Abstract

A high-precision and thermal-insensitive strain sensor based on two self-starting optoelectronic oscillators (OEOs) is proposed and experimentally demonstrated. Two OEOs are grouped into a cross-referencing structure by dense wavelength division multiplexing (DWDM); the two OEOs have the same characters and they are placed in the same environment. In this frequency encoded strain sensor, it converts the strain information of the single mode fiber to the frequency information, and the frequency information is acquired by measuring the intermediate frequency (IF) mixed by the two OEOs. The accumulative magnification effect at high-order resonant frequency modes makes the strain sensor achieve high sensitivity, which significantly improves the precision of the measurement strain. The cross-referencing structure of the two OEOs makes the influence of the environment, such as temperature, greatly reduced. In the experiments, measurement errors less than ± 0.3 με at a measurement range of 600 με have been realized, including a drift error due to a variation in the environment such as temperature. Furthermore, a quasi-distributed strain measurement system based on the proposed strain sensor has been designed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-range, high-precision absolute distance measurement based on two optoelectronic oscillators

Ju Wang, Jinlong Yu, Wang Miao, Bin Sun, Shi Jia, Wenrui Wang, and Qiong Wu
Opt. Lett. 39(15) 4412-4415 (2014)

High-sensitivity temperature sensor based on an optoelectronic oscillator

Yanhong Zhu, Xiaofeng Jin, Hao Chi, Shilie Zheng, and Xianmin Zhang
Appl. Opt. 53(22) 5084-5087 (2014)

Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device

Chang Hwa Lee and Sin Hyuk Yim
Opt. Express 22(11) 13634-13640 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Jones, “Structural-health monitoring: A sensitive issue,” Nat. Photonics 2(3), 153–154 (2008).
  2. H. Nakstad and J. T. Kringlebotn, “Oil and Gas Applications: Probing oil fields,” Nat. Photonics 2(3), 147–149 (2008).
  3. E. Pinet, “Medical applications: Saving lives,” Nat. Photonics 2(3), 150–152 (2008).
  4. H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
    [PubMed]
  5. I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors (Basel) 15(7), 15494–15519 (2015).
    [PubMed]
  6. M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).
  7. M. Lydon, S. E. Taylor, D. Robinson, and P. Callender, “Development of a bridge weigh-in-motion sensor: performance comparison using fiber optic and electric resistance strain sensor systems,” IEEE Sens. J. 14(12), 4284–4296 (2014).
  8. W. Huang, T. Zhen, W. Zhang, F. Zhang, and F. Li, “A high-resolution demodulation algorithm for FBG-FP static-strain sensors based on the Hilbert transform and cross third-order cumulant,” Sensors (Basel) 15(5), 9928–9941 (2015).
    [PubMed]
  9. K. A. Handawi, N. Vahdati, P. Rostron, L. Lawand, and O. Shiryayev, “Strain based FBG sensor for real-time corrosion rate monitoring in pre-stressed structures,” Sens. Actuators B Chem. 236, 276–285 (2016).
  10. B. Huang and X. Shu, “Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG,” Opt. Express 24(16), 17670–17679 (2016).
    [PubMed]
  11. T. T. Lam, J. H. Chow, D. A. Shaddock, I. C. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt. 49(21), 4029–4033 (2010).
    [PubMed]
  12. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
    [PubMed]
  13. K. K. Qureshi, Z. Liu, H. Y. Tam, and M. F. Zia, “A strain sensor based on in-line fiber Mach–Zehnder interferometer in twin-core photonic crystal fiber,” Opt. Commun. 309(22), 68–70 (2013).
  14. J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).
  15. H. Krisch, N. Fernandes, G. Kai, M. Lau, and S. Tournillon, “High-temperature fiber-optic sensor for low-power measurement of wide dynamic strain using interferometric techniques and analog/DSP methods,” IEEE Sens. J. 12(1), 33–38 (2011).
  16. A. M. Hatta, Y. Semenova, Q. Wu, and G. Farrell, “Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme,” Appl. Opt. 49(3), 536–541 (2010).
    [PubMed]
  17. C. Li, Y. M. Zhang, H. Liu, S. Wu, and C. W. Huang, “Distributed fiber-optic bi-directional strain–displacement sensor modulated by fiber bending loss,” Sens. Actuators A Phys. 111(2–3), 236–239 (2004).
  18. M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding,” IEEE Photonics Technol. Lett. 21(7), 450–452 (2009).
  19. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Distributed temperature and strain sensing using spontaneous Brillouin scattering in optical few-mode fibers,” in Lasers and Electro-Optics (IEEE, 2015), pp. 1–2.
  20. C. L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
  21. M. Schmidt, N. Fürstenau, W. Bock, and W. Urbanczyk, “Fiber-optic polarimetric strain sensor with three-wavelength digital phase demodulation,” Opt. Lett. 25(18), 1334–1336 (2000).
    [PubMed]
  22. M. Li, W. Li, J. Yao, and J. Azana, “Femtometer-resolution wavelength interrogation of a phase-shifted fiber Bragg grating sensor using an optoelectronic oscillator,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2012). pp. 15–26.
  23. F. Kong, W. Li, and J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38(14), 2611–2613 (2013).
    [PubMed]
  24. F. Kong, B. Romeira, J. Zhang, W. Li, and J. Yao, “A Dual-wavelength fiber ring laser incorporating an injection-coupled optoelectronic oscillator and its application to transverse load sensing,” J. Lightwave Technol. 32(9), 1784–1793 (2014).
  25. Y. Zhu, J. Zhou, X. Jin, H. Chi, X. Zhang, and S. Zheng, “An optoelectronic oscillator‐based strain sensor with extended measurement range,” Microw. Opt. Technol. Lett. 57(10), 2336–2339 (2015).
  26. J Yao, O Xu, J Zhang, and H Deng, “Dual-frequency Optoelectronic Oscillator for Temperature-Insensitive Interrogation of a FBG Sensor,” IEEE Photonics Technol. Lett. 29, 357 (2017).
  27. A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6–8 (1982).
  28. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
  29. J Yao, “Optoelectronic oscillator for high speed and high resolution optical sensing,” J. Lightwave Technol. 35, 3489 (2017).
  30. N. Yang, J. Su, Z. Fan, and Q. Qiu, “High precision temperature insensitive strain sensor based on fiber-optic delay,” Sensors (Basel) 17(5), 1005 (2017).
    [PubMed]
  31. S. Jia, J. Yu, J. Wang, W. Wang, Q. Wu, G. Huang, and E. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).

