Abstract

We demonstrate a novel amplification regime in a counter-pumped, relatively long (2 meters), large mode area, highly Yb-doped and polarization-maintaining tapered fiber, which offers a high peak power directly from the amplifier. The main feature of this regime is that the amplifying signal propagates through a thin part of the tapered fiber without amplification and experiences an extremely high gain in the thick part of the tapered fiber, where most of the pump power is absorbed. In this regime, we have demonstrated 8 ps pulse amplification to a peak power of up to 0.76 MW, which is limited by appearance of stimulated Raman scattering. In the same regime, 28 ps chirped pulses are amplified to a peak power of 0.35 MW directly from the amplifier and then compressed with 70% efficiency to 315 ± 10 fs, corresponding to an estimated peak power of 22 MW.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Yb-doped large mode area fiber for beam quality improvement using local adiabatic tapers with reduced dopant diffusion

Yuan Zhu, Martin Leich, Martin Lorenz, Tina Eschrich, Claudia Aichele, Jens Kobelke, Hartmut Bartelt, and Matthias Jäger
Opt. Express 26(13) 17034-17043 (2018)

Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses

Fabio Di Teodoro and Christopher D. Brooks
Opt. Lett. 30(24) 3299-3301 (2005)

Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers

Andrey Fedotov, Teppo Noronen, Regina Gumenyuk, Vasiliy Ustimchik, Yuri Chamorovskii, Konstantin Golant, Maxim Odnoblyudov, Joona Rissanen, Tapio Niemi, and Valery Filippov
Opt. Express 26(6) 6581-6592 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express 19(1), 255–260 (2011).
    [PubMed]
  2. R. Sun, D. Jin, F. Tan, S. Wei, C. Hong, J. Xu, J. Liu, and P. Wang, “High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating,” Opt. Express 24(20), 22806–22812 (2016).
    [PubMed]
  3. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Robust Single-Mode Propagation in Optical Fibers with Record Effective Areas,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CPDB10.
  4. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
    [PubMed]
  5. L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermène, and S. Février, “Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration,” Opt. Express 14(7), 2994–2999 (2006).
    [PubMed]
  6. P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, “Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser,” Opt. Lett. 31(2), 226–228 (2006).
    [PubMed]
  7. C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America,2007), paper CTuBB3.
  8. D. A. Gaponov, S. Février, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, “Management of the high-order mode content in large (40 microm) core photonic bandgap Bragg fiber laser,” Opt. Lett. 35(13), 2233–2235 (2010).
    [PubMed]
  9. L. Daniault, D. A. Gaponov, M. Hanna, S. Février, P. Roy, F. Druon, P. Georges, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers,” Appl. Phys. B 103(3), 615–621 (2011).
  10. P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-Fiber Low-Noise High-Power Femtosecond Yb-Fiber Amplifier System Seeded by an All-Normal Dispersion Fiber Oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(1), 145–152 (2009).
  11. H. Kalaycioglu, B. Oktem, C. Şenel, P. P. Paltani, and F. Ö. Ilday, “Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier,” Opt. Lett. 35(7), 959–961 (2010).
    [PubMed]
  12. V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008).
    [PubMed]
  13. Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, “Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber,” Opt. Lett. 34(15), 2369–2371 (2009).
    [PubMed]
  14. J. Kerttula, V. Filippov, V. Ustimchik, Y. Chamorovskiy, and O. G. Okhotnikov, “Mode evolution in long tapered fibers with high tapering ratio,” Opt. Express 20(23), 25461–25470 (2012).
    [PubMed]
  15. M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).
  16. V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golantc, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).
  17. L. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, D. Lipatov, A. Guryanov, K. Zaytsev, M. Jossent, and S. Février, “Millijoule pulse energy 100-nanosecond Er-doped fiber laser,” Opt. Lett. 40(7), 1189–1192 (2015).
    [PubMed]
  18. I. Pavlov, E. Dülgergil, E. Ilbey, and F. Ö. Ilday, “Diffraction-limited, 10-W, 5-ns, 100-kHz, all-fiber laser at 1.55 μm,” Opt. Lett. 39(9), 2695–2698 (2014).
    [PubMed]
  19. M. Likhachev, S. Aleshkina, A. Shubin, M. Bubnov, E. Dianov, D. Lipatov, and A. Guryanov, “Large-Mode-Area Highly Yb-doped Photodarkening-Free Al2O3-P2O5-SiO2-Based Fiber,” in CLEO/Europe-EQEC2011, paper CJ.P.24.
  20. L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, J. Lhermite, S. Février, and E. Cormier, “75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm,” Opt. Lett. 38(13), 2230–2232 (2013).
    [PubMed]
  21. V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).
  22. V. A. Bogatyrjov and A. A. Sysoliatin, “Efficient method to produce fibers with outer diameter varying along the length,” Proc. SPIE 4204, 274 (2001).
  23. Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).
  24. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
  25. V. A. Bagan, S. A. Nikitov, Yu. K. Chamorovskii, and A. D. Shatrov, “Studying the properties of double-clad active cone optic fiber,” J. Commun. Technol. Electron. 55, 1154 (2010).
  26. G. P. Agraval, Nonlinear Fiber Optics, P. F. Liao, P.L. Kelley, eds. (Academic Press, 1989).
  27. C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
    [PubMed]
  28. M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34(9), 843–848 (2004).
  29. A. Andrianov, E. Anashkina, S. Muravyev, and A. Kim, “All-fiber design of hybrid Er-doped laser/Yb-doped amplifier system for high-power ultrashort pulse generation,” Opt. Lett. 35(22), 3805–3807 (2010).
    [PubMed]
  30. R. Adair, L. Chase, and S. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
  31. C. Pierre, G. Guiraud, C. Vinçont1, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” CLEO/Europe - EQEC 2017: Conference Digest, paper CJ-9.3 (25–29 June 2017, Munich, Germany).

