Abstract

Land surface temperature (LST) is a key parameter in the interaction of the land-atmosphere system. Nevertheless, on the regional scale, the actual weather is cloudy for half a year in most regions. Therefore, receiving all-weather LST from thermal-infrared remote sensing is necessary and urgent. In this paper, an approach with multi-temporal and spatial neighboring-pixels in combination with diurnal solar radiation and surface temperature evolution is proposed to estimate daytime all-weather LST using FY-2D data. Evaluation of the accuracy of the algorithm is performed against the simulated data and the in situ measurements. The root mean square error (RMSE) between the actual and estimated LSTs under cloud-free conditions is approximately 1.84 K for the simulated data, while the RMSE of LST under cloud-free conditions varies from 3.42 to 5.1 K for the in situ measurement, and RMSE of LST under cloudy sky is approximately 7 K. The results indicate that the new algorithm is practical for retrieving the daytime all-weather LST at high-temporal resolution without any auxiliary field measurement, although some uncertainties exist.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Land surface temperature retrieval from AMSR-E passive microwave data

Enyu Zhao, Caixia Gao, Xiaoguang Jiang, and Zhaoxia Liu
Opt. Express 25(20) A940-A952 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS land surface temperature and emissivity separation algorithm with ground measurements over a ricepaddy,” IEEE Trans. Geosci. Remote Sens. 54, 3061–3069 (2016).
  2. Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.-F. Trigo, and J.-A. Sobrino, “Satellite-derived land surface temperature: current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
  3. S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
  4. H. Shwetha and D. Kumar, “Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN,” ISPRS J. Photogramm. Remote Sens. 117, 40–55 (2016).
  5. J.-L. Moncet, P. Liang, J. F. Galantowicz, A. Lipton, G. Uymin, C. Prigent, and C. Grassotti, “Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control,” J. Geophys. Res. Atmos. 116, D16104 (2011).
  6. M. Neteler, “Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data,” Remote Sens. 2, 333–351 (2010).
  7. L. Ke, Z. Wang, C. Song, and Z. Lu, “Reconstruction of MODIS LST Time Series and Comparisonwith Land Surface Temperature (T) among Observation Stations in the Northeast Qinghai-Tibet Plateau,” Progress in Geography. 30(7), 819–826 (2011).
  8. C. Zeng, H.-F. Shen, M.-L. Zhong, L.-P. Zhang, and P.-H. Wu, “Reconstructing MODIS LST Based on Multitemporal Classification and Robust Regression,” IEEE Geosci. Remote Sens. Lett. 67312, 512–516 (2015).
  9. M.-L. Jin, “Interpolation of surface radiative temperature measured from polar-orbiting satellites to a diurnal cycle 2. Cloudy-pixel treatment,” J. Geophys. Res. 105(D3), 4061–4076 (2000).
  10. L. Lu, V. Venus, A. Skidmore, T. Wang, and G. Luo, “Estimating land-surface temperature under clouds using MSG/SEVIRI observations,” Int. J. Appl. Earth Obs. 13, 265–276 (2011).
  11. W.-P. Yu, M.-G. Ma, X.-F. Wang, and J.-L. Tan, “Estimating the land-surface temperature of pixels covered by clouds in MODIS products,” J. Appl. Earth Obs. 8(1), 083525 (2014).
  12. X. Zhang, J. Pang, and L. Li, “Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution,” Remote Sens. 7(1), 905–921 (2015).
  13. Z. Wan and J. Dozier, “A generalized split-window algorithm for retrieving land surface temperature from space. IEEE Trans. Geosci,” Remote Sens. 34, 892–905 (1996).
  14. J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Determination of the surface temperature from ATSR data,” In Proceedings of 25th International Symposium on Remote Sensing of Environment, Graz, Austria, April 4–8. pp. II-19 - II-109(1993).
  15. X. Zhang and L. Li, “Estimating net surface shortwave radiation from Chinese geostationary meteorological satellite FengYun-2D (FY-2D) data under clear sky,” Opt. Express 24(6), A476–A487 (2016).
  16. S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, B.-H. Tang, X. Jiang, and G. Zhou, “Modeling of day-to-day temporal progression of clear-sky land surface temperature,” IEEE Geosci. Remote Sens. Lett. 10, 1050–1054 (2013).
  17. X. Zhang and L. Li, “A method to estimate land surface temperature from Meteosat Second Generation data using multi-temporal data,” Opt. Express 21(26), 31907–31918 (2013).
  18. S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, and B.-H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).
  19. B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).
  20. Z.-L. Li, L. Jia, Z.-B. Su, Z.-M. Wan, and R.-H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24, 5095–5117 (2003).
  21. X. Zhang and J. Pang, “A comparison between atmospheric water vapour content retrieval methods using MSG2-SEVIRI thermal IR data,” Int. J. Remote Sens. 36(19–20), 5075–5086 (2015).

