Abstract

Microscale, continuous-profile, diffractive lenses have been fabricated and characterized. Lenses designed to operate at λ0 = 405 nm were created by focused ion beam milling of a glass substrate. The micro-structured profile was analysed by confocal microscopy and optical performance was quantified by measurements of the transmitted laser beam profile. Lenses of size 125 μm × 125 μm, containing up to 18 annuli and focusing at 400 μm, 450 μm and 500 μm have been made. Measured focused beams were in excellent agreement with the predicted performance. A maximum diffraction efficiency of 84 % and side-lobe suppression down to the 10−4 level can be achieved. The suitability of the lenses for interfacing with trappedion systems is outlined.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of glass microlenses using focused Xe beam

Sergey Gorelick and Alex De Marco
Opt. Express 26(10) 13647-13655 (2018)

Diffractive optical elements with continuous relief fabricated by focused ion beam for monomode fiber coupling

Fu Yong-Qi, Ngoi Kok Ann Bryan, and Ong Nan Shing
Opt. Express 7(3) 141-147 (2000)

Transfer of continuous-relief diffractive structures into diamond by use of inductively coupled plasma dry etching

Mikael Karlsson, Klas Hjort, and Fredrik Nikolajeff
Opt. Lett. 26(22) 1752-1754 (2001)

References

  • View by:
  • |
  • |
  • |

  1. H. Haffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
    [Crossref]
  2. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
    [Crossref] [PubMed]
  3. C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
    [Crossref] [PubMed]
  4. S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
    [Crossref] [PubMed]
  5. G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotech. 7, 572–576 (2012).
    [Crossref]
  6. R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
    [Crossref] [PubMed]
  7. B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
    [Crossref]
  8. N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
    [Crossref]
  9. D. Kielpinski, C. Volin, E. W. Streed, F. Lenzini, and M. Lobino, “Integrated optics architecture for trapped-ion quantum information processing,” Quantum Inf. Process. 15, 5315–5338 (2016).
    [Crossref]
  10. M. Ke, F. Zhou, X. Li, J. Wang, and M. Zhan, “Tailored-waveguide based photonic chip for manipulating an array of single neutral atoms,” Opt. Express 24, 9157 (2016).
    [Crossref] [PubMed]
  11. C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
    [Crossref]
  12. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
    [Crossref]
  13. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
    [Crossref]
  14. H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
    [Crossref]
  15. V. Gandhi, J. Orava, H. Tuovinen, T. Saastamoinen, J. Laukkanen, S. Honkanen, and M. Hauta-Kasari, “Diffractive optical elements for optical identification,” Appl. Opt. 54, 1606 (2015).
    [Crossref]
  16. H. Melkonyan, K. Al Qubaisi, K. Sloyan, A. Khilo, and M. S. Dahlem, “Gradient-index optical fiber lens for efficient fiber-to-chip coupling,” Opt. Express 25, 13035–13045 (2017).
    [Crossref] [PubMed]
  17. E. W. Streed, B. G. Norton, A. Jechow, T. J. Weinhold, and D. Kielpinski, “Imaging of trapped ions with a microfabricated optic for quantum information processing,” Physical review letters 106, 010502 (2011).
    [Crossref] [PubMed]
  18. A. Jechow, E. W. Streed, B. G. Norton, M. J. Petrasiunas, and D. Kielpinski, “Wavelength-scale imaging of trapped ions using a phase Fresnel lens,” Opt. Lett. 36, 1371–1373 (2011).
    [Crossref] [PubMed]
  19. A. McDonald, G. McConnell, D. C. Cox, E. Riis, and P. F. Griffin, “3D mapping of intensity field about the focus of a micrometer-scale parabolic mirror,” Opt. Express 23, 2375–2382 (2015).
    [Crossref] [PubMed]
  20. K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechol. 11, 1066–1070 (2016).
  21. H.-P. Herzig, Micro-Optics: Elements, Systems And Applications (Taylor & Francis, 1997).
  22. B. C. Kress and P. Meyrueis, Applied Digital Optics: From Micro-Optics to Nanophotonics (Wiley, 2009).
    [Crossref]
  23. A. Nottola, A. Gerardino, M. Gentili, E. Di Fabrizio, S. Cabrini, P. Melpignano, and G. Rotaris, “Fabrication of semi-continuous profile diffractive optical elements for beam shaping by electron beam lithography,” Microelectron. Eng. 53, 325–328 (2000).
    [Crossref]
  24. W. Däschner, M. Larsson, and S. H. Lee, “Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step,” Appl. Opt. 34, 2534 (1995).
    [Crossref]
  25. F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
    [Crossref]
  26. I. Utke, S. Moshkalev, and P. Russel, Nanofabrication using focused ion and electron beams: principles and applications (Oxford University, 2012).
  27. D. A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827 (1994).
    [Crossref]
  28. T. Shiono, T. Hamamoto, and K. Takahara, “High-efficiency blazed diffractive optical elements for the violet wavelength fabricated by electron-beam lithography,” Appl. Opt. 41, 2390 (2002).
    [Crossref] [PubMed]
  29. M. A. Golub, “Generalized conversion from the phase function to the blazed surface-relief profile of diffractive optical elements,” J. Opt. Soc. Am. A 16, 1194 (1999).
    [Crossref]
  30. G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 117 (2005).
    [Crossref]
  31. Yongqi Fu, “Integration of microdiffractive lens with continuous relief with vertical-cavity surface-emitting lasers using focused ion beam direct milling,” IEEE Photon. Techol. Lett. 13, 424–426 (2001).
    [Crossref]
  32. Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80, 581–585 (2005).
    [Crossref]
  33. S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287–300 (2001).
    [Crossref]
  34. S. Juodkazis, L. Rosa, S. Bauerdick, L. Peto, R. El-Ganainy, and S. John, “Sculpturing of photonic crystals by ion beam lithography: towards complete photonic bandgap at visible wavelengths,” Opt. Express 19, 5802 (2011).
    [Crossref] [PubMed]
  35. P. See, G. Wilpers, P. Gill, and A. G. Sinclair, “Fabrication of a monolithic array of three dimensional si-based ion traps,” J. Microelectromech. Syst. 22, 1180–1189 (2013).
    [Crossref]
  36. M. Harlander, M. Brownnutt, W. Hänsel, and R. Blatt, “Trapped-ion probing of light-induced charging effects on dielectrics,” New J. Phys. 12, 93035 (2010).
    [Crossref]
  37. A. M. Eltony, S. X. Wang, G. M. Akselrod, P. F. Herskind, and I. L. Chuang, “Transparent ion trap with integrated photodetector,” Appl. Phys. Lett. 102, 054106 (2013).
    [Crossref]
  38. M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
    [Crossref]
  39. D. H. Slichter, V. B. Verma, D. Leibfried, R. P. Mirin, S. W. Nam, and D. J. Wineland, “UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap,” Opt. Express 25, 8705–8720 (2017).
    [Crossref] [PubMed]
  40. A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Microsyst. Nanoeng. 1, 15005 (2015).
    [Crossref]
  41. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546 (2009).
    [Crossref] [PubMed]