2017 (2)

V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golantc, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).

2016 (1)

2015 (2)

L. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, D. Lipatov, A. Guryanov, K. Zaytsev, M. Jossent, and S. Février, “Millijoule pulse energy 100-nanosecond Er-doped fiber laser,” Opt. Lett. 40(7), 1189–1192 (2015).
[PubMed]

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

2014 (1)

2013 (1)

2012 (1)

2011 (2)

T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express 19(1), 255–260 (2011).
[PubMed]

L. Daniault, D. A. Gaponov, M. Hanna, S. Février, P. Roy, F. Druon, P. Georges, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers,” Appl. Phys. B 103(3), 615–621 (2011).

2010 (4)

2009 (3)

C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
[PubMed]

Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, “Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber,” Opt. Lett. 34(15), 2369–2371 (2009).
[PubMed]

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-Fiber Low-Noise High-Power Femtosecond Yb-Fiber Amplifier System Seeded by an All-Normal Dispersion Fiber Oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(1), 145–152 (2009).

2008 (1)

2006 (3)

2004 (1)

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34(9), 843–848 (2004).

2001 (1)

V. A. Bogatyrjov and A. A. Sysoliatin, “Efficient method to produce fibers with outer diameter varying along the length,” Proc. SPIE 4204, 274 (2001).

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

1991 (1)

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

1987 (1)

Adair, R.

Aleshkina, S. S.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

D. A. Gaponov, S. Février, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, “Management of the high-order mode content in large (40 microm) core photonic bandgap Bragg fiber laser,” Opt. Lett. 35(13), 2233–2235 (2010).
[PubMed]

Anashkina, E.

Anashkina, E. A.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

Andrianov, A.

Andrianov, A. V.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

Bagan, V. A.

