μm InAs/InGaAlAs/InP(100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).

2014 (1)

O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).

2012 (1)

D. Arsenijevic, C. Liu, A. Payusov, M. Stubenrauch, and D. Bimberg “Temperature-dependent characteristics of single-mode InAs submonolayer quantum-dot lasers,” IEEE Photonics Technol. Lett. 24, 906–908 (2012).

2011 (1)

H. Schmeckebier, C. Meuer, and D. Bimberg, “Quantum dot semiconductor optical amplifiers at 1.3 μm for applications in all-optical communication networks,” Semicond. Sci. Technol. 26, 014009 (2011).

2008 (3)

2007 (1)

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95, 1757–1766 (2007).

2005 (2)

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

2004 (3)

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).

A. Bilenca and G. Eisenstein, “On Noise Properties of Linear and Nonlinear Quantum Dot Semiconductor Optical Amplifiers: The Impact of Inhomogeneously Broadened Gain and Fast Carrier Dynamics,” IEEE J. Quantum Electron. 40, 690–702 (2004).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

2003 (2)

T. W. Berg and J. Mork, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82, 3083–3085 (2003).

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi 238, 301–304 (2003).

2002 (1)

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

Akiyama, T.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95, 1757–1766 (2007).

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi 238, 301–304 (2003).

Alizon, R.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

Arakawa, Y.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95, 1757–1766 (2007).

Arsenijevic, D.

D. Arsenijevic, C. Liu, A. Payusov, M. Stubenrauch, and D. Bimberg “Temperature-dependent characteristics of single-mode InAs submonolayer quantum-dot lasers,” IEEE Photonics Technol. Lett. 24, 906–908 (2012).

Bansropun, S.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

Banyoudeh, S.

I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

S. Banyoudeh, “Temperature-Insensitive High-Speed Directly Modulated 1.55um Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54-μm InAs/InGaAlAs/InP(100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).

Bayer, M.

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

Berg, T. W.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).

T. W. Berg and J. Mork, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82, 3083–3085 (2003).

Bilenca, A.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

A. Bilenca and G. Eisenstein, “On Noise Properties of Linear and Nonlinear Quantum Dot Semiconductor Optical Amplifiers: The Impact of Inhomogeneously Broadened Gain and Fast Carrier Dynamics,” IEEE J. Quantum Electron. 40, 690–702 (2004).

Bimberg, D.

D. Arsenijevic, C. Liu, A. Payusov, M. Stubenrauch, and D. Bimberg “Temperature-dependent characteristics of single-mode InAs submonolayer quantum-dot lasers,” IEEE Photonics Technol. Lett. 24, 906–908 (2012).

H. Schmeckebier, C. Meuer, and D. Bimberg, “Quantum dot semiconductor optical amplifiers at 1.3 μm for applications in all-optical communication networks,” Semicond. Sci. Technol. 26, 014009 (2011).

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optiocal amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).

Calligaro, M.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct Observation of The Coherent Spectral Hole in The Noise Spectrum of a Saturated InAs/InP Quantum Dash Amplifier Operating Near 1550 nm,” Opt. Express 16(3), 2141–2146 (2008).
[PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

Capua, A.

Capua1, A.

O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).

Dery, H.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

Deubert, S.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

Ebe, H.

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi 238, 301–304 (2003).

Eisenstein, G.

I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optiocal amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross Talk Free Multi channel Processing of 10 Gbit/s Data Via Four Wave Mixing in a 1550 nm InAs/InP Quantum Dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[PubMed]

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct Observation of The Coherent Spectral Hole in The Noise Spectrum of a Saturated InAs/InP Quantum Dash Amplifier Operating Near 1550 nm,” Opt. Express 16(3), 2141–2146 (2008).
[PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

A. Bilenca and G. Eisenstein, “On Noise Properties of Linear and Nonlinear Quantum Dot Semiconductor Optical Amplifiers: The Impact of Inhomogeneously Broadened Gain and Fast Carrier Dynamics,” IEEE J. Quantum Electron. 40, 690–702 (2004).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

Forchel, A.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct Observation of The Coherent Spectral Hole in The Noise Spectrum of a Saturated InAs/InP Quantum Dash Amplifier Operating Near 1550 nm,” Opt. Express 16(3), 2141–2146 (2008).
[PubMed]

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross Talk Free Multi channel Processing of 10 Gbit/s Data Via Four Wave Mixing in a 1550 nm InAs/InP Quantum Dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

Gionnini, M.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

Hadass, D.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

Hatori, N.

