Abstract

A high brightness, high signal-to-noise ratio (SNR) linear-polarization optically generated radio-frequency signal is demonstrated based on an all-fibered master oscillator power amplifier (MOPA) configuration. The seed signal is generated by beating two different frequency beams which are split from the same single frequency laser source. One beam has initial frequency and the other beam is shifted by 200 MHz using an acoustic-optical modulator. The combined beam contains two frequency components with a frequency difference of 200 MHz and this dual-frequency laser signal is then amplified by a three-stage all-fibered amplifier. In order to obtain high brightness output, a single mode fiber with 10 μm core diameter is adopted in the amplifier chain. A designed step-distribution strain is applied on the active fiber for the suppression of stimulated Brillouin scattering (SBS) effect. As a result, up to 143 W output power is achieved with the slop efficiency of 81.4%. The beam quality factors (M2) are measured to 1.06 (Mx2) and 1.04 (My2) and the SNR is up to 54.7 dB. These two frequency components with a certain frequency gap can be identically amplified via the fiber amplifier and the beat note stability, modulation depth as well as SNR are well maintained before and after amplification. To the best of our knowledge, this is the highest reported brightness of the optically generated radio-frequency signal.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA

Jiang Liu, Hongxing Shi, Kun Liu, Yubin Hou, and Pu Wang
Opt. Express 22(11) 13572-13578 (2014)

15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6 μm

Changsheng Yang, Xianchao Guan, Qilai Zhao, Wei Lin, Can Li, Jiulin Gan, Qi Qian, Zhouming Feng, Zhongmin Yang, and Shanhui Xu
Opt. Express 26(10) 12863-12869 (2018)

High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser

Changsheng Yang, Xianchao Guan, Qilai Zhao, Bo Wu, Zhouming Feng, Jiulin Gan, Huihui Cheng, Mingying Peng, Zhongmin Yang, and Shanhui Xu
Opt. Express 25(12) 13324-13331 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
  2. R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31(24), 3600–3602 (2006).
    [PubMed]
  3. L. Maleki, “Radiofrequency antenna: In the service of national security,” Nat. Photonics 1(9), 493–494 (2007).
  4. F. Kéfélian, O. Lopez, H. Jiang, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett. 34(10), 1573–1575 (2009).
    [PubMed]
  5. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
  6. L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).
  7. L. A. Johansson and A. J. Seeds, “Generation and transmission of millimeter-wave data-modulated optical signals using an optical injection phase-lock loop,” J. Lightwave Technol. 21(2), 511–520 (2003).
  8. E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser,” Opt. Lett. 37(2), 181–183 (2012).
    [PubMed]
  9. U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
  10. A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
  11. F. Z. Fan and M. Dagenais, “Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop,” IEEE Trans. Microw. Theory Tech. 45(8), 1296–1300 (1997).
  12. T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).
  13. Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
    [PubMed]
  14. L. Huang, L. Li, P. Ma, X. Wang, and P. Zhou, “434 W all-fiber linear-polarization dual-frequency Yb-doped fiber laser carrying low-noise radio frequency signal,” Opt. Express 24(23), 26722–26731 (2016).
    [PubMed]
  15. T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).
  16. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
  17. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
  18. M. J. Kavaya and R. G. Frehlich, “Parameter trade studies for coherent lidar measurements of wind from space,” Proceedings of SPIE, the International Society for Optical Engineering. Society of Photo-Optical Instrumentation Engineers, 668109.1–668109.11 (2007).
  19. I. Esquivias Moscardo, A. Consoli Barone, M. Krakowski, M. Faugeron, G. Kochem, M. Traub, and M. Quatrevalet, “High-brightness all semiconductor laser at 1.57 µm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements,” Proc. SPIE 9135, 913516 (2014).
  20. G. Canat, L. Lombard, A. Dolfi, M. Valla, C. Planchat, B. Augère, and S. Jetschke, “High brightness 1.5 μm pulsed fiber laser for lidar: from fibers to systems,” Fiber Integr. Opt. 27(5), 422–439 (2008).
  21. S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49–A62 (2017).
    [PubMed]
  22. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20(19), 21196–21213 (2012).
    [PubMed]
  23. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express 21(5), 5456–5462 (2013).
    [PubMed]

2017 (1)

2016 (3)

2015 (1)

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).

2014 (1)

I. Esquivias Moscardo, A. Consoli Barone, M. Krakowski, M. Faugeron, G. Kochem, M. Traub, and M. Quatrevalet, “High-brightness all semiconductor laser at 1.57 µm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements,” Proc. SPIE 9135, 913516 (2014).

2013 (1)

2012 (2)

2010 (1)

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).

2009 (2)

2008 (1)

G. Canat, L. Lombard, A. Dolfi, M. Valla, C. Planchat, B. Augère, and S. Jetschke, “High brightness 1.5 μm pulsed fiber laser for lidar: from fibers to systems,” Fiber Integr. Opt. 27(5), 422–439 (2008).