V. A. Bagan, S. A. Nikitov, Yu. K. Chamorovskii, and A. D. Shatrov, “Studying the properties of double-clad active cone optic fiber,” J. Commun. Technol. Electron. 55, 1154 (2010).

Bartelt, H.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).

Bobkov, K. K.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

Bogatyrev, V. A.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Bogatyrjov, V. A.

V. A. Bogatyrjov and A. A. Sysoliatin, “Efficient method to produce fibers with outer diameter varying along the length,” Proc. SPIE 4204, 274 (2001).

Brambilla, G.

Bubnov, M.

Bubnov, M. M.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, J. Lhermite, S. Février, and E. Cormier, “75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm,” Opt. Lett. 38(13), 2230–2232 (2013).
[PubMed]

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Budunoglu, I. L.

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-Fiber Low-Noise High-Power Femtosecond Yb-Fiber Amplifier System Seeded by an All-Normal Dispersion Fiber Oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(1), 145–152 (2009).

Bufetov, I. A.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34(9), 843–848 (2004).

Carstens, H.

Chamorovskii, Y.

V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golantc, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).

V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008).
[PubMed]

Chamorovskii, Yu. K.

V. A. Bagan, S. A. Nikitov, Yu. K. Chamorovskii, and A. D. Shatrov, “Studying the properties of double-clad active cone optic fiber,” J. Commun. Technol. Electron. 55, 1154 (2010).

Chamorovskiy, Y.

Chase, L.

Chernikov, S. V.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Clarkson, W. A.

Cooper, L. J.

Cormier, E.

Daniault, L.

L. Daniault, D. A. Gaponov, M. Hanna, S. Février, P. Roy, F. Druon, P. Georges, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers,” Appl. Phys. B 103(3), 615–621 (2011).

Denisov, A. N.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

Desfarges-Berthelemot, A.

Devautour, M.

Devyatykh, G. G.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Dianov, E. M.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34(9), 843–848 (2004).

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Dimarcello, F. V.

Druon, F.

L. Daniault, D. A. Gaponov, M. Hanna, S. Février, P. Roy, F. Druon, P. Georges, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers,” Appl. Phys. B 103(3), 615–621 (2011).

Dülgergil, E.

Eidam, T.

Eschrich, T.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).

Février, S.

Filippov, V.

Gaponov, D. A.

L. Daniault, D. A. Gaponov, M. Hanna, S. Février, P. Roy, F. Druon, P. Georges, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers,” Appl. Phys. B 103(3), 615–621 (2011).

D. A. Gaponov, S. Février, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, “Management of the high-order mode content in large (40 microm) core photonic bandgap Bragg fiber laser,” Opt. Lett. 35(13), 2233–2235 (2010).
[PubMed]

Georges, P.

L. Daniault, D. A. Gaponov, M. Hanna, S. Février, P. Roy, F. Druon, P. Georges, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers,” Appl. Phys. B 103(3), 615–621 (2011).

Ghalmi, S.

Golant, K.

Golantc, K.

V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golantc, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).

Grimm, S.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).

Gumenyuk, R.

V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golantc, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).

Gur’yanov, A. N.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Guryanov, A.

Guryanov, A. N.

Hädrich, S.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

Hanna, M.

L. Daniault, D. A. Gaponov, M. Hanna, S. Février, P. Roy, F. Druon, P. Georges, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers,” Appl. Phys. B 103(3), 615–621 (2011).

Hong, C.

Ilbey, E.

Ilday, F. O.

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-Fiber Low-Noise High-Power Femtosecond Yb-Fiber Amplifier System Seeded by an All-Normal Dispersion Fiber Oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(1), 145–152 (2009).

Ilday, F. Ö.

Jäger, M.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).

Jansen, F.

Jauregui, C.

Jeong, Y.

Jin, D.

Jossent, M.

Jung, Y.

Kalaycioglu, H.

Kermène, V.

Kerttula, J.

Kim, A.

Kim, A. V.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

Kobelke, J.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).

