Abstract

This article describes the development and field application of a portable broadband cavity enhanced spectrometer (BBCES) operating in the spectral range of 440-480 nm for sensitive, real-time, in situ measurement of ambient glyoxal (CHOCHO) and nitrogen dioxide (NO2). The instrument utilized a custom cage system in which the same SMA collimators were used in the transmitter and receiver units for coupling the LED light into the cavity and collecting the light transmitted through the cavity. This configuration realised a compact and stable optical system that could be easily aligned. The dimensions and mass of the optical layer were 676 × 74 × 86 mm3 and 4.5 kg, respectively. The cavity base length was about 42 cm. The mirror reflectivity at λ = 460 nm was determined to be 0.9998, giving an effective absorption pathlength of 2.26 km. The demonstrated measurement precisions (1σ) over 60 s were 28 and 50 pptv for CHOCHO and NO2 and the respective accuracies were 5% and 4%. By applying a Kalman adaptive filter to the retrieved concentrations, the measurement precisions of CHOCHO and NO2 were improved to 8 pptv and 40 pptv in 21 s.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of a portable cavity ring down spectroscopy instrument for simultaneous, in situ measurement of NO3 and N2O5

Zhiyan Li, Renzhi Hu, Pinhua Xie, Hao Chen, Shengyang Wu, Fengyang Wang, Yihui Wang, Liuyi Ling, Jianguo Liu, and Wenqing Liu
Opt. Express 26(10) A433-A449 (2018)

Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy

Hongming Yi, Tao Wu, Guishi Wang, Weixiong Zhao, Eric Fertein, Cécile Coeur, Xiaoming Gao, Weijun Zhang, and Weidong Chen
Opt. Express 24(10) A781-A790 (2016)

Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction

Ravi M. Varma, Dean S. Venables, Albert A. Ruth, Uwe Heitmann, Eric Schlosser, and Sophie Dixneuf
Appl. Opt. 48(4) B159-B171 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).
  2. T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze, “Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols,” J. Geophys. Res. 113(D15), D15303 (2008).
  3. R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, and M. J. Molina, “A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol,” Geophys. Res. Lett. 34(19), L19807 (2007).
  4. X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).
  5. R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).
  6. S. B. Henry, A. Kammrath, and F. N. Keutsch, “Quantification of gas-phase glyoxal and methylglyoxal via the Laser-Induced Phosphorescence of (methyl) GLyOxal Spectrometry (LIPGLOS) Method,” Atmos. Meas. Tech. 5(1), 181–192 (2012).
  7. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy. Principles and Applications (Springer-Verlag Berlin Heidelberg, 2008).
  8. R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32(8), L08806 (2005).
  9. R. Sinreich, R. Volkamer, F. Filsinger, U. Frieß, C. Kern, U. Platt, O. Sebastián, and T. Wagner, “MAX-DOAS detection of glyoxal during ICARTT 2004,” Atmos. Chem. Phys. 7(5), 1293–1303 (2007).
  10. F. Peng, T. Luo, Y. Yuang, L. Qiu, P. Xie, and W. Liu, “Elimination of atmospheric interfering absorption for the measurement of glyoxal by LP-DOAS,” Guangzi Xuebao 39(10), 1889–1895 (2010).
  11. S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, “The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases,” Atmos. Meas. Tech. 6(3), 719–739 (2013).
  12. X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner, and A. Wahner, “MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China,” Atmos. Chem. Phys. 13(4), 2133–2151 (2013).
  13. Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).
  14. F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).
  15. C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance, “Glyoxal retrieval from the Ozone Monitoring Instrument,” Atmos. Meas. Tech. 7(11), 3891–3907 (2014).
  16. S. Ball and R. Jones, “Broadband Cavity Ring-Down Spectroscopy,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G. Berden and R. Engeln, eds. (John Wiley & Sons, Ltd, 2009).
  17. A. A. Ruth, S. Dixneuf, and R. Raghunandan, “Broadband Cavity-Enhanced Absorption Spectroscopy with Incoherent Light,” in Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H. P. Loock, eds. (Springer-Verlag Berlin Heidelberg, 2014).
  18. R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).
  19. R. Thalman and R. Volkamer, “Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode,” Atmos. Meas. Tech. 3(6), 1797–1814 (2010).
  20. S. Coburn, I. Ortega, R. Thalman, B. Blomquist, C. W. Fairall, and R. Volkamer, “Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument,” Atmos. Meas. Tech. 7(10), 3579–3595 (2014).
  21. R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).
  22. K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).
  23. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).
  24. W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
    [PubMed]
  25. H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
    [PubMed]
  26. W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
    [PubMed]
  27. Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
    [PubMed]
  28. W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
  29. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
  30. R. E. Kalman, “A new approach to linear filtering and predication problems,” Trans. ASME, J. Basic Eng. 82(D), 35–45 (1960).
  31. W. Chen, H. Yi, T. Wu, W. Zhao, C. Lengignon, G. Wang, E. Fertein, C. Coeur, G. Wysocki, T. Wang, M. W. Sigrist, X. Gao, and W. Zhang, “Photonic sensing of reactive atmospheric species,” Encyclopedia of Analytical Chemistry, 1–60 (2017).
  32. D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
    [PubMed]
  33. P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” Opt. Eng. 33(9), 3093–3105 (1994).
  34. H. Riris, C. B. Carlisle, and R. E. Warren, “Kalman filtering of tunable diode laser spectrometer absorbance measurements,” Appl. Opt. 33(24), 5506–5508 (1994).
    [PubMed]
  35. T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, K. Rössner, and D. Brückner, “Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm,” Opt. Lett. 35(5), 634–636 (2010).
    [PubMed]
  36. T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
    [PubMed]
  37. T. Wu, W. Zhao, W. Chen, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).
  38. S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
    [PubMed]
  39. R. Thalman, K. J. Zarzana, M. A. Tolbert, and R. Volkamer, “Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air,” J. Quant. Spectrosc. Radiat. Transf. 147(5), 171–177 (2014).
  40. H. Naus and W. Ubachs, “Experimental verification of Rayleigh scattering cross sections,” Opt. Lett. 25(5), 347–349 (2000).
    [PubMed]
  41. M. Sneep and W. Ubachs, “Direct measurement of the Rayleigh scattering cross section in various gases,” J. Quant. Spectrosc. Radiat. Transf. 92(3), 293–310 (2005).
  42. R. Volkamer, P. Spietz, J. P. Burrows, and U. Platt, “High-resolution absorption cross-sections of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol. Chem. 172(1), 35–46 (2005).
  43. A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M. F. Mérienne, and A. Jenouvrier, “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: Temperature and pressure effects,” J. Geophys. Res. 107(D18), 4348 (2002).
  44. R. Thalman and R. Volkamer, “Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure,” Phys. Chem. Chem. Phys. 15(37), 15371–15381 (2013).
    [PubMed]
  45. R. Meller, W. Raber, J. N. Crowley, M. E. Jenkin, and G. K. Moortgat, “The UV-visible absorption spectrum of methylglyoxal,” J. Photochem. Photobiol. Chem. 62(2), 163–171 (1991).
  46. H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen, “The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest,” Earth Syst. Sci. Data 5(2), 365–373 (2013).
  47. C. S. Goldenstein, V. A. Millera, R. M. Spearrina, and C. L. Stranda, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transf. 200, 249–257 (2017).
  48. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
  49. J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.) 131(8), 916–922 (2006).
    [PubMed]
  50. O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).
  51. B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109(4), 581–591 (2012).
  52. T. Wu, W. Chen, E. Fertein, F. Cazier, D. Dewaele, and X. Gao, “Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air,” Appl. Phys. B 106(2), 501–509 (2012).
  53. T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