2017 (1)

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).

2016 (3)

H. Shwetha and D. Kumar, “Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN,” ISPRS J. Photogramm. Remote Sens. 117, 40–55 (2016).

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS land surface temperature and emissivity separation algorithm with ground measurements over a ricepaddy,” IEEE Trans. Geosci. Remote Sens. 54, 3061–3069 (2016).

X. Zhang and L. Li, “Estimating net surface shortwave radiation from Chinese geostationary meteorological satellite FengYun-2D (FY-2D) data under clear sky,” Opt. Express 24(6), A476–A487 (2016).

2015 (3)

X. Zhang, J. Pang, and L. Li, “Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution,” Remote Sens. 7(1), 905–921 (2015).

C. Zeng, H.-F. Shen, M.-L. Zhong, L.-P. Zhang, and P.-H. Wu, “Reconstructing MODIS LST Based on Multitemporal Classification and Robust Regression,” IEEE Geosci. Remote Sens. Lett. 67312, 512–516 (2015).

X. Zhang and J. Pang, “A comparison between atmospheric water vapour content retrieval methods using MSG2-SEVIRI thermal IR data,” Int. J. Remote Sens. 36(19–20), 5075–5086 (2015).

2014 (1)

W.-P. Yu, M.-G. Ma, X.-F. Wang, and J.-L. Tan, “Estimating the land-surface temperature of pixels covered by clouds in MODIS products,” J. Appl. Earth Obs. 8(1), 083525 (2014).

2013 (3)

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.-F. Trigo, and J.-A. Sobrino, “Satellite-derived land surface temperature: current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, B.-H. Tang, X. Jiang, and G. Zhou, “Modeling of day-to-day temporal progression of clear-sky land surface temperature,” IEEE Geosci. Remote Sens. Lett. 10, 1050–1054 (2013).

X. Zhang and L. Li, “A method to estimate land surface temperature from Meteosat Second Generation data using multi-temporal data,” Opt. Express 21(26), 31907–31918 (2013).

2012 (1)

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, and B.-H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).

2011 (3)

L. Ke, Z. Wang, C. Song, and Z. Lu, “Reconstruction of MODIS LST Time Series and Comparisonwith Land Surface Temperature (T) among Observation Stations in the Northeast Qinghai-Tibet Plateau,” Progress in Geography. 30(7), 819–826 (2011).

L. Lu, V. Venus, A. Skidmore, T. Wang, and G. Luo, “Estimating land-surface temperature under clouds using MSG/SEVIRI observations,” Int. J. Appl. Earth Obs. 13, 265–276 (2011).

J.-L. Moncet, P. Liang, J. F. Galantowicz, A. Lipton, G. Uymin, C. Prigent, and C. Grassotti, “Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control,” J. Geophys. Res. Atmos. 116, D16104 (2011).

2010 (1)

M. Neteler, “Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data,” Remote Sens. 2, 333–351 (2010).

2008 (1)

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).

2003 (1)

Z.-L. Li, L. Jia, Z.-B. Su, Z.-M. Wan, and R.-H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24, 5095–5117 (2003).

2000 (1)

M.-L. Jin, “Interpolation of surface radiative temperature measured from polar-orbiting satellites to a diurnal cycle 2. Cloudy-pixel treatment,” J. Geophys. Res. 105(D3), 4061–4076 (2000).

1996 (1)

Z. Wan and J. Dozier, “A generalized split-window algorithm for retrieving land surface temperature from space. IEEE Trans. Geosci,” Remote Sens. 34, 892–905 (1996).

Becker, F.

J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Determination of the surface temperature from ATSR data,” In Proceedings of 25th International Symposium on Remote Sensing of Environment, Graz, Austria, April 4–8. pp. II-19 - II-109(1993).