Koptev, M. Yu.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

Kotov, L.

Kotov, L. V.

Kravtsov, K. S.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34(9), 843–848 (2004).

Kurkov, A. S.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Laptev, A. Yu.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

Lavoute, L.

Leich, M.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).

Levchenko, A. E.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

Lhermite, J.

Likhachev, M.

Likhachev, M. E.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, J. Lhermite, S. Février, and E. Cormier, “75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm,” Opt. Lett. 38(13), 2230–2232 (2013).
[PubMed]

L. Daniault, D. A. Gaponov, M. Hanna, S. Février, P. Roy, F. Druon, P. Georges, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers,” Appl. Phys. B 103(3), 615–621 (2011).

D. A. Gaponov, S. Février, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, “Management of the high-order mode content in large (40 microm) core photonic bandgap Bragg fiber laser,” Opt. Lett. 35(13), 2233–2235 (2010).
[PubMed]

Limpert, J.

Lipatov, D.

Lipatov, D. S.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

Liu, J.

Lorenz, M.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).

Mamyshev, P. V.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Medvedkov, O.

Medvedkov, O. I.

Mel’kumov, M. A.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34(9), 843–848 (2004).

Miroshnichenko, S. I.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Monberg, E.

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-Fiber Low-Noise High-Power Femtosecond Yb-Fiber Amplifier System Seeded by an All-Normal Dispersion Fiber Oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(1), 145–152 (2009).

Muravyev, S.

Muravyev, S. V.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

Nicholson, J. W.

Nikitov, S. A.

V. A. Bagan, S. A. Nikitov, Yu. K. Chamorovskii, and A. D. Shatrov, “Studying the properties of double-clad active cone optic fiber,” J. Commun. Technol. Electron. 55, 1154 (2010).

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

Noronen, T.

V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golantc, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).

Okhotnikov, O. G.

Oktem, B.

Ozgoren, K.

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-Fiber Low-Noise High-Power Femtosecond Yb-Fiber Amplifier System Seeded by an All-Normal Dispersion Fiber Oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(1), 145–152 (2009).

Paltani, P. P.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

Pavlov, I.

Payne, S.

Pessa, M.

Prokhorov, A. M.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Ramachandran, S.

Richardson, D. J.

Rothhardt, J.

Roy, P.

Rumyantsev, S. D.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Sahu, J. K.

Salganskii, M. Y.

L. Daniault, D. A. Gaponov, M. Hanna, S. Février, P. Roy, F. Druon, P. Georges, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers,” Appl. Phys. B 103(3), 615–621 (2011).

D. A. Gaponov, S. Février, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, “Management of the high-order mode content in large (40 microm) core photonic bandgap Bragg fiber laser,” Opt. Lett. 35(13), 2233–2235 (2010).
[PubMed]

Semenov, S. L.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Semenov, V. A.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Semjonov, S. L.

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

Senel, C.

Shatrov, A. D.

V. A. Bagan, S. A. Nikitov, Yu. K. Chamorovskii, and A. D. Shatrov, “Studying the properties of double-clad active cone optic fiber,” J. Commun. Technol. Electron. 55, 1154 (2010).

Shubin, A. V.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34(9), 843–848 (2004).

Stutzki, F.

Sun, R.

Sysoliatin, A. A.

V. A. Bogatyrjov and A. A. Sysoliatin, “Efficient method to produce fibers with outer diameter varying along the length,” Proc. SPIE 4204, 274 (2001).

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

Tan, F.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

Tünnermann, A.

Ustimchik, V.

Vorotynskii, A.

V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golantc, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).

Wang, P.

Wei, S.

Wisk, P.

Xu, J.

Yan, M. F.

Yashkov, M. V.

Zaytsev, K.

Zhu, Y.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).

Appl. Phys. B (1)

L. Daniault, D. A. Gaponov, M. Hanna, S. Février, P. Roy, F. Druon, P. Georges, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers,” Appl. Phys. B 103(3), 615–621 (2011).