2017 (1)

N. Yang, J. Su, Z. Fan, and Q. Qiu, “High precision temperature insensitive strain sensor based on fiber-optic delay,” Sensors (Basel) 17(5), 1005 (2017).
[PubMed]

2016 (2)

K. A. Handawi, N. Vahdati, P. Rostron, L. Lawand, and O. Shiryayev, “Strain based FBG sensor for real-time corrosion rate monitoring in pre-stressed structures,” Sens. Actuators B Chem. 236, 276–285 (2016).

B. Huang and X. Shu, “Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG,” Opt. Express 24(16), 17670–17679 (2016).
[PubMed]

2015 (4)

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors (Basel) 15(7), 15494–15519 (2015).
[PubMed]

S. Jia, J. Yu, J. Wang, W. Wang, Q. Wu, G. Huang, and E. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).

Y. Zhu, J. Zhou, X. Jin, H. Chi, X. Zhang, and S. Zheng, “An optoelectronic oscillator‐based strain sensor with extended measurement range,” Microw. Opt. Technol. Lett. 57(10), 2336–2339 (2015).

W. Huang, T. Zhen, W. Zhang, F. Zhang, and F. Li, “A high-resolution demodulation algorithm for FBG-FP static-strain sensors based on the Hilbert transform and cross third-order cumulant,” Sensors (Basel) 15(5), 9928–9941 (2015).
[PubMed]

2014 (4)

J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).

M. Lydon, S. E. Taylor, D. Robinson, and P. Callender, “Development of a bridge weigh-in-motion sensor: performance comparison using fiber optic and electric resistance strain sensor systems,” IEEE Sens. J. 14(12), 4284–4296 (2014).