2017 (3)

2016 (3)

M. Ke, F. Zhou, X. Li, J. Wang, and M. Zhan, “Tailored-waveguide based photonic chip for manipulating an array of single neutral atoms,” Opt. Express 24, 9157 (2016).
[Crossref] [PubMed]

D. Kielpinski, C. Volin, E. W. Streed, F. Lenzini, and M. Lobino, “Integrated optics architecture for trapped-ion quantum information processing,” Quantum Inf. Process. 15, 5315–5338 (2016).
[Crossref]

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechol. 11, 1066–1070 (2016).

2015 (5)

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Microsyst. Nanoeng. 1, 15005 (2015).
[Crossref]

A. McDonald, G. McConnell, D. C. Cox, E. Riis, and P. F. Griffin, “3D mapping of intensity field about the focus of a micrometer-scale parabolic mirror,” Opt. Express 23, 2375–2382 (2015).
[Crossref] [PubMed]

V. Gandhi, J. Orava, H. Tuovinen, T. Saastamoinen, J. Laukkanen, S. Honkanen, and M. Hauta-Kasari, “Diffractive optical elements for optical identification,” Appl. Opt. 54, 1606 (2015).
[Crossref]

2014 (1)

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref] [PubMed]

2013 (4)

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
[Crossref] [PubMed]

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

A. M. Eltony, S. X. Wang, G. M. Akselrod, P. F. Herskind, and I. L. Chuang, “Transparent ion trap with integrated photodetector,” Appl. Phys. Lett. 102, 054106 (2013).
[Crossref]

P. See, G. Wilpers, P. Gill, and A. G. Sinclair, “Fabrication of a monolithic array of three dimensional si-based ion traps,” J. Microelectromech. Syst. 22, 1180–1189 (2013).
[Crossref]