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

IEEE J. Sel. Top. Quantum Electron. (1)

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-Fiber Low-Noise High-Power Femtosecond Yb-Fiber Amplifier System Seeded by an All-Normal Dispersion Fiber Oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(1), 145–152 (2009).

J. Commun. Technol. Electron. (1)

V. A. Bagan, S. A. Nikitov, Yu. K. Chamorovskii, and A. D. Shatrov, “Studying the properties of double-clad active cone optic fiber,” J. Commun. Technol. Electron. 55, 1154 (2010).

J. Lightwave Technol. (1)

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991).

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).

Opt. Express (6)

Opt. Lett. (9)

Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, “Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber,” Opt. Lett. 34(15), 2369–2371 (2009).
[PubMed]

L. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, D. Lipatov, A. Guryanov, K. Zaytsev, M. Jossent, and S. Février, “Millijoule pulse energy 100-nanosecond Er-doped fiber laser,” Opt. Lett. 40(7), 1189–1192 (2015).
[PubMed]

I. Pavlov, E. Dülgergil, E. Ilbey, and F. Ö. Ilday, “Diffraction-limited, 10-W, 5-ns, 100-kHz, all-fiber laser at 1.55 μm,” Opt. Lett. 39(9), 2695–2698 (2014).
[PubMed]

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, J. Lhermite, S. Février, and E. Cormier, “75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm,” Opt. Lett. 38(13), 2230–2232 (2013).
[PubMed]

P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, “Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser,” Opt. Lett. 31(2), 226–228 (2006).
[PubMed]

H. Kalaycioglu, B. Oktem, C. Şenel, P. P. Paltani, and F. Ö. Ilday, “Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier,” Opt. Lett. 35(7), 959–961 (2010).
[PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
[PubMed]

D. A. Gaponov, S. Février, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, “Management of the high-order mode content in large (40 microm) core photonic bandgap Bragg fiber laser,” Opt. Lett. 35(13), 2233–2235 (2010).
[PubMed]

A. Andrianov, E. Anashkina, S. Muravyev, and A. Kim, “All-fiber design of hybrid Er-doped laser/Yb-doped amplifier system for high-power ultrashort pulse generation,” Opt. Lett. 35(22), 3805–3807 (2010).
[PubMed]

Proc. SPIE (2)

V. A. Bogatyrjov and A. A. Sysoliatin, “Efficient method to produce fibers with outer diameter varying along the length,” Proc. SPIE 4204, 274 (2001).

V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golantc, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).

Quantum Electron. (2)

M. Yu. Koptev, E. A. Anashkina, K. K. Bobkov, M. E. Likhachev, A. E. Levchenko, S. S. Aleshkina, S. L. Semjonov, A. N. Denisov, M. M. Bubnov, D. S. Lipatov, A. Yu. Laptev, A. N. Gur’yanov, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses,” Quantum Electron. 45(5), 443 (2015).

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34(9), 843–848 (2004).

Other (5)

G. P. Agraval, Nonlinear Fiber Optics, P. F. Liao, P.L. Kelley, eds. (Academic Press, 1989).

C. Pierre, G. Guiraud, C. Vinçont1, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” CLEO/Europe - EQEC 2017: Conference Digest, paper CJ-9.3 (25–29 June 2017, Munich, Germany).

M. Likhachev, S. Aleshkina, A. Shubin, M. Bubnov, E. Dianov, D. Lipatov, and A. Guryanov, “Large-Mode-Area Highly Yb-doped Photodarkening-Free Al2O3-P2O5-SiO2-Based Fiber,” in CLEO/Europe-EQEC2011, paper CJ.P.24.

C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America,2007), paper CTuBB3.