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[PubMed]

F. Kong, B. Romeira, J. Zhang, W. Li, and J. Yao, “A Dual-wavelength fiber ring laser incorporating an injection-coupled optoelectronic oscillator and its application to transverse load sensing,” J. Lightwave Technol. 32(9), 1784–1793 (2014).

2013 (2)

F. Kong, W. Li, and J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38(14), 2611–2613 (2013).
[PubMed]

K. K. Qureshi, Z. Liu, H. Y. Tam, and M. F. Zia, “A strain sensor based on in-line fiber Mach–Zehnder interferometer in twin-core photonic crystal fiber,” Opt. Commun. 309(22), 68–70 (2013).

2012 (1)

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

2011 (2)

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
[PubMed]

H. Krisch, N. Fernandes, G. Kai, M. Lau, and S. Tournillon, “High-temperature fiber-optic sensor for low-power measurement of wide dynamic strain using interferometric techniques and analog/DSP methods,” IEEE Sens. J. 12(1), 33–38 (2011).

2010 (2)

2009 (1)

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding,” IEEE Photonics Technol. Lett. 21(7), 450–452 (2009).

2008 (4)

M. Jones, “Structural-health monitoring: A sensitive issue,” Nat. Photonics 2(3), 153–154 (2008).

H. Nakstad and J. T. Kringlebotn, “Oil and Gas Applications: Probing oil fields,” Nat. Photonics 2(3), 147–149 (2008).

E. Pinet, “Medical applications: Saving lives,” Nat. Photonics 2(3), 150–152 (2008).

C. L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).

2004 (1)

C. Li, Y. M. Zhang, H. Liu, S. Wu, and C. W. Huang, “Distributed fiber-optic bi-directional strain–displacement sensor modulated by fiber bending loss,” Sens. Actuators A Phys. 111(2–3), 236–239 (2004).

2000 (1)

1996 (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).

1982 (1)

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6–8 (1982).

Aldabaldetreku, G.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors (Basel) 15(7), 15494–15519 (2015).
[PubMed]

Bai, Y.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Basheer, P. A. M.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Bell, B.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Bock, W.

Bolognini, G.

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding,” IEEE Photonics Technol. Lett. 21(7), 450–452 (2009).

Callender, P.

M. Lydon, S. E. Taylor, D. Robinson, and P. Callender, “Development of a bridge weigh-in-motion sensor: performance comparison using fiber optic and electric resistance strain sensor systems,” IEEE Sens. J. 14(12), 4284–4296 (2014).

Chi, H.

Y. Zhu, J. Zhou, X. Jin, H. Chi, X. Zhang, and S. Zheng, “An optoelectronic oscillator‐based strain sensor with extended measurement range,” Microw. Opt. Technol. Lett. 57(10), 2336–2339 (2015).

Chow, J. H.

Cleland, D.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Davis, G.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Demokan, M. S.

Doherty, W.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Durana, G.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors (Basel) 15(7), 15494–15519 (2015).
[PubMed]

Fan, Z.

N. Yang, J. Su, Z. Fan, and Q. Qiu, “High precision temperature insensitive strain sensor based on fiber-optic delay,” Sensors (Basel) 17(5), 1005 (2017).
[PubMed]

Farrell, G.

Fernandes, N.

H. Krisch, N. Fernandes, G. Kai, M. Lau, and S. Tournillon, “High-temperature fiber-optic sensor for low-power measurement of wide dynamic strain using interferometric techniques and analog/DSP methods,” IEEE Sens. J. 12(1), 33–38 (2011).

Fürstenau, N.

Gagliardi, G.

García, I.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors (Basel) 15(7), 15494–15519 (2015).
[PubMed]

Grattan, K. T. V.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Gray, M. B.

Greeves, K.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Guo, H.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
[PubMed]

Gupta, A.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Handawi, K. A.

K. A. Handawi, N. Vahdati, P. Rostron, L. Lawand, and O. Shiryayev, “Strain based FBG sensor for real-time corrosion rate monitoring in pre-stressed structures,” Sens. Actuators B Chem. 236, 276–285 (2016).

Hatta, A. M.

Hogg, I.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Huang, B.

Huang, C. W.