2012 (1)

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotech. 7, 572–576 (2012).
[Crossref]

2011 (3)

2010 (1)

M. Harlander, M. Brownnutt, W. Hänsel, and R. Blatt, “Trapped-ion probing of light-induced charging effects on dielectrics,” New J. Phys. 12, 93035 (2010).
[Crossref]

2009 (1)

2008 (2)

H. Haffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[Crossref]

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref] [PubMed]

2006 (1)

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

2005 (3)

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 117 (2005).
[Crossref]

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80, 581–585 (2005).
[Crossref]

2004 (1)

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

2002 (1)

2001 (2)

S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287–300 (2001).
[Crossref]

Yongqi Fu, “Integration of microdiffractive lens with continuous relief with vertical-cavity surface-emitting lasers using focused ion beam direct milling,” IEEE Photon. Techol. Lett. 13, 424–426 (2001).
[Crossref]

2000 (1)

A. Nottola, A. Gerardino, M. Gentili, E. Di Fabrizio, S. Cabrini, P. Melpignano, and G. Rotaris, “Fabrication of semi-continuous profile diffractive optical elements for beam shaping by electron beam lithography,” Microelectron. Eng. 53, 325–328 (2000).
[Crossref]

1999 (2)

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[Crossref]

M. A. Golub, “Generalized conversion from the phase function to the blazed surface-relief profile of diffractive optical elements,” J. Opt. Soc. Am. A 16, 1194 (1999).
[Crossref]

1998 (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[Crossref]

1995 (1)

1994 (1)

Akselrod, G. M.

A. M. Eltony, S. X. Wang, G. M. Akselrod, P. F. Herskind, and I. L. Chuang, “Transparent ion trap with integrated photodetector,” Appl. Phys. Lett. 102, 054106 (2013).
[Crossref]

Al Qubaisi, K.

Amini, J. M.

M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
[Crossref]

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Ams, M.

Arnold, A. S.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

Bauerdick, S.

Bengtsson, J.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[Crossref]

Benito, F.

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

Blain, M.

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

Blakestad, R.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Blatt, R.

M. Harlander, M. Brownnutt, W. Hänsel, and R. Blatt, “Trapped-ion probing of light-induced charging effects on dielectrics,” New J. Phys. 12, 93035 (2010).
[Crossref]

H. Haffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[Crossref]

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref] [PubMed]

Bleiker, S. J.

A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Microsyst. Nanoeng. 1, 15005 (2015).
[Crossref]

Blums, V.

M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
[Crossref]

Bollinger, J.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Britton, J.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Brown, K. R.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Brownnutt, M.

M. Harlander, M. Brownnutt, W. Hänsel, and R. Blatt, “Trapped-ion probing of light-induced charging effects on dielectrics,” New J. Phys. 12, 93035 (2010).
[Crossref]

Bruzewicz, C. D.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechol. 11, 1066–1070 (2016).

Bryan, N. K. A.

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80, 581–585 (2005).
[Crossref]

Cabrini, S.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

A. Nottola, A. Gerardino, M. Gentili, E. Di Fabrizio, S. Cabrini, P. Melpignano, and G. Rotaris, “Fabrication of semi-continuous profile diffractive optical elements for beam shaping by electron beam lithography,” Microelectron. Eng. 53, 325–328 (2000).
[Crossref]

Chanhvongsak, H. M.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Chiaverini, J.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechol. 11, 1066–1070 (2016).

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Chuang, I. L.

A. M. Eltony, S. X. Wang, G. M. Akselrod, P. F. Herskind, and I. L. Chuang, “Transparent ion trap with integrated photodetector,” Appl. Phys. Lett. 102, 054106 (2013).
[Crossref]

Clark, C. R.

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

Clark, S.

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

Cojoc, D.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Connell, S. C.

M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
[Crossref]

Cotter, J. P.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

Courtial, J.

G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 117 (2005).
[Crossref]

Cox, D. C.

Curtis, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Dahlem, M. S.

Däschner, W.

De Vittorio, M.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Degiorgio, V.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Dekker, P.

Di Fabrizio, E.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

A. Nottola, A. Gerardino, M. Gentili, E. Di Fabrizio, S. Cabrini, P. Melpignano, and G. Rotaris, “Fabrication of semi-continuous profile diffractive optical elements for beam shaping by electron beam lithography,” Microelectron. Eng. 53, 325–328 (2000).
[Crossref]

Dufresne, E. R.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[Crossref]

El-Ganainy, R.