Bi, Y.

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).

Caselles, V.

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS land surface temperature and emissivity separation algorithm with ground measurements over a ricepaddy,” IEEE Trans. Geosci. Remote Sens. 54, 3061–3069 (2016).

Coll, C.

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS land surface temperature and emissivity separation algorithm with ground measurements over a ricepaddy,” IEEE Trans. Geosci. Remote Sens. 54, 3061–3069 (2016).

Dozier, J.

Z. Wan and J. Dozier, “A generalized split-window algorithm for retrieving land surface temperature from space. IEEE Trans. Geosci,” Remote Sens. 34, 892–905 (1996).

Duan, S.-B.

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, B.-H. Tang, X. Jiang, and G. Zhou, “Modeling of day-to-day temporal progression of clear-sky land surface temperature,” IEEE Geosci. Remote Sens. Lett. 10, 1050–1054 (2013).

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, and B.-H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).

Galantowicz, J. F.

J.-L. Moncet, P. Liang, J. F. Galantowicz, A. Lipton, G. Uymin, C. Prigent, and C. Grassotti, “Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control,” J. Geophys. Res. Atmos. 116, D16104 (2011).

García-Santos, V.

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS land surface temperature and emissivity separation algorithm with ground measurements over a ricepaddy,” IEEE Trans. Geosci. Remote Sens. 54, 3061–3069 (2016).

Grassotti, C.

J.-L. Moncet, P. Liang, J. F. Galantowicz, A. Lipton, G. Uymin, C. Prigent, and C. Grassotti, “Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control,” J. Geophys. Res. Atmos. 116, D16104 (2011).

Jia, L.

Z.-L. Li, L. Jia, Z.-B. Su, Z.-M. Wan, and R.-H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24, 5095–5117 (2003).

Jiang, X.

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, B.-H. Tang, X. Jiang, and G. Zhou, “Modeling of day-to-day temporal progression of clear-sky land surface temperature,” IEEE Geosci. Remote Sens. Lett. 10, 1050–1054 (2013).

Jin, M.-L.

M.-L. Jin, “Interpolation of surface radiative temperature measured from polar-orbiting satellites to a diurnal cycle 2. Cloudy-pixel treatment,” J. Geophys. Res. 105(D3), 4061–4076 (2000).

Ke, L.

L. Ke, Z. Wang, C. Song, and Z. Lu, “Reconstruction of MODIS LST Time Series and Comparisonwith Land Surface Temperature (T) among Observation Stations in the Northeast Qinghai-Tibet Plateau,” Progress in Geography. 30(7), 819–826 (2011).

Kumar, D.

H. Shwetha and D. Kumar, “Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN,” ISPRS J. Photogramm. Remote Sens. 117, 40–55 (2016).

Leng, P.

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).

Li, L.

Li, Z.-L.

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.-F. Trigo, and J.-A. Sobrino, “Satellite-derived land surface temperature: current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, B.-H. Tang, X. Jiang, and G. Zhou, “Modeling of day-to-day temporal progression of clear-sky land surface temperature,” IEEE Geosci. Remote Sens. Lett. 10, 1050–1054 (2013).

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, and B.-H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).

Z.-L. Li, L. Jia, Z.-B. Su, Z.-M. Wan, and R.-H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24, 5095–5117 (2003).

J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Determination of the surface temperature from ATSR data,” In Proceedings of 25th International Symposium on Remote Sensing of Environment, Graz, Austria, April 4–8. pp. II-19 - II-109(1993).

Liang, P.

J.-L. Moncet, P. Liang, J. F. Galantowicz, A. Lipton, G. Uymin, C. Prigent, and C. Grassotti, “Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control,” J. Geophys. Res. Atmos. 116, D16104 (2011).

Lipton, A.

J.-L. Moncet, P. Liang, J. F. Galantowicz, A. Lipton, G. Uymin, C. Prigent, and C. Grassotti, “Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control,” J. Geophys. Res. Atmos. 116, D16104 (2011).

Lu, L.

L. Lu, V. Venus, A. Skidmore, T. Wang, and G. Luo, “Estimating land-surface temperature under clouds using MSG/SEVIRI observations,” Int. J. Appl. Earth Obs. 13, 265–276 (2011).

Lu, Z.