C. Li, Y. M. Zhang, H. Liu, S. Wu, and C. W. Huang, “Distributed fiber-optic bi-directional strain–displacement sensor modulated by fiber bending loss,” Sens. Actuators A Phys. 111(2–3), 236–239 (2004).

Huang, G.

S. Jia, J. Yu, J. Wang, W. Wang, Q. Wu, G. Huang, and E. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).

Huang, W.

W. Huang, T. Zhen, W. Zhang, F. Zhang, and F. Li, “A high-resolution demodulation algorithm for FBG-FP static-strain sensors based on the Hilbert transform and cross third-order cumulant,” Sensors (Basel) 15(5), 9928–9941 (2015).
[PubMed]

Illarramendi, M. A.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors (Basel) 15(7), 15494–15519 (2015).
[PubMed]

Jia, S.

S. Jia, J. Yu, J. Wang, W. Wang, Q. Wu, G. Huang, and E. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).

Jin, W.

Jin, X.

Y. Zhu, J. Zhou, X. Jin, H. Chi, X. Zhang, and S. Zheng, “An optoelectronic oscillator‐based strain sensor with extended measurement range,” Microw. Opt. Technol. Lett. 57(10), 2336–2339 (2015).

Jones, M.

M. Jones, “Structural-health monitoring: A sensitive issue,” Nat. Photonics 2(3), 153–154 (2008).

Ju, J.

Kai, G.

H. Krisch, N. Fernandes, G. Kai, M. Lau, and S. Tournillon, “High-temperature fiber-optic sensor for low-power measurement of wide dynamic strain using interferometric techniques and analog/DSP methods,” IEEE Sens. J. 12(1), 33–38 (2011).

Kong, F.

Kringlebotn, J. T.

H. Nakstad and J. T. Kringlebotn, “Oil and Gas Applications: Probing oil fields,” Nat. Photonics 2(3), 147–149 (2008).

Krisch, H.

H. Krisch, N. Fernandes, G. Kai, M. Lau, and S. Tournillon, “High-temperature fiber-optic sensor for low-power measurement of wide dynamic strain using interferometric techniques and analog/DSP methods,” IEEE Sens. J. 12(1), 33–38 (2011).

Kwasny, J.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Lam, T. T.

Lau, M.

H. Krisch, N. Fernandes, G. Kai, M. Lau, and S. Tournillon, “High-temperature fiber-optic sensor for low-power measurement of wide dynamic strain using interferometric techniques and analog/DSP methods,” IEEE Sens. J. 12(1), 33–38 (2011).

Lawand, L.

K. A. Handawi, N. Vahdati, P. Rostron, L. Lawand, and O. Shiryayev, “Strain based FBG sensor for real-time corrosion rate monitoring in pre-stressed structures,” Sens. Actuators B Chem. 236, 276–285 (2016).

Li, C.

C. Li, Y. M. Zhang, H. Liu, S. Wu, and C. W. Huang, “Distributed fiber-optic bi-directional strain–displacement sensor modulated by fiber bending loss,” Sens. Actuators A Phys. 111(2–3), 236–239 (2004).

Li, F.

W. Huang, T. Zhen, W. Zhang, F. Zhang, and F. Li, “A high-resolution demodulation algorithm for FBG-FP static-strain sensors based on the Hilbert transform and cross third-order cumulant,” Sensors (Basel) 15(5), 9928–9941 (2015).
[PubMed]

Li, W.

Li, Z.

J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[PubMed]

Liao, C.

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[PubMed]

J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).

Littler, I. C.

Liu, H.

C. Li, Y. M. Zhang, H. Liu, S. Wu, and C. W. Huang, “Distributed fiber-optic bi-directional strain–displacement sensor modulated by fiber bending loss,” Sens. Actuators A Phys. 111(2–3), 236–239 (2004).

Liu, S.

Liu, Z.

K. K. Qureshi, Z. Liu, H. Y. Tam, and M. F. Zia, “A strain sensor based on in-line fiber Mach–Zehnder interferometer in twin-core photonic crystal fiber,” Opt. Commun. 309(22), 68–70 (2013).

Lydon, M.