Eltony, A. M.

A. M. Eltony, S. X. Wang, G. M. Akselrod, P. F. Herskind, and I. L. Chuang, “Transparent ion trap with integrated photodetector,” Appl. Phys. Lett. 102, 054106 (2013).
[Crossref]

Epstein, R.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Eriksson, S.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Fallek, S. D.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Fischer, A. C.

A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Microsyst. Nanoeng. 1, 15005 (2015).
[Crossref]

Fisher, P. M.

M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
[Crossref]

Forsberg, F.

A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Microsyst. Nanoeng. 1, 15005 (2015).
[Crossref]

Fu, Y.

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80, 581–585 (2005).
[Crossref]

Fu, Yongqi

Yongqi Fu, “Integration of microdiffractive lens with continuous relief with vertical-cavity surface-emitting lasers using focused ion beam direct milling,” IEEE Photon. Techol. Lett. 13, 424–426 (2001).
[Crossref]

Gandhi, V.

Gentili, M.

A. Nottola, A. Gerardino, M. Gentili, E. Di Fabrizio, S. Cabrini, P. Melpignano, and G. Rotaris, “Fabrication of semi-continuous profile diffractive optical elements for beam shaping by electron beam lithography,” Microelectron. Eng. 53, 325–328 (2000).
[Crossref]

Gerardino, A.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

A. Nottola, A. Gerardino, M. Gentili, E. Di Fabrizio, S. Cabrini, P. Melpignano, and G. Rotaris, “Fabrication of semi-continuous profile diffractive optical elements for beam shaping by electron beam lithography,” Microelectron. Eng. 53, 325–328 (2000).
[Crossref]

Ghadimi, M.

M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
[Crossref]

Ghisoni, M.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[Crossref]

Gill, P.

P. See, G. Wilpers, P. Gill, and A. G. Sinclair, “Fabrication of a monolithic array of three dimensional si-based ion traps,” J. Microelectromech. Syst. 22, 1180–1189 (2013).
[Crossref]

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotech. 7, 572–576 (2012).
[Crossref]

Golub, M. A.

Grann, E. B.

Grier, D. G.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[Crossref]

Griffin, P. F.

A. McDonald, G. McConnell, D. C. Cox, E. Riis, and P. F. Griffin, “3D mapping of intensity field about the focus of a micrometer-scale parabolic mirror,” Opt. Express 23, 2375–2382 (2015).
[Crossref] [PubMed]

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

Guise, N. D.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Haffner, H.

H. Haffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[Crossref]

Haltli, R. A.

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

Hamamoto, T.

Hänsel, W.

M. Harlander, M. Brownnutt, W. Hänsel, and R. Blatt, “Trapped-ion probing of light-induced charging effects on dielectrics,” New J. Phys. 12, 93035 (2010).
[Crossref]

Harlander, M.

M. Harlander, M. Brownnutt, W. Hänsel, and R. Blatt, “Trapped-ion probing of light-induced charging effects on dielectrics,” New J. Phys. 12, 93035 (2010).
[Crossref]

Harter, A. W.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Hauta-Kasari, M.

Hayden, H.

M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
[Crossref]

Hensinger, W. K.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref] [PubMed]

Herskind, P. F.

A. M. Eltony, S. X. Wang, G. M. Akselrod, P. F. Herskind, and I. L. Chuang, “Transparent ion trap with integrated photodetector,” Appl. Phys. Lett. 102, 054106 (2013).
[Crossref]

Herzig, H.-P.

H.-P. Herzig, Micro-Optics: Elements, Systems And Applications (Taylor & Francis, 1997).

Higashi, R. E.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Hinds, E. A.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Honkanen, S.

Hume, D.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Ironside, C. N.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

Itano, W.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Jechow, A.

E. W. Streed, B. G. Norton, A. Jechow, T. J. Weinhold, and D. Kielpinski, “Imaging of trapped ions with a microfabricated optic for quantum information processing,” Physical review letters 106, 010502 (2011).
[Crossref] [PubMed]

A. Jechow, E. W. Streed, B. G. Norton, M. J. Petrasiunas, and D. Kielpinski, “Wavelength-scale imaging of trapped ions using a phase Fresnel lens,” Opt. Lett. 36, 1371–1373 (2011).
[Crossref] [PubMed]

John, S.

Jost, J.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Juodkazis, S.

Ke, M.

Khilo, A.

Kielpinski, D.