L. Ke, Z. Wang, C. Song, and Z. Lu, “Reconstruction of MODIS LST Time Series and Comparisonwith Land Surface Temperature (T) among Observation Stations in the Northeast Qinghai-Tibet Plateau,” Progress in Geography. 30(7), 819–826 (2011).

Luo, G.

L. Lu, V. Venus, A. Skidmore, T. Wang, and G. Luo, “Estimating land-surface temperature under clouds using MSG/SEVIRI observations,” Int. J. Appl. Earth Obs. 13, 265–276 (2011).

Ma, M.-G.

W.-P. Yu, M.-G. Ma, X.-F. Wang, and J.-L. Tan, “Estimating the land-surface temperature of pixels covered by clouds in MODIS products,” J. Appl. Earth Obs. 8(1), 083525 (2014).

Moncet, J.-L.

J.-L. Moncet, P. Liang, J. F. Galantowicz, A. Lipton, G. Uymin, C. Prigent, and C. Grassotti, “Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control,” J. Geophys. Res. Atmos. 116, D16104 (2011).

Neteler, M.

M. Neteler, “Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data,” Remote Sens. 2, 333–351 (2010).

Niclòs, R.

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS land surface temperature and emissivity separation algorithm with ground measurements over a ricepaddy,” IEEE Trans. Geosci. Remote Sens. 54, 3061–3069 (2016).

Pang, J.

X. Zhang, J. Pang, and L. Li, “Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution,” Remote Sens. 7(1), 905–921 (2015).

X. Zhang and J. Pang, “A comparison between atmospheric water vapour content retrieval methods using MSG2-SEVIRI thermal IR data,” Int. J. Remote Sens. 36(19–20), 5075–5086 (2015).

Prigent, C.

J.-L. Moncet, P. Liang, J. F. Galantowicz, A. Lipton, G. Uymin, C. Prigent, and C. Grassotti, “Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control,” J. Geophys. Res. Atmos. 116, D16104 (2011).

Ren, H.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.-F. Trigo, and J.-A. Sobrino, “Satellite-derived land surface temperature: current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).

Shen, H.-F.

C. Zeng, H.-F. Shen, M.-L. Zhong, L.-P. Zhang, and P.-H. Wu, “Reconstructing MODIS LST Based on Multitemporal Classification and Robust Regression,” IEEE Geosci. Remote Sens. Lett. 67312, 512–516 (2015).

Shwetha, H.

H. Shwetha and D. Kumar, “Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN,” ISPRS J. Photogramm. Remote Sens. 117, 40–55 (2016).

Skidmore, A.

L. Lu, V. Venus, A. Skidmore, T. Wang, and G. Luo, “Estimating land-surface temperature under clouds using MSG/SEVIRI observations,” Int. J. Appl. Earth Obs. 13, 265–276 (2011).

Sobrino, J. A.

J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Determination of the surface temperature from ATSR data,” In Proceedings of 25th International Symposium on Remote Sensing of Environment, Graz, Austria, April 4–8. pp. II-19 - II-109(1993).

Sobrino, J.-A.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.-F. Trigo, and J.-A. Sobrino, “Satellite-derived land surface temperature: current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).

Song, C.

L. Ke, Z. Wang, C. Song, and Z. Lu, “Reconstruction of MODIS LST Time Series and Comparisonwith Land Surface Temperature (T) among Observation Stations in the Northeast Qinghai-Tibet Plateau,” Progress in Geography. 30(7), 819–826 (2011).

Stoll, M. P.

J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Determination of the surface temperature from ATSR data,” In Proceedings of 25th International Symposium on Remote Sensing of Environment, Graz, Austria, April 4–8. pp. II-19 - II-109(1993).

Su, Z.-B.

Z.-L. Li, L. Jia, Z.-B. Su, Z.-M. Wan, and R.-H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24, 5095–5117 (2003).

Tan, J.-L.

W.-P. Yu, M.-G. Ma, X.-F. Wang, and J.-L. Tan, “Estimating the land-surface temperature of pixels covered by clouds in MODIS products,” J. Appl. Earth Obs. 8(1), 083525 (2014).

Tang, B.

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).

Tang, B.-H.

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, B.-H. Tang, X. Jiang, and G. Zhou, “Modeling of day-to-day temporal progression of clear-sky land surface temperature,” IEEE Geosci. Remote Sens. Lett. 10, 1050–1054 (2013).