M. Lydon, S. E. Taylor, D. Robinson, and P. Callender, “Development of a bridge weigh-in-motion sensor: performance comparison using fiber optic and electric resistance strain sensor systems,” IEEE Sens. J. 14(12), 4284–4296 (2014).

Maleki, L.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).

McClelland, D. E.

Mckeague, S.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Mokhtar, M. R.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Moore, D.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Mrad, N.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
[PubMed]

Nakstad, H.

H. Nakstad and J. T. Kringlebotn, “Oil and Gas Applications: Probing oil fields,” Nat. Photonics 2(3), 147–149 (2008).

Neyer, A.

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6–8 (1982).

Owens, K.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Pasquale, F. D.

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding,” IEEE Photonics Technol. Lett. 21(7), 450–452 (2009).

Pinet, E.

E. Pinet, “Medical applications: Saving lives,” Nat. Photonics 2(3), 150–152 (2008).

Qang, Q.

J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).

Qiu, Q.

N. Yang, J. Su, Z. Fan, and Q. Qiu, “High precision temperature insensitive strain sensor based on fiber-optic delay,” Sensors (Basel) 17(5), 1005 (2017).
[PubMed]

Qureshi, K. K.

K. K. Qureshi, Z. Liu, H. Y. Tam, and M. F. Zia, “A strain sensor based on in-line fiber Mach–Zehnder interferometer in twin-core photonic crystal fiber,” Opt. Commun. 309(22), 68–70 (2013).

Robinson, D.

M. Lydon, S. E. Taylor, D. Robinson, and P. Callender, “Development of a bridge weigh-in-motion sensor: performance comparison using fiber optic and electric resistance strain sensor systems,” IEEE Sens. J. 14(12), 4284–4296 (2014).

Romeira, B.

Rostron, P.

K. A. Handawi, N. Vahdati, P. Rostron, L. Lawand, and O. Shiryayev, “Strain based FBG sensor for real-time corrosion rate monitoring in pre-stressed structures,” Sens. Actuators B Chem. 236, 276–285 (2016).

Schmidt, M.

Semenova, Y.

Shaddock, D. A.

Shiryayev, O.

K. A. Handawi, N. Vahdati, P. Rostron, L. Lawand, and O. Shiryayev, “Strain based FBG sensor for real-time corrosion rate monitoring in pre-stressed structures,” Sens. Actuators B Chem. 236, 276–285 (2016).

Shu, X.

Sonebi, M.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Soto, M. A.

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding,” IEEE Photonics Technol. Lett. 21(7), 450–452 (2009).

Su, J.

N. Yang, J. Su, Z. Fan, and Q. Qiu, “High precision temperature insensitive strain sensor based on fiber-optic delay,” Sensors (Basel) 17(5), 1005 (2017).
[PubMed]

Sun, T.

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Tam, H. Y.

K. K. Qureshi, Z. Liu, H. Y. Tam, and M. F. Zia, “A strain sensor based on in-line fiber Mach–Zehnder interferometer in twin-core photonic crystal fiber,” Opt. Commun. 309(22), 68–70 (2013).

Tang, J.

Taylor, S. E.

M. Lydon, S. E. Taylor, D. Robinson, and P. Callender, “Development of a bridge weigh-in-motion sensor: performance comparison using fiber optic and electric resistance strain sensor systems,” IEEE Sens. J. 14(12), 4284–4296 (2014).

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

Tournillon, S.

H. Krisch, N. Fernandes, G. Kai, M. Lau, and S. Tournillon, “High-temperature fiber-optic sensor for low-power measurement of wide dynamic strain using interferometric techniques and analog/DSP methods,” IEEE Sens. J. 12(1), 33–38 (2011).

Urbanczyk, W.

Vahdati, N.

K. A. Handawi, N. Vahdati, P. Rostron, L. Lawand, and O. Shiryayev, “Strain based FBG sensor for real-time corrosion rate monitoring in pre-stressed structures,” Sens. Actuators B Chem. 236, 276–285 (2016).

Villatoro, J.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors (Basel) 15(7), 15494–15519 (2015).
[PubMed]

Voges, E.

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6–8 (1982).

Wang, G.

Wang, J.

S. Jia, J. Yu, J. Wang, W. Wang, Q. Wu, G. Huang, and E. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).

Wang, Q.