M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
[Crossref]

D. Kielpinski, C. Volin, E. W. Streed, F. Lenzini, and M. Lobino, “Integrated optics architecture for trapped-ion quantum information processing,” Quantum Inf. Process. 15, 5315–5338 (2016).
[Crossref]

E. W. Streed, B. G. Norton, A. Jechow, T. J. Weinhold, and D. Kielpinski, “Imaging of trapped ions with a microfabricated optic for quantum information processing,” Physical review letters 106, 010502 (2011).
[Crossref] [PubMed]

A. Jechow, E. W. Streed, B. G. Norton, M. J. Petrasiunas, and D. Kielpinski, “Wavelength-scale imaging of trapped ions using a phase Fresnel lens,” Opt. Lett. 36, 1371–1373 (2011).
[Crossref] [PubMed]

Kim, J.

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
[Crossref] [PubMed]

Kraft, M.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref] [PubMed]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Kress, B. C.

B. C. Kress and P. Meyrueis, Applied Digital Optics: From Micro-Optics to Nanophotonics (Wiley, 2009).
[Crossref]

Kukharenka, E.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Kumar, R.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Lake, K.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref] [PubMed]

Langer, C.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Lapisa, M.

A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Microsyst. Nanoeng. 1, 15005 (2015).
[Crossref]

Larsson, A.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[Crossref]

Larsson, M.

Laukkanen, J.

Lee, S. H.

Leibfried, D.

D. H. Slichter, V. B. Verma, D. Leibfried, R. P. Mirin, S. W. Nam, and D. J. Wineland, “UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap,” Opt. Express 25, 8705–8720 (2017).
[Crossref] [PubMed]

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Lenzini, F.

D. Kielpinski, C. Volin, E. W. Streed, F. Lenzini, and M. Lobino, “Integrated optics architecture for trapped-ion quantum information processing,” Quantum Inf. Process. 15, 5315–5338 (2016).
[Crossref]

Li, X.

Lobino, M.

D. Kielpinski, C. Volin, E. W. Streed, F. Lenzini, and M. Lobino, “Integrated optics architecture for trapped-ion quantum information processing,” Quantum Inf. Process. 15, 5315–5338 (2016).
[Crossref]

Lu, S. T.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Marcus, M. S.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Marshall, G. D.

Martinsson, H.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[Crossref]

Matthews, J. C. F.

Maunz, P.

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

McConnell, G.

McConnell, R.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechol. 11, 1066–1070 (2016).

McDonald, A.

Mehta, K. K.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechol. 11, 1066–1070 (2016).

Melkonyan, H.

Melpignano, P.

A. Nottola, A. Gerardino, M. Gentili, E. Di Fabrizio, S. Cabrini, P. Melpignano, and G. Rotaris, “Fabrication of semi-continuous profile diffractive optical elements for beam shaping by electron beam lithography,” Microelectron. Eng. 53, 325–328 (2000).
[Crossref]

Meyrueis, P.

B. C. Kress and P. Meyrueis, Applied Digital Optics: From Micro-Optics to Nanophotonics (Wiley, 2009).
[Crossref]

Mirin, R. P.

Moharam, M. G.

Moktadir, Z.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Monroe, C.

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
[Crossref] [PubMed]

Moshkalev, S.

I. Utke, S. Moshkalev, and P. Russel, Nanofabrication using focused ion and electron beams: principles and applications (Oxford University, 2012).

Nam, S. W.

Nguyen, T. A.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Niklaus, F.

A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Microsyst. Nanoeng. 1, 15005 (2015).
[Crossref]

Norton, B. G.

M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
[Crossref]

E. W. Streed, B. G. Norton, A. Jechow, T. J. Weinhold, and D. Kielpinski, “Imaging of trapped ions with a microfabricated optic for quantum information processing,” Physical review letters 106, 010502 (2011).
[Crossref] [PubMed]

A. Jechow, E. W. Streed, B. G. Norton, M. J. Petrasiunas, and D. Kielpinski, “Wavelength-scale imaging of trapped ions using a phase Fresnel lens,” Opt. Lett. 36, 1371–1373 (2011).
[Crossref] [PubMed]

Nottola, A.

A. Nottola, A. Gerardino, M. Gentili, E. Di Fabrizio, S. Cabrini, P. Melpignano, and G. Rotaris, “Fabrication of semi-continuous profile diffractive optical elements for beam shaping by electron beam lithography,” Microelectron. Eng. 53, 325–328 (2000).
[Crossref]

Nshii, C. C.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

O’Brien, J. L.