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.-F. Trigo, and J.-A. Sobrino, “Satellite-derived land surface temperature: current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, and B.-H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).

Trigo, I.-F.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.-F. Trigo, and J.-A. Sobrino, “Satellite-derived land surface temperature: current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).

Uymin, G.

J.-L. Moncet, P. Liang, J. F. Galantowicz, A. Lipton, G. Uymin, C. Prigent, and C. Grassotti, “Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control,” J. Geophys. Res. Atmos. 116, D16104 (2011).

Venus, V.

L. Lu, V. Venus, A. Skidmore, T. Wang, and G. Luo, “Estimating land-surface temperature under clouds using MSG/SEVIRI observations,” Int. J. Appl. Earth Obs. 13, 265–276 (2011).

Wan, Z.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.-F. Trigo, and J.-A. Sobrino, “Satellite-derived land surface temperature: current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).

Z. Wan and J. Dozier, “A generalized split-window algorithm for retrieving land surface temperature from space. IEEE Trans. Geosci,” Remote Sens. 34, 892–905 (1996).

Wan, Z.-M.

Z.-L. Li, L. Jia, Z.-B. Su, Z.-M. Wan, and R.-H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24, 5095–5117 (2003).

Wang, N.

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, B.-H. Tang, X. Jiang, and G. Zhou, “Modeling of day-to-day temporal progression of clear-sky land surface temperature,” IEEE Geosci. Remote Sens. Lett. 10, 1050–1054 (2013).

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, and B.-H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).

Wang, T.

L. Lu, V. Venus, A. Skidmore, T. Wang, and G. Luo, “Estimating land-surface temperature under clouds using MSG/SEVIRI observations,” Int. J. Appl. Earth Obs. 13, 265–276 (2011).

Wang, X.-F.

W.-P. Yu, M.-G. Ma, X.-F. Wang, and J.-L. Tan, “Estimating the land-surface temperature of pixels covered by clouds in MODIS products,” J. Appl. Earth Obs. 8(1), 083525 (2014).

Wang, Z.

L. Ke, Z. Wang, C. Song, and Z. Lu, “Reconstruction of MODIS LST Time Series and Comparisonwith Land Surface Temperature (T) among Observation Stations in the Northeast Qinghai-Tibet Plateau,” Progress in Geography. 30(7), 819–826 (2011).

Wu, H.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.-F. Trigo, and J.-A. Sobrino, “Satellite-derived land surface temperature: current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, B.-H. Tang, X. Jiang, and G. Zhou, “Modeling of day-to-day temporal progression of clear-sky land surface temperature,” IEEE Geosci. Remote Sens. Lett. 10, 1050–1054 (2013).

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, and B.-H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).

Wu, P.-H.

C. Zeng, H.-F. Shen, M.-L. Zhong, L.-P. Zhang, and P.-H. Wu, “Reconstructing MODIS LST Based on Multitemporal Classification and Robust Regression,” IEEE Geosci. Remote Sens. Lett. 67312, 512–516 (2015).

Xia, J.

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).

Yan, G.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.-F. Trigo, and J.-A. Sobrino, “Satellite-derived land surface temperature: current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).

Yu, W.-P.

W.-P. Yu, M.-G. Ma, X.-F. Wang, and J.-L. Tan, “Estimating the land-surface temperature of pixels covered by clouds in MODIS products,” J. Appl. Earth Obs. 8(1), 083525 (2014).

Zeng, C.

C. Zeng, H.-F. Shen, M.-L. Zhong, L.-P. Zhang, and P.-H. Wu, “Reconstructing MODIS LST Based on Multitemporal Classification and Robust Regression,” IEEE Geosci. Remote Sens. Lett. 67312, 512–516 (2015).

Zhang, L.-P.

C. Zeng, H.-F. Shen, M.-L. Zhong, L.-P. Zhang, and P.-H. Wu, “Reconstructing MODIS LST Based on Multitemporal Classification and Robust Regression,” IEEE Geosci. Remote Sens. Lett. 67312, 512–516 (2015).

Zhang, R.-H.

Z.-L. Li, L. Jia, Z.-B. Su, Z.-M. Wan, and R.-H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24, 5095–5117 (2003).

Zhang, X.