Wang, W.

S. Jia, J. Yu, J. Wang, W. Wang, Q. Wu, G. Huang, and E. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).

Wang, Y.

J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[PubMed]

Wu, Q.

S. Jia, J. Yu, J. Wang, W. Wang, Q. Wu, G. Huang, and E. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).

A. M. Hatta, Y. Semenova, Q. Wu, and G. Farrell, “Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme,” Appl. Opt. 49(3), 536–541 (2010).
[PubMed]

Wu, S.

C. Li, Y. M. Zhang, H. Liu, S. Wu, and C. W. Huang, “Distributed fiber-optic bi-directional strain–displacement sensor modulated by fiber bending loss,” Sens. Actuators A Phys. 111(2–3), 236–239 (2004).

Xiao, G.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
[PubMed]

Xiao, L.

Yang, E.

S. Jia, J. Yu, J. Wang, W. Wang, Q. Wu, G. Huang, and E. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).

Yang, K.

J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[PubMed]

Yang, N.

N. Yang, J. Su, Z. Fan, and Q. Qiu, “High precision temperature insensitive strain sensor based on fiber-optic delay,” Sensors (Basel) 17(5), 1005 (2017).
[PubMed]

Yao, J.

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).

Yin, G.

J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).

Yu, J.

S. Jia, J. Yu, J. Wang, W. Wang, Q. Wu, G. Huang, and E. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).

Yu, X.

J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).

Zhang, F.

W. Huang, T. Zhen, W. Zhang, F. Zhang, and F. Li, “A high-resolution demodulation algorithm for FBG-FP static-strain sensors based on the Hilbert transform and cross third-order cumulant,” Sensors (Basel) 15(5), 9928–9941 (2015).
[PubMed]

Zhang, J.

Zhang, W.

W. Huang, T. Zhen, W. Zhang, F. Zhang, and F. Li, “A high-resolution demodulation algorithm for FBG-FP static-strain sensors based on the Hilbert transform and cross third-order cumulant,” Sensors (Basel) 15(5), 9928–9941 (2015).
[PubMed]

Zhang, X.

Y. Zhu, J. Zhou, X. Jin, H. Chi, X. Zhang, and S. Zheng, “An optoelectronic oscillator‐based strain sensor with extended measurement range,” Microw. Opt. Technol. Lett. 57(10), 2336–2339 (2015).

Zhang, Y. M.

C. Li, Y. M. Zhang, H. Liu, S. Wu, and C. W. Huang, “Distributed fiber-optic bi-directional strain–displacement sensor modulated by fiber bending loss,” Sens. Actuators A Phys. 111(2–3), 236–239 (2004).

Zhao, C. L.

Zhao, J.

Zhen, T.

W. Huang, T. Zhen, W. Zhang, F. Zhang, and F. Li, “A high-resolution demodulation algorithm for FBG-FP static-strain sensors based on the Hilbert transform and cross third-order cumulant,” Sensors (Basel) 15(5), 9928–9941 (2015).
[PubMed]

Zheng, S.

Y. Zhu, J. Zhou, X. Jin, H. Chi, X. Zhang, and S. Zheng, “An optoelectronic oscillator‐based strain sensor with extended measurement range,” Microw. Opt. Technol. Lett. 57(10), 2336–2339 (2015).

Zhong, X.

J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[PubMed]

Zhou, J.

Y. Zhu, J. Zhou, X. Jin, H. Chi, X. Zhang, and S. Zheng, “An optoelectronic oscillator‐based strain sensor with extended measurement range,” Microw. Opt. Technol. Lett. 57(10), 2336–2339 (2015).

J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[PubMed]

Zhu, Y.

Y. Zhu, J. Zhou, X. Jin, H. Chi, X. Zhang, and S. Zheng, “An optoelectronic oscillator‐based strain sensor with extended measurement range,” Microw. Opt. Technol. Lett. 57(10), 2336–2339 (2015).

Zia, M. F.

K. K. Qureshi, Z. Liu, H. Y. Tam, and M. F. Zia, “A strain sensor based on in-line fiber Mach–Zehnder interferometer in twin-core photonic crystal fiber,” Opt. Commun. 309(22), 68–70 (2013).