2007 (3)

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).

L. Maleki, “Radiofrequency antenna: In the service of national security,” Nat. Photonics 1(9), 493–494 (2007).

2006 (1)

2005 (1)

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).

2003 (1)

1998 (1)

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).

1997 (1)

F. Z. Fan and M. Dagenais, “Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop,” IEEE Trans. Microw. Theory Tech. 45(8), 1296–1300 (1997).

1983 (1)

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).

Amy-Klein, A.

Augère, B.

G. Canat, L. Lombard, A. Dolfi, M. Valla, C. Planchat, B. Augère, and S. Jetschke, “High brightness 1.5 μm pulsed fiber laser for lidar: from fibers to systems,” Fiber Integr. Opt. 27(5), 422–439 (2008).

Bernhardi, E. H.

Bloom, D. M.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).

Bondu, F.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).

Brunel, M.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).

Canat, G.

G. Canat, L. Lombard, A. Dolfi, M. Valla, C. Planchat, B. Augère, and S. Jetschke, “High brightness 1.5 μm pulsed fiber laser for lidar: from fibers to systems,” Fiber Integr. Opt. 27(5), 422–439 (2008).

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).

Chan, S. C.

Chardonnet, C.

Chen, T.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).

Cheng, L.

Consoli Barone, A.

I. Esquivias Moscardo, A. Consoli Barone, M. Krakowski, M. Faugeron, G. Kochem, M. Traub, and M. Quatrevalet, “High-brightness all semiconductor laser at 1.57 µm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements,” Proc. SPIE 9135, 913516 (2014).

Cui, S.

Dagenais, M.

F. Z. Fan and M. Dagenais, “Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop,” IEEE Trans. Microw. Theory Tech. 45(8), 1296–1300 (1997).

Dajani, I.

de Ridder, R. M.

Diaz, R.

Dolfi, A.

G. Canat, L. Lombard, A. Dolfi, M. Valla, C. Planchat, B. Augère, and S. Jetschke, “High brightness 1.5 μm pulsed fiber laser for lidar: from fibers to systems,” Fiber Integr. Opt. 27(5), 422–439 (2008).

Eberhardt, R.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).

Esquivias Moscardo, I.

I. Esquivias Moscardo, A. Consoli Barone, M. Krakowski, M. Faugeron, G. Kochem, M. Traub, and M. Quatrevalet, “High-brightness all semiconductor laser at 1.57 µm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements,” Proc. SPIE 9135, 913516 (2014).

Fan, F. Z.

F. Z. Fan and M. Dagenais, “Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop,” IEEE Trans. Microw. Theory Tech. 45(8), 1296–1300 (1997).

Faugeron, M.

I. Esquivias Moscardo, A. Consoli Barone, M. Krakowski, M. Faugeron, G. Kochem, M. Traub, and M. Quatrevalet, “High-brightness all semiconductor laser at 1.57 µm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements,” Proc. SPIE 9135, 913516 (2014).

Feng, Y.

Frein, L.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).

Fu, S.

Gliese, U.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).

Goldberg, L.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).

He, T.

Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
[PubMed]

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).

He, Z.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).

Höfer, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).

Huang, L.

Jetschke, S.

G. Canat, L. Lombard, A. Dolfi, M. Valla, C. Planchat, B. Augère, and S. Jetschke, “High brightness 1.5 μm pulsed fiber laser for lidar: from fibers to systems,” Fiber Integr. Opt. 27(5), 422–439 (2008).

Jiang, H.

Johansson, L. A.

Kang, Y.

Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
[PubMed]

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).

Kéfélian, F.

Khan, M. R. H.

Klingebiel, S.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).

Kochem, G.

I. Esquivias Moscardo, A. Consoli Barone, M. Krakowski, M. Faugeron, G. Kochem, M. Traub, and M. Quatrevalet, “High-brightness all semiconductor laser at 1.57 µm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements,” Proc. SPIE 9135, 913516 (2014).

Krakowski, M.

I. Esquivias Moscardo, A. Consoli Barone, M. Krakowski, M. Faugeron, G. Kochem, M. Traub, and M. Quatrevalet, “High-brightness all semiconductor laser at 1.57 µm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements,” Proc. SPIE 9135, 913516 (2014).

Li, L.

Liang, Y.

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).

Liem, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).

Limpert, J.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).

Liu, C.

Liu, J. M.

Lombard, L.

G. Canat, L. Lombard, A. Dolfi, M. Valla, C. Planchat, B. Augère, and S. Jetschke, “High brightness 1.5 μm pulsed fiber laser for lidar: from fibers to systems,” Fiber Integr. Opt. 27(5), 422–439 (2008).

Lopez, O.

Ma, P.

Maleki, L.

L. Maleki, “Radiofrequency antenna: In the service of national security,” Nat. Photonics 1(9), 493–494 (2007).

Merlet, T.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).