2017 (2)

2016 (3)

Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
[PubMed]

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
[PubMed]

2015 (3)

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

2014 (6)

S. Coburn, I. Ortega, R. Thalman, B. Blomquist, C. W. Fairall, and R. Volkamer, “Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument,” Atmos. Meas. Tech. 7(10), 3579–3595 (2014).

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance, “Glyoxal retrieval from the Ozone Monitoring Instrument,” Atmos. Meas. Tech. 7(11), 3891–3907 (2014).

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

R. Thalman, K. J. Zarzana, M. A. Tolbert, and R. Volkamer, “Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air,” J. Quant. Spectrosc. Radiat. Transf. 147(5), 171–177 (2014).

2013 (6)

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[PubMed]

S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, “The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases,” Atmos. Meas. Tech. 6(3), 719–739 (2013).

X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner, and A. Wahner, “MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China,” Atmos. Chem. Phys. 13(4), 2133–2151 (2013).

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

R. Thalman and R. Volkamer, “Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure,” Phys. Chem. Chem. Phys. 15(37), 15371–15381 (2013).
[PubMed]

H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen, “The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest,” Earth Syst. Sci. Data 5(2), 365–373 (2013).

2012 (4)

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109(4), 581–591 (2012).

T. Wu, W. Chen, E. Fertein, F. Cazier, D. Dewaele, and X. Gao, “Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air,” Appl. Phys. B 106(2), 501–509 (2012).

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

S. B. Henry, A. Kammrath, and F. N. Keutsch, “Quantification of gas-phase glyoxal and methylglyoxal via the Laser-Induced Phosphorescence of (methyl) GLyOxal Spectrometry (LIPGLOS) Method,” Atmos. Meas. Tech. 5(1), 181–192 (2012).

2011 (2)

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

2010 (3)

T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, K. Rössner, and D. Brückner, “Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm,” Opt. Lett. 35(5), 634–636 (2010).
[PubMed]

F. Peng, T. Luo, Y. Yuang, L. Qiu, P. Xie, and W. Liu, “Elimination of atmospheric interfering absorption for the measurement of glyoxal by LP-DOAS,” Guangzi Xuebao 39(10), 1889–1895 (2010).

R. Thalman and R. Volkamer, “Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode,” Atmos. Meas. Tech. 3(6), 1797–1814 (2010).

2009 (1)

T. Wu, W. Zhao, W. Chen, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).

2008 (3)

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[PubMed]

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).

T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze, “Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols,” J. Geophys. Res. 113(D15), D15303 (2008).