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi 238, 301–304 (2003).

Ivanov, V.

O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).

Kaiser, W.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

Karni, O.

I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).

Khanonkin, I.

I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

Kim, J.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optiocal amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).

Krakowski, M.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct Observation of The Coherent Spectral Hole in The Noise Spectrum of a Saturated InAs/InP Quantum Dash Amplifier Operating Near 1550 nm,” Opt. Express 16(3), 2141–2146 (2008).
[PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

Kuchar, K. J.

O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).

Laemmlin, M.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optiocal amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).

Liu, C.

D. Arsenijevic, C. Liu, A. Payusov, M. Stubenrauch, and D. Bimberg “Temperature-dependent characteristics of single-mode InAs submonolayer quantum-dot lasers,” IEEE Photonics Technol. Lett. 24, 906–908 (2012).

Meuer, C.

H. Schmeckebier, C. Meuer, and D. Bimberg, “Quantum dot semiconductor optical amplifiers at 1.3 μm for applications in all-optical communication networks,” Semicond. Sci. Technol. 26, 014009 (2011).

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optiocal amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).

Mikhelashvili, V.

I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct Observation of The Coherent Spectral Hole in The Noise Spectrum of a Saturated InAs/InP Quantum Dash Amplifier Operating Near 1550 nm,” Opt. Express 16(3), 2141–2146 (2008).
[PubMed]

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross Talk Free Multi channel Processing of 10 Gbit/s Data Via Four Wave Mixing in a 1550 nm InAs/InP Quantum Dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

Mikhelashvili1, V.

O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).

Mishra, A. K.

I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

Misiewicz, J.

O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).

Montrosset, I.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

Mork, J.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).

T. W. Berg and J. Mork, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82, 3083–3085 (2003).

Nakata, Y.

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi 238, 301–304 (2003).

O’Duill, S.

Parillaud, O.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct Observation of The Coherent Spectral Hole in The Noise Spectrum of a Saturated InAs/InP Quantum Dash Amplifier Operating Near 1550 nm,” Opt. Express 16(3), 2141–2146 (2008).
[PubMed]

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

Payusov, A.

D. Arsenijevic, C. Liu, A. Payusov, M. Stubenrauch, and D. Bimberg “Temperature-dependent characteristics of single-mode InAs submonolayer quantum-dot lasers,” IEEE Photonics Technol. Lett. 24, 906–908 (2012).

Reithmaier, J. P.

I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54-μm InAs/InGaAlAs/InP(100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).

O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross Talk Free Multi channel Processing of 10 Gbit/s Data Via Four Wave Mixing in a 1550 nm InAs/InP Quantum Dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[PubMed]

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct Observation of The Coherent Spectral Hole in The Noise Spectrum of a Saturated InAs/InP Quantum Dash Amplifier Operating Near 1550 nm,” Opt. Express 16(3), 2141–2146 (2008).
[PubMed]

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

Reithmaier, J.P.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

Resneau, P.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

Schmeckebier, H.

H. Schmeckebier, C. Meuer, and D. Bimberg, “Quantum dot semiconductor optical amplifiers at 1.3 μm for applications in all-optical communication networks,” Semicond. Sci. Technol. 26, 014009 (2011).

Schnabel, F.

I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

Schwertberger, R.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

Sek, G.

O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).

Sichkovskyi, V.

I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

Somers, A.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct Observation of The Coherent Spectral Hole in The Noise Spectrum of a Saturated InAs/InP Quantum Dash Amplifier Operating Near 1550 nm,” Opt. Express 16(3), 2141–2146 (2008).
[PubMed]

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross Talk Free Multi channel Processing of 10 Gbit/s Data Via Four Wave Mixing in a 1550 nm InAs/InP Quantum Dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[PubMed]

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

Stubenrauch, M.