W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Robust Single-Mode Propagation in Optical Fibers with Record Effective Areas,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CPDB10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Measured refractive index profile of a fiber with an outer diameter of 125 µm. (b) Image of the fabricated fiber’s cross section. (c) Small-signal absorption from the cladding, measured in the fabricated tapered fiber. (d) Typical dependence of the outer diameter (black curve), first cladding diameter (blue curve) and core diameter (red curve) on the length in the fabricated tapered fiber. Red closed squares depict the value of output core diameter for 1.05-, 1.5- and 2-meter-long tapered fibers.
Fig. 2
Fig. 2 (c) Caustic measurement for a 2-meter tapered fiber operating at 1064 nm with an average power of 10 W at the far-field (taken way above Rayleigh length), at the near-field (taken between the beam waist and the Rayleigh length) and at the waist beam intensity distributions. Insets were cropped from original images.
Fig. 3
Fig. 3 The calculated and experimentally obtained saturation curves for (a) the 1.05-meter-long tapered fiber and a comparable regular fiber and (b) the 2-meter-long tapered fiber and a comparable regular fiber. The pump wavelength was 976 nm and the power was 25 W. The tapered fiber had core/first-cladding diameters of 10/73 µm at the thin end and 46/338 µm at thick end for the 1.05-meter fiber and 62/450 µm for 2-meter fiber. The regular fibers in the simulations had core/first-cladding diameters of 46/338 µm for the 1.05-meter fiber and 62/450 µm for 2-meter fiber. Regular fibers in the experiments had core/first-cladding diameters of 30/220 µm for the 1.05-meter case and 56/410 for the 2-meter case.
Fig. 4
Fig. 4 (a) Calculated SRS threshold dependence on the length of the tapered fiber or the PCF (signal power = 10 mW, pump NA = 0.13). (b) Calculated signal distribution over the length of a 2-meter tapered fiber.
Fig. 5
Fig. 5 The experimental setup for the chirped pulse amplification. Yb:1 and Yb:2 are low power single-mode core-pumped amplifiers; AOM: acousto-optic modulator; L1, L2: aspheric lenses, f = 11 mm; DM1: dichroic mirror, HR@1064 nm, HT@976 nm; M1, M2: mirrors; Pump: multi-mode wavelength-stabilized pump diode 976@50 W; PD: integrating photodetector; OSA: optical spectrum analyzer; AC: optical autocorrelator; SHG FROG: second harmonic generation frequency-resolved optical gating set-up.
Fig. 6
Fig. 6 The dependence of the SRS threshold and the ASE on the input signal power for a 1.05-meter tapered fiber operating at 1030 nm (a) and for a 2-meter tapered fiber operating at 1064 nm (b).
Fig. 7
Fig. 7 (a) Spectra before and after the tapered fiber. (b) Autocorrelation functions for the pulse after the tapered fiber (dashed curve) and after the compressor (solid curve). The small peak to the right side of the ACF peak for the compressed pulses was due to a ghosting beam.
Fig. 8
Fig. 8 (a) The observed self-focusing and supercontinuum generation effects at the peak power of 8.4 MW. (b) Self-focusing and supercontinuum generation effects at their threshold (4.8 MW).
Fig. 9
Fig. 9 (a) Autocorrelation functions for compressed pulses at different repetition rates and input powers, labeled as repetition rate/input average power. (b) The FROG-retrieved pulse duration and FROG-trace for the same repetition rates and input powers, labeled with repetition rate/pulse duration.
Fig. 10
Fig. 10 The schematic and operating principle of the integrating photodetector. The data is obtained for 8 ps pulses at 1064 nm with a 1.03 MHz repetition rate and an average power of 3 mW combined with a CW signal at 1064 nm with an average power of 1.5 mW. PD is the photodetector, C is the capacitor.

Tables (2)

Tables Icon

Table 1 The tapered fiber-based amplifier pump-to-signal conversion efficiency

Tables Icon

Table 2 The measured SRS thresholds for different lengths of tapered fibers and different signal wavelengths

Metrics