Zubia, J.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors (Basel) 15(7), 15494–15519 (2015).
[PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6–8 (1982).

IEEE J. Quantum Electron. (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).

IEEE Photonics Technol. Lett. (3)

S. Jia, J. Yu, J. Wang, W. Wang, Q. Wu, G. Huang, and E. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding,” IEEE Photonics Technol. Lett. 21(7), 450–452 (2009).

J. Zhou, Y. Wang, C. Liao, G. Yin, X. Yu, K. Yang, X. Zhong, Q. Qang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).

IEEE Sens. J. (3)

H. Krisch, N. Fernandes, G. Kai, M. Lau, and S. Tournillon, “High-temperature fiber-optic sensor for low-power measurement of wide dynamic strain using interferometric techniques and analog/DSP methods,” IEEE Sens. J. 12(1), 33–38 (2011).

M. R. Mokhtar, K. Owens, J. Kwasny, S. E. Taylor, P. A. M. Basheer, D. Cleland, Y. Bai, M. Sonebi, G. Davis, A. Gupta, I. Hogg, B. Bell, W. Doherty, S. Mckeague, D. Moore, K. Greeves, T. Sun, and K. T. V. Grattan, “Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring,” IEEE Sens. J. 12(5), 1470–1476 (2012).

M. Lydon, S. E. Taylor, D. Robinson, and P. Callender, “Development of a bridge weigh-in-motion sensor: performance comparison using fiber optic and electric resistance strain sensor systems,” IEEE Sens. J. 14(12), 4284–4296 (2014).

J. Lightwave Technol. (2)

Microw. Opt. Technol. Lett. (1)

Y. Zhu, J. Zhou, X. Jin, H. Chi, X. Zhang, and S. Zheng, “An optoelectronic oscillator‐based strain sensor with extended measurement range,” Microw. Opt. Technol. Lett. 57(10), 2336–2339 (2015).

Nat. Photonics (3)

M. Jones, “Structural-health monitoring: A sensitive issue,” Nat. Photonics 2(3), 153–154 (2008).

H. Nakstad and J. T. Kringlebotn, “Oil and Gas Applications: Probing oil fields,” Nat. Photonics 2(3), 147–149 (2008).

E. Pinet, “Medical applications: Saving lives,” Nat. Photonics 2(3), 150–152 (2008).

Opt. Commun. (1)

K. K. Qureshi, Z. Liu, H. Y. Tam, and M. F. Zia, “A strain sensor based on in-line fiber Mach–Zehnder interferometer in twin-core photonic crystal fiber,” Opt. Commun. 309(22), 68–70 (2013).

Opt. Express (1)

Opt. Lett. (3)

Sens. Actuators A Phys. (1)

C. Li, Y. M. Zhang, H. Liu, S. Wu, and C. W. Huang, “Distributed fiber-optic bi-directional strain–displacement sensor modulated by fiber bending loss,” Sens. Actuators A Phys. 111(2–3), 236–239 (2004).

Sens. Actuators B Chem. (1)

K. A. Handawi, N. Vahdati, P. Rostron, L. Lawand, and O. Shiryayev, “Strain based FBG sensor for real-time corrosion rate monitoring in pre-stressed structures,” Sens. Actuators B Chem. 236, 276–285 (2016).

Sensors (Basel) (4)

W. Huang, T. Zhen, W. Zhang, F. Zhang, and F. Li, “A high-resolution demodulation algorithm for FBG-FP static-strain sensors based on the Hilbert transform and cross third-order cumulant,” Sensors (Basel) 15(5), 9928–9941 (2015).
[PubMed]

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
[PubMed]

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors (Basel) 15(7), 15494–15519 (2015).
[PubMed]

N. Yang, J. Su, Z. Fan, and Q. Qiu, “High precision temperature insensitive strain sensor based on fiber-optic delay,” Sensors (Basel) 17(5), 1005 (2017).
[PubMed]

Other (4)

M. Li, W. Li, J. Yao, and J. Azana, “Femtometer-resolution wavelength interrogation of a phase-shifted fiber Bragg grating sensor using an optoelectronic oscillator,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2012). pp. 15–26.