Ohnstein, T. R.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Orava, J.

Ozeri, R.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Pai, C.-S.

M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
[Crossref]

Peto, L.

Petrasiunas, M. J.

Politi, A.

Pommet, D. A.

Prasciolu, M.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Puers, R.

S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287–300 (2001).
[Crossref]

Ram, R. J.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechol. 11, 1066–1070 (2016).

Rattanasonti, H.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref] [PubMed]

Reichle, R.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Reyntjens, S.

S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287–300 (2001).
[Crossref]

Riis, E.

A. McDonald, G. McConnell, D. C. Cox, E. Riis, and P. F. Griffin, “3D mapping of intensity field about the focus of a micrometer-scale parabolic mirror,” Opt. Express 23, 2375–2382 (2015).
[Crossref] [PubMed]

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

Roos, C. F.

H. Haffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[Crossref]

Rosa, L.

Rotaris, G.

A. Nottola, A. Gerardino, M. Gentili, E. Di Fabrizio, S. Cabrini, P. Melpignano, and G. Rotaris, “Fabrication of semi-continuous profile diffractive optical elements for beam shaping by electron beam lithography,” Microelectron. Eng. 53, 325–328 (2000).
[Crossref]

Roxhed, N.

A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Microsyst. Nanoeng. 1, 15005 (2015).
[Crossref]

Russel, P.

I. Utke, S. Moshkalev, and P. Russel, Nanofabrication using focused ion and electron beams: principles and applications (Oxford University, 2012).

Saastamoinen, T.

Sage, J. M.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechol. 11, 1066–1070 (2016).

Schiappelli, F.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

See, P.

P. See, G. Wilpers, P. Gill, and A. G. Sinclair, “Fabrication of a monolithic array of three dimensional si-based ion traps,” J. Microelectromech. Syst. 22, 1180–1189 (2013).
[Crossref]

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotech. 7, 572–576 (2012).
[Crossref]

Seidelin, S.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Shiga, N.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Shiono, T.

Sinclair, A. G.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

P. See, G. Wilpers, P. Gill, and A. G. Sinclair, “Fabrication of a monolithic array of three dimensional si-based ion traps,” J. Microelectromech. Syst. 22, 1180–1189 (2013).
[Crossref]

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotech. 7, 572–576 (2012).
[Crossref]

Slichter, D. H.

Sloyan, K.

Srinivasan, P.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref] [PubMed]

Stemme, G.

A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Microsyst. Nanoeng. 1, 15005 (2015).
[Crossref]

Sterk, J. D.

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

Sterling, R. C.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref] [PubMed]

Stevens, K. E.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Stick, D.

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

Streed, E. W.

D. Kielpinski, C. Volin, E. W. Streed, F. Lenzini, and M. Lobino, “Integrated optics architecture for trapped-ion quantum information processing,” Quantum Inf. Process. 15, 5315–5338 (2016).
[Crossref]

E. W. Streed, B. G. Norton, A. Jechow, T. J. Weinhold, and D. Kielpinski, “Imaging of trapped ions with a microfabricated optic for quantum information processing,” Physical review letters 106, 010502 (2011).
[Crossref] [PubMed]

A. Jechow, E. W. Streed, B. G. Norton, M. J. Petrasiunas, and D. Kielpinski, “Wavelength-scale imaging of trapped ions using a phase Fresnel lens,” Opt. Lett. 36, 1371–1373 (2011).
[Crossref] [PubMed]

Tabakov, B.

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

Takahara, K.

Tigges, C.

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

Trupke, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Tuovinen, H.

Utke, I.

I. Utke, S. Moshkalev, and P. Russel, Nanofabrication using focused ion and electron beams: principles and applications (Oxford University, 2012).

Vangeleyn, M.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

Verma, V. B.

Visimberga, G.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Volin, C.

M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
[Crossref]

D. Kielpinski, C. Volin, E. W. Streed, F. Lenzini, and M. Lobino, “Integrated optics architecture for trapped-ion quantum information processing,” Quantum Inf. Process. 15, 5315–5338 (2016).
[Crossref]

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Wang, J.

Wang, S. X.

A. M. Eltony, S. X. Wang, G. M. Akselrod, P. F. Herskind, and I. L. Chuang, “Transparent ion trap with integrated photodetector,” Appl. Phys. Lett. 102, 054106 (2013).
[Crossref]

Webster, S. C.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref] [PubMed]

Weidt, S.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref] [PubMed]

Weinhold, T. J.