X. Zhang and L. Li, “Estimating net surface shortwave radiation from Chinese geostationary meteorological satellite FengYun-2D (FY-2D) data under clear sky,” Opt. Express 24(6), A476–A487 (2016).

X. Zhang and J. Pang, “A comparison between atmospheric water vapour content retrieval methods using MSG2-SEVIRI thermal IR data,” Int. J. Remote Sens. 36(19–20), 5075–5086 (2015).

X. Zhang, J. Pang, and L. Li, “Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution,” Remote Sens. 7(1), 905–921 (2015).

X. Zhang and L. Li, “A method to estimate land surface temperature from Meteosat Second Generation data using multi-temporal data,” Opt. Express 21(26), 31907–31918 (2013).

Zhong, M.-L.

C. Zeng, H.-F. Shen, M.-L. Zhong, L.-P. Zhang, and P.-H. Wu, “Reconstructing MODIS LST Based on Multitemporal Classification and Robust Regression,” IEEE Geosci. Remote Sens. Lett. 67312, 512–516 (2015).

Zhou, G.

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, B.-H. Tang, X. Jiang, and G. Zhou, “Modeling of day-to-day temporal progression of clear-sky land surface temperature,” IEEE Geosci. Remote Sens. Lett. 10, 1050–1054 (2013).

IEEE Geosci. Remote Sens. Lett. (2)

C. Zeng, H.-F. Shen, M.-L. Zhong, L.-P. Zhang, and P.-H. Wu, “Reconstructing MODIS LST Based on Multitemporal Classification and Robust Regression,” IEEE Geosci. Remote Sens. Lett. 67312, 512–516 (2015).

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, B.-H. Tang, X. Jiang, and G. Zhou, “Modeling of day-to-day temporal progression of clear-sky land surface temperature,” IEEE Geosci. Remote Sens. Lett. 10, 1050–1054 (2013).

IEEE Trans. Geosci. Remote Sens. (1)

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS land surface temperature and emissivity separation algorithm with ground measurements over a ricepaddy,” IEEE Trans. Geosci. Remote Sens. 54, 3061–3069 (2016).

Int. J. Appl. Earth Obs. (1)

L. Lu, V. Venus, A. Skidmore, T. Wang, and G. Luo, “Estimating land-surface temperature under clouds using MSG/SEVIRI observations,” Int. J. Appl. Earth Obs. 13, 265–276 (2011).

Int. J. Remote Sens. (2)

Z.-L. Li, L. Jia, Z.-B. Su, Z.-M. Wan, and R.-H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24, 5095–5117 (2003).

X. Zhang and J. Pang, “A comparison between atmospheric water vapour content retrieval methods using MSG2-SEVIRI thermal IR data,” Int. J. Remote Sens. 36(19–20), 5075–5086 (2015).

ISPRS J. Photogramm. Remote Sens. (1)

H. Shwetha and D. Kumar, “Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN,” ISPRS J. Photogramm. Remote Sens. 117, 40–55 (2016).

J. Appl. Earth Obs. (1)

W.-P. Yu, M.-G. Ma, X.-F. Wang, and J.-L. Tan, “Estimating the land-surface temperature of pixels covered by clouds in MODIS products,” J. Appl. Earth Obs. 8(1), 083525 (2014).

J. Geophys. Res. (1)

M.-L. Jin, “Interpolation of surface radiative temperature measured from polar-orbiting satellites to a diurnal cycle 2. Cloudy-pixel treatment,” J. Geophys. Res. 105(D3), 4061–4076 (2000).

J. Geophys. Res. Atmos. (1)

J.-L. Moncet, P. Liang, J. F. Galantowicz, A. Lipton, G. Uymin, C. Prigent, and C. Grassotti, “Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control,” J. Geophys. Res. Atmos. 116, D16104 (2011).

Opt. Express (2)

Progress in Geography. (1)

L. Ke, Z. Wang, C. Song, and Z. Lu, “Reconstruction of MODIS LST Time Series and Comparisonwith Land Surface Temperature (T) among Observation Stations in the Northeast Qinghai-Tibet Plateau,” Progress in Geography. 30(7), 819–826 (2011).

Remote Sens. (3)

M. Neteler, “Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data,” Remote Sens. 2, 333–351 (2010).

X. Zhang, J. Pang, and L. Li, “Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution,” Remote Sens. 7(1), 905–921 (2015).