J Yao, O Xu, J Zhang, and H Deng, “Dual-frequency Optoelectronic Oscillator for Temperature-Insensitive Interrogation of a FBG Sensor,” IEEE Photonics Technol. Lett. 29, 357 (2017).

J Yao, “Optoelectronic oscillator for high speed and high resolution optical sensing,” J. Lightwave Technol. 35, 3489 (2017).

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Distributed temperature and strain sensing using spontaneous Brillouin scattering in optical few-mode fibers,” in Lasers and Electro-Optics (IEEE, 2015), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The schematic diagram of the proposed strain sensor. LD: laser diode; MZM: Mach-Zendher modulator; PD: photoelectric detector; DWDM: dense wavelength division multiplexing; BPF: band-pass filter; EA: electrical amplifier; ED: electrical divider; ESA: electrical spectrum analyzer.
Fig. 2
Fig. 2 The OEO based quasi-distributed strain sensor. LD: laser diode; TLS: tunable light source; MZM: Mach-Zendher modulator; PD: photoelectric detector; DWDM: dense wavelength division multiplexing; BPF: band-pass filter; EA: electrical amplifier; ED: electrical divider; ESA: electrical spectrum analyzer.
Fig. 3
Fig. 3 Measured electrical spectrum of OEOs with loop length of 4km. (a) the initial reference oscillation frequency. (b) the intermediate frequency (IF) signal. (c) the IF signal at different strain state.
Fig. 4
Fig. 4 Measured electrical spectrum of OEOs with loop length of 500m. (a) the initial reference oscillation frequency. (b) the intermediate frequency (IF) signal.
Fig. 5
Fig. 5 Measured relationship between frequency difference and different controlling voltage. (a) loop length L = 4 km. (b) loop length L = 500m.
Fig. 6
Fig. 6 Measured residuals of frequency difference. (a) loop length L = 4 km. (b) loop length L = 500m.
Fig. 7
Fig. 7 The relationship between tensile elongation and the axial tension of the fiber.
Fig. 8
Fig. 8 Response of the frequency difference as a function of the applied strain on the sensing fiber with a step of 35.05 με. (a) loop length L = 4 km. (b) loop length L = 500m.
Fig. 9
Fig. 9 Sensor outputs when subjected to varied temperature. (a) loop length L = 4 km. (b) loop length L = 500m.
Fig. 10
Fig. 10 Measured strain and residuals of the measured strain with range of 600 με. (a) loop length L = 4 km. (b) loop length L = 500m. (c) comparison of measured strain between the strain sensors with loop length of 4 km and loop length of 500 m.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

f osc1 = k 1 / ( τ+Δ τ 1 )
f osc2 = k 2 / ( τ+Δ τ 2 )
Δf= k 2 / ( τ+Δ τ 2 ) - k 1 / ( τ+Δ τ 1 )
Δ τ L =JLΣ+KLΔT
Δ τ 1 =J L target Σ+K( L REF +Δ L target )ΔT
Δ τ 2 =K L REF ΔT
Δ τ 1 J L target Σ+K L REF ΔT, Δ L target << L REF
Δτ= k 1 k 2 / τ-Δf -τ
Δτ= ( k 1 k 2 ) f FSR +Δf f osc2 Δf τ
Δ L target L REF = Δτ τ = ( k 1 k 2 ) f FSR +Δf f osc2 Δf
L REF = c n f FSR
Σ= Δ L target L target = ( k 1 k 2 ) f FSR +Δf f osc2 Δf c n f FSR L target
Σ= Δ L target L target = cΔf n f FSR ( f osc2 Δf ) L target
d=d( Δ L target L target )= dΔ L target L target d L target L target
d dΔ L target L target , d L target <<dΔ L target
dΔ L target =d( Δf f osc2 Δf L REF ) d( Δf f osc2 L REF ) ( Δfd L REF / L REF +dΔf f osc2 ) L REF ,Δf<< f osc2
dΔ L target ( dΔfnd f FSR Δf/ f FSR f osc2 ) L REF
dΔ L target dΔf f osc2 L REF ,Δf<< f FSR
= Δ L target L target = F YS

Metrics