E. W. Streed, B. G. Norton, A. Jechow, T. J. Weinhold, and D. Kielpinski, “Imaging of trapped ions with a microfabricated optic for quantum information processing,” Physical review letters 106, 010502 (2011).
[Crossref] [PubMed]

Wesenberg, J.

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Whyte, G.

G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 117 (2005).
[Crossref]

Wilpers, G.

P. See, G. Wilpers, P. Gill, and A. G. Sinclair, “Fabrication of a monolithic array of three dimensional si-based ion traps,” J. Microelectromech. Syst. 22, 1180–1189 (2013).
[Crossref]

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotech. 7, 572–576 (2012).
[Crossref]

Wineland, D.

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref] [PubMed]

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Wineland, D. J.

Withford, M. J.

Youngner, D. W.

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

Zhan, M.

Zhou, F.

Appl. Opt. (3)

Appl. Phys. B (1)

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80, 581–585 (2005).
[Crossref]

Appl. Phys. Lett. (2)

A. M. Eltony, S. X. Wang, G. M. Akselrod, P. F. Herskind, and I. L. Chuang, “Transparent ion trap with integrated photodetector,” Appl. Phys. Lett. 102, 054106 (2013).
[Crossref]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[Crossref]

IEEE Photon. Techol. Lett. (1)

Yongqi Fu, “Integration of microdiffractive lens with continuous relief with vertical-cavity surface-emitting lasers using focused ion beam direct milling,” IEEE Photon. Techol. Lett. 13, 424–426 (2001).
[Crossref]

J. Appl. Phys. (1)

N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and D. W. Youngner, “Ball-grid array architecture for microfabricated ion traps,” J. Appl. Phys. 117, 174901 (2015).
[Crossref]

J. Microelectromech. Syst. (1)

P. See, G. Wilpers, P. Gill, and A. G. Sinclair, “Fabrication of a monolithic array of three dimensional si-based ion traps,” J. Microelectromech. Syst. 22, 1180–1189 (2013).
[Crossref]

J. Micromech. Microeng. (1)

S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287–300 (2001).
[Crossref]

J. Opt. Soc. Am. A (2)

Microelectron. Eng. (2)

A. Nottola, A. Gerardino, M. Gentili, E. Di Fabrizio, S. Cabrini, P. Melpignano, and G. Rotaris, “Fabrication of semi-continuous profile diffractive optical elements for beam shaping by electron beam lithography,” Microelectron. Eng. 53, 325–328 (2000).
[Crossref]

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Microsyst. Nanoeng. (1)

A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Microsyst. Nanoeng. 1, 15005 (2015).
[Crossref]

Nat. Commun. (1)

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref] [PubMed]

Nat. Nanotech. (2)

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotech. 8, 321–324 (2013).
[Crossref]

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotech. 7, 572–576 (2012).
[Crossref]

Nat. Nanotechol. (1)

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechol. 11, 1066–1070 (2016).

Nature (1)

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref] [PubMed]

New J. Phys. (2)

G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 117 (2005).
[Crossref]

M. Harlander, M. Brownnutt, W. Hänsel, and R. Blatt, “Trapped-ion probing of light-induced charging effects on dielectrics,” New J. Phys. 12, 93035 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rep. (1)

H. Haffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[Crossref]

Phys. Rev. Appl. (1)

B. Tabakov, F. Benito, M. Blain, C. R. Clark, S. Clark, R. A. Haltli, P. Maunz, J. D. Sterk, C. Tigges, and D. Stick, “Assembling a ring-shaped crystal in a microfabricated surface ion trap,” Phys. Rev. Appl. 4, 031001 (2015).
[Crossref]

Phys. Rev. Lett. (1)

S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
[Crossref] [PubMed]

Physical review letters (1)

E. W. Streed, B. G. Norton, A. Jechow, T. J. Weinhold, and D. Kielpinski, “Imaging of trapped ions with a microfabricated optic for quantum information processing,” Physical review letters 106, 010502 (2011).
[Crossref] [PubMed]

Quantum Inf. (1)

M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin, H. Hayden, C.-S. Pai, D. Kielpinski, and et al., “Scalable ion–photon quantum interface based on integrated diffractive mirrors,” Quantum Inf. 3, 4 (2017).
[Crossref]

Quantum Inf. Process. (1)

D. Kielpinski, C. Volin, E. W. Streed, F. Lenzini, and M. Lobino, “Integrated optics architecture for trapped-ion quantum information processing,” Quantum Inf. Process. 15, 5315–5338 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[Crossref]

Science (1)

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
[Crossref] [PubMed]

Other (3)

H.-P. Herzig, Micro-Optics: Elements, Systems And Applications (Taylor & Francis, 1997).