Moore, G. T.

Naderi, S.

Nielsen, T. N.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).

Nolte, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).

Nørskov, S.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).

Norwood, R. A.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).

Peschel, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).

Peyghambarian, N.

Planchat, C.

G. Canat, L. Lombard, A. Dolfi, M. Valla, C. Planchat, B. Augère, and S. Jetschke, “High brightness 1.5 μm pulsed fiber laser for lidar: from fibers to systems,” Fiber Integr. Opt. 27(5), 422–439 (2008).

Pollnau, M.

Qian, L.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).

Quatrevalet, M.

I. Esquivias Moscardo, A. Consoli Barone, M. Krakowski, M. Faugeron, G. Kochem, M. Traub, and M. Quatrevalet, “High-brightness all semiconductor laser at 1.57 µm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements,” Proc. SPIE 9135, 913516 (2014).

Robin, C.

Roeloffzen, C. G. H.

Rolland, A.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).

Röser, F.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).

Santarelli, G.

Schreiber, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).

Seeds, A. J.

Shi, W.

Shu, R.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).

Stubkjaer, K. E.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).

Taylor, H. F.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).

Traub, M.

I. Esquivias Moscardo, A. Consoli Barone, M. Krakowski, M. Faugeron, G. Kochem, M. Traub, and M. Quatrevalet, “High-brightness all semiconductor laser at 1.57 µm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements,” Proc. SPIE 9135, 913516 (2014).

Tünnermann, A.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).

Valla, M.

G. Canat, L. Lombard, A. Dolfi, M. Valla, C. Planchat, B. Augère, and S. Jetschke, “High brightness 1.5 μm pulsed fiber laser for lidar: from fibers to systems,” Fiber Integr. Opt. 27(5), 422–439 (2008).

Vallet, M.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).

van Wolferen, H. A. G. M.

Wang, X.

Weller, J. F.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).

Wirth, C.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).

Wörhoff, K.

Wu, J.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).

Xu, S.

Xu, W.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).

Yang, S.

Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
[PubMed]

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).

Yang, Z.

Yao, J.

Zellmer, H.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).

Zeringue, C.

Zhang, H.

Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
[PubMed]

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).

Zhang, L.

Zhao, C.

Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
[PubMed]

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).

Zhou, J.

Zhou, P.

Zhu, X.

Electron. Lett. (1)

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).

Fiber Integr. Opt. (1)

G. Canat, L. Lombard, A. Dolfi, M. Valla, C. Planchat, B. Augère, and S. Jetschke, “High brightness 1.5 μm pulsed fiber laser for lidar: from fibers to systems,” Fiber Integr. Opt. 27(5), 422–439 (2008).

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).

IEEE J. Trans. Microw. Theory Tech. (1)

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).

IEEE Photonics Technol. Lett. (1)

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).

IEEE Trans. Microw. Theory Tech. (1)

F. Z. Fan and M. Dagenais, “Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop,” IEEE Trans. Microw. Theory Tech. 45(8), 1296–1300 (1997).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).

Laser Phys. Lett. (2)

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).

L. Maleki, “Radiofrequency antenna: In the service of national security,” Nat. Photonics 1(9), 493–494 (2007).

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (1)

I. Esquivias Moscardo, A. Consoli Barone, M. Krakowski, M. Faugeron, G. Kochem, M. Traub, and M. Quatrevalet, “High-brightness all semiconductor laser at 1.57 µm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements,” Proc. SPIE 9135, 913516 (2014).

Other (1)

M. J. Kavaya and R. G. Frehlich, “Parameter trade studies for coherent lidar measurements of wind from space,” Proceedings of SPIE, the International Society for Optical Engineering. Society of Photo-Optical Instrumentation Engineers, 668109.1–668109.11 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of monolithic fiber amplifier system (DBR, distribution Bragg reflection; AOM, acoustic-optical modulator; ISO, isolator; PA, preamplifier; LD, laser diode; YDF, Yb-doped double-cladding fiber; CLS, cladding light stripper; CO, collimator).
Fig. 2
Fig. 2 (a) Scanning spectrum of the dual-frequency seed laser; (b) oscillogram of the radio-frequency signal; (c) Fourier frequency spectrum.
Fig. 3
Fig. 3 (a) Strain distribution along the active fiber. (b) SBS gain spectra of strained and unstrained fiber.
Fig. 4
Fig. 4 (a) Output power and backscattering power with the pump power. (b) Backward light spectral content. (c) Forward light spectral content. (d) M2 measured result and beam profile.
Fig. 5
Fig. 5 (a) Scanning spectrum of the dual-frequency seed laser; (b) Oscillogram of the radio-frequency signal; (c) Fourier frequency spectrum.
Fig. 6
Fig. 6 The Fourier frequency spectra details of the dual-frequency laser (a) before and (b) after amplification.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 +2 I 1 I 2 cos(ΔkzΔωt+Δφ)

Metrics