D. Arsenijevic, C. Liu, A. Payusov, M. Stubenrauch, and D. Bimberg “Temperature-dependent characteristics of single-mode InAs submonolayer quantum-dot lasers,” IEEE Photonics Technol. Lett. 24, 906–908 (2012).

Sugawara, M.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95, 1757–1766 (2007).

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi 238, 301–304 (2003).

Tromborg, B.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

Uskov, A. V.

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).

van der Poel, M.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

AIP Adv. (1)

I. Khanonkin, A. K. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).

Appl. Phys. Lett. (2)

T. W. Berg and J. Mork, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82, 3083–3085 (2003).

O. Karni, K. J. Kuchar, A. Capua1, V. Mikhelashvili1, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).

Electron. Lett. (1)

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier,” Electron. Lett. 40, 760–761 (2004).

IEEE J. Quantum Electron. (3)

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).

A. Bilenca and G. Eisenstein, “On Noise Properties of Linear and Nonlinear Quantum Dot Semiconductor Optical Amplifiers: The Impact of Inhomogeneously Broadened Gain and Fast Carrier Dynamics,” IEEE J. Quantum Electron. 40, 690–702 (2004).

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optiocal amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).

IEEE J. Sel. Top. Quantum Electron. (1)

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1025 (2005).

IEEE Photonics Technol. Lett. (2)

S. Banyoudeh, “Temperature-Insensitive High-Speed Directly Modulated 1.55um Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).

D. Arsenijevic, C. Liu, A. Payusov, M. Stubenrauch, and D. Bimberg “Temperature-dependent characteristics of single-mode InAs submonolayer quantum-dot lasers,” IEEE Photonics Technol. Lett. 24, 906–908 (2012).

J. Cryst. Growth (1)

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54-μm InAs/InGaAlAs/InP(100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).

J. Phys. D (1)

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP Based Lasers and Optical Amplifiers With Wire-/Dot-Like Active Regions,” J. Phys. D 38, 2088–2102 (2005).

Opt. Express (2)

Phys. Rev. B (1)

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

Phys. Status Solidi (1)

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi 238, 301–304 (2003).

Proc. IEEE (1)

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95, 1757–1766 (2007).

Semicond. Sci. Technol. (1)

H. Schmeckebier, C. Meuer, and D. Bimberg, “Quantum dot semiconductor optical amplifiers at 1.3 μm for applications in all-optical communication networks,” Semicond. Sci. Technol. 26, 014009 (2011).

Other (1)

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely High Temperature (220°C) Continuous-Wave Operation of 1300-nm-range Quantum-Dot Lasers,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Two channel experimental setup.
Fig. 2
Fig. 2 (a) Epitaxial layer structure of the QD gain medium, (b) PL spectrum at 10 K of the six dot-layer stack. The inset shows an atomic force microscope image of a single dot layer.
Fig. 3
Fig. 3 (a) Bias dependent ASE spectra at room temperature for a bias range of 60 to 160 mA. (b) Temperature dependent ASE spectra. The inset summarizes the peak ASE wavelength shift.
Fig. 4
Fig. 4 Bias dependent gain curves measured at the gain peak for different temperatures. (a) 25 °C, (b) 50 °C, (c) 100 °C.
Fig. 5
Fig. 5 (a) Gain curves for 1599nm (b) Temperature dependent Gain and Saturation Power.
Fig. 6
Fig. 6 Amplification of a 28 Gbit/s signal at various temperatures where the signal wavelength is tuned to the gain peak. (a) 25 °C, (b) 55 °C, (c) 80 °C,(d) 100 °C.
Fig. 7
Fig. 7 Amplification of a 28 Gbit/s signal at various temperatures for the wavelength of 1599nm and injection current is optimum. (a) 25° C, (b) 45° C, (c) 85° C, (d) 100° C.
Fig. 8
Fig. 8 Two channel amplification. The detected 28 Gbit/s signal is shown with the 10 Gbit/s off ((a)-(c)) and with the 10 Gbit/s signal on ((d)-(f)).

Metrics