Z. Wan and J. Dozier, “A generalized split-window algorithm for retrieving land surface temperature from space. IEEE Trans. Geosci,” Remote Sens. 34, 892–905 (1996).

Remote Sens. Environ. (3)

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.-F. Trigo, and J.-A. Sobrino, “Satellite-derived land surface temperature: current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).

S.-B. Duan, Z.-L. Li, N. Wang, H. Wu, and B.-H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).

Sensors (Basel) (1)

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).

Other (1)

J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Determination of the surface temperature from ATSR data,” In Proceedings of 25th International Symposium on Remote Sensing of Environment, Graz, Austria, April 4–8. pp. II-19 - II-109(1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The flowchart of retrieval of all-weather LST from FY-2D.
Fig. 2
Fig. 2 Land covers type in China and photos of two experiments station.
Fig. 3
Fig. 3 The relationship between emissivities in S-VISSR channels IR1 and IR2 and those in MODIS.
Fig. 4
Fig. 4 The scatter of actual and estimated LST under VZA = 0° for different WVC ranges.
Fig. 5
Fig. 5 The scatter and histogram of actual and estimated LST for kinds of conditions.
Fig. 6
Fig. 6 The RMSE of actual and estimated LST after adding the NEΔT.
Fig. 7
Fig. 7 Comparison of LST estimated using proposed method and in situ LST from Taiyuan experiment station.
Fig. 8
Fig. 8 Comparison of LST estimated using proposed method and in situ LST from Changwu experiment station.
Fig. 9
Fig. 9 Spatial distribution of the all-weather LST during FY-2D scanning on March 23, 2012 at UTC 1:30 under the cloud-free condition.
Fig. 10
Fig. 10 Spatial distribution of the all-weather LST during FY-2D scanning on March 23, 2012 at UTC 1:30.

Tables (1)

Tables Icon

Table 1 Main technical index of FY2-VISSR radiometer.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

T s = a 0 + a 1 T i + a 2 ( T i T j )+ a 3 ( T i T j ) 2 + a 4 (1 ε i )+ a 5 Δε
T cloud = T clear 10*ΔS/P
ΔS= t= t now (tdts) t now ( S fit (t) S actual )*cos[w*(t t now )]* t d t s (t t now ) t d t s
NSSR= a s * E 0 *cos( θ s )/ d 2
a s =α'β'r
α'=1 b 1 μ 1 b 2 μ x (1 e (μ) )*( b 3 + b 4 *wv c y )* μ 1 β'=1+ b 5 + b 6 ln(μ)+ b 7 wv c z r= c 0 + c 1 * ρ 1
NSSR= S min + S max *cos(ws(tts))
T( t )={ Tmin+ T 0 cos(wd(t t d )),(t< t rs ) b 1 + b 2 exp(β(t t rs )),(t t rs )
with b 2 = T 0 wdsinwd( t rs t d )/β
b 1 =Tmin+ T 0 cosw( t rs t d ) b 2 ,
P= 2sin(w( t d t s ))*Smax 2w T 0
D i,j = ( x i x j ) 2 + ( y i y j ) 2
NSSR=(1A)Sτcos(Zn)=(1A)Sτ(cos(λ)cos( δ s )cos(wt)+sin(λ)sin( δ s ))
S min = sin( λ est )sin( δ s _est )* S min_near sin( λ near )sin( δ s _near ) S max = cos( λ est )cos( δ s _est )* S max_near cos( λ near )cos( δ s _near )
εIR1=0.0068+0.994ε231
εIR2=0.0042+0.9981ε32
wvc= o 1 + o 2 ( τ j / τ i )
τ j τ i R ji and R ji = k=1 N ( T i,k T ¯ )( T j,k T ¯ ) k=1 N ( T i,k T ¯ ) 2
o 1 =1.8941* cos 2 (VZA)-14.698*cos(VZA)-3.6033
o 2 =-12.697* cos 2 (VZA)+31.852*cos(VZA)-2.5167
δLST= a 1 δ T i + a 2 (δ T i δ T j )+2* a 3 *[( T i T j )*(δ T i δ T j )+ (δ T i δ T j ) 2 ]
δLST= a 5 (δ ε i δ ε j ) a 4 δ ε i

Metrics