B. C. Kress and P. Meyrueis, Applied Digital Optics: From Micro-Optics to Nanophotonics (Wiley, 2009).
[Crossref]

I. Utke, S. Moshkalev, and P. Russel, Nanofabrication using focused ion and electron beams: principles and applications (Oxford University, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The coordinate space used for designing DMLs using scalar diffraction theory. A point source at (x1, y1, z1) is mapped onto a point image at (x2, y2, z2) by the DML at the z = 0 plane.
Fig. 2
Fig. 2 Simulations of the output field of DMLs at y = 0 for a Gaussian source of w0 = 3.75 μm at a wavelength of λ0 = 405 nm. The corresponding radially symmetric height profile in BK7 glass is displayed to the left of each simulation. The DMLs have been designed to focus at (a) 500 μm, (b) 450 μm, and (c) 400 μm from the lens plane. These are referred to as lens designs A, B and C respectively throughout this report.
Fig. 3
Fig. 3 (a) SEM image of a Si sample used to test the milling pattern geometry. The sample was prepared by milling a complete lens, then a narrow (∼ 5 μm) strip of Pt was deposited across the lens using FIB-induced deposition, and finally a trench was milled through a section of Pt on Si to reveal the profile of the lens. (b) SEM of a BK7 glass substrate carrying DML 4, 5, and 6 as well as a blank opening. Light areas indicate metal-coated and dark areas are BK7 glass.
Fig. 4
Fig. 4 DML characterization set up. Mode preparation consisted of coupling a 405 nm laser diode into single mode fiber before collimating and centering on a 10× objective to focus light to beam radius w0 = 3.75 μm at z = −1000 μm from the DML chip surface. The source beam then expands to a radius of w(z = 0) = 22.8 μm at the surface of the DML, where it is focused. Note that 99.9% of the incident beam overlapped with a central area of the DML of radius 2 × 22.8 μm. The focused spot created by the DML was imaged onto a CCD sensor via a 100 × imaging objective.
Fig. 5
Fig. 5 Measured profiles (dark) of typical fabricated DMLs and design profiles (light) for comparison (a) DML 2, and (b) DML 5.
Fig. 6
Fig. 6 Measured propagation of lens 2, designed to focus at 500μm. (a) Color map of the measured beam profile after the DML plane. Dark represents an intensity of 0, and bright represents a normalized intensity of 1. (b) The measured intensity (open circles) along the optical axis, z, with equivalent simulation of the design profile for comparison (solid line).
Fig. 7
Fig. 7 Beam profile at 500 μm from the plane of DML 2 (design A): (a) 2D profile normalized to the peak intensity, (b) 1D log plot along the x-axis of the beam profile at y = 0 demonstrating the background intensity away from the peak and deviation from simulations of the designed and fabricated lens. (c) and (d) are corresponding plots for DML 5 (design B). In (b) and (d), the data acquired with different exposure times are represented by different colors and symbols. In (b) these are 0.2 ms (blue), 0.8 ms (orange), 6.8 ms (yellow), 64.9 ms (purple) and 118.4 ms (green). In (d) these are 0.2 ms (blue), 1.1 ms (orange), 10.3 ms (yellow), and 101.3 ms (purple).
Fig. 8
Fig. 8 Intensity propagation of lenses 4, 5 and 6 along the optical axis. The measured optical intensity (open circles) at x = y = 0 is shown along with the equivalent simulated profile from the design (solid line). The data for different lenses has been offset for clarity.

Tables (1)

Tables Icon

Table 1 Summary of measured optical performance of fabricated DMLs. All fabricated lenses focus within 10 μm of their design length, while only DML 1 − 4, of design A, achieve high diffraction efficiencies of > 80 %

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E 2 ( x , y , L ) = L i λ E 2 ( x , y , 0 ) e i k r r 2 d x d y ,
h ( x , y ) = λ 0 n 1 ψ ( x , y ) 2 π .
ψ PS ( x , y ) = 2 π λ 0 ( n 2 ( x x 2 ) 2 + ( y y 2 ) 2 + z 2 2 n 1 ( x x 1 ) 2 + ( y y 1 ) 2 + z 1 2 )

Metrics