2007 (2)

R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, and M. J. Molina, “A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol,” Geophys. Res. Lett. 34(19), L19807 (2007).

R. Sinreich, R. Volkamer, F. Filsinger, U. Frieß, C. Kern, U. Platt, O. Sebastián, and T. Wagner, “MAX-DOAS detection of glyoxal during ICARTT 2004,” Atmos. Chem. Phys. 7(5), 1293–1303 (2007).

2006 (2)

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.) 131(8), 916–922 (2006).
[PubMed]

2005 (3)

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32(8), L08806 (2005).

M. Sneep and W. Ubachs, “Direct measurement of the Rayleigh scattering cross section in various gases,” J. Quant. Spectrosc. Radiat. Transf. 92(3), 293–310 (2005).

R. Volkamer, P. Spietz, J. P. Burrows, and U. Platt, “High-resolution absorption cross-sections of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol. Chem. 172(1), 35–46 (2005).

2003 (1)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).

2002 (2)

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M. F. Mérienne, and A. Jenouvrier, “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: Temperature and pressure effects,” J. Geophys. Res. 107(D18), 4348 (2002).

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[PubMed]

2000 (1)

1994 (2)

P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” Opt. Eng. 33(9), 3093–3105 (1994).

H. Riris, C. B. Carlisle, and R. E. Warren, “Kalman filtering of tunable diode laser spectrometer absorbance measurements,” Appl. Opt. 33(24), 5506–5508 (1994).
[PubMed]

1993 (1)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).

1991 (1)

R. Meller, W. Raber, J. N. Crowley, M. E. Jenkin, and G. K. Moortgat, “The UV-visible absorption spectrum of methylglyoxal,” J. Photochem. Photobiol. Chem. 62(2), 163–171 (1991).

1960 (1)

R. E. Kalman, “A new approach to linear filtering and predication problems,” Trans. ASME, J. Basic Eng. 82(D), 35–45 (1960).

Adams, T. J.

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

Babikov, Y.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Baeza-Romero, M. T.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

Baidar, S.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, “The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases,” Atmos. Meas. Tech. 6(3), 719–739 (2013).

Ball, S. M.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.) 131(8), 916–922 (2006).
[PubMed]

Barbe, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Bauguitte, S.

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

Beirle, S.

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

Bernath, P. F.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Birk, M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Bizzocchi, L.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Blomquist, B.

S. Coburn, I. Ortega, R. Thalman, B. Blomquist, C. W. Fairall, and R. Volkamer, “Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument,” Atmos. Meas. Tech. 7(10), 3579–3595 (2014).

Borrás, E.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Boudon, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Bouvier-Brown, N. C.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Brauers, T.

X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner, and A. Wahner, “MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China,” Atmos. Chem. Phys. 13(4), 2133–2151 (2013).

Brock, C. A.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

Brown, L. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Brown, S. S.

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).

Brückner, D.

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, K. Rössner, and D. Brückner, “Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm,” Opt. Lett. 35(5), 634–636 (2010).
[PubMed]

Brune, W. H.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32(8), L08806 (2005).

Burrows, J. P.

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze, “Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols,” J. Geophys. Res. 113(D15), D15303 (2008).

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

R. Volkamer, P. Spietz, J. P. Burrows, and U. Platt, “High-resolution absorption cross-sections of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol. Chem. 172(1), 35–46 (2005).

Campargue, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Campos, T. L.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

Carleer, M.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M. F. Mérienne, and A. Jenouvrier, “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: Temperature and pressure effects,” J. Geophys. Res. 107(D18), 4348 (2002).

Carlisle, C. B.

Cazier, F.

T. Wu, W. Chen, E. Fertein, F. Cazier, D. Dewaele, and X. Gao, “Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air,” Appl. Phys. B 106(2), 501–509 (2012).

Chan Miller, C.

C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance, “Glyoxal retrieval from the Ozone Monitoring Instrument,” Atmos. Meas. Tech. 7(11), 3891–3907 (2014).

Chance, K.

C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance, “Glyoxal retrieval from the Ozone Monitoring Instrument,” Atmos. Meas. Tech. 7(11), 3891–3907 (2014).

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Chang, C. C.

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

Chen, W.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[PubMed]

H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
[PubMed]

Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
[PubMed]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[PubMed]

T. Wu, W. Chen, E. Fertein, F. Cazier, D. Dewaele, and X. Gao, “Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air,” Appl. Phys. B 106(2), 501–509 (2012).

T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, K. Rössner, and D. Brückner, “Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm,” Opt. Lett. 35(5), 634–636 (2010).
[PubMed]

T. Wu, W. Zhao, W. Chen, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[PubMed]

Chen, Y.

Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
[PubMed]

Cheng, C.

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

Choi, W.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Chris Benner, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Claps, R.

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[PubMed]

Coburn, S.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

S. Coburn, I. Ortega, R. Thalman, B. Blomquist, C. W. Fairall, and R. Volkamer, “Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument,” Atmos. Meas. Tech. 7(10), 3579–3595 (2014).

S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, “The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases,” Atmos. Meas. Tech. 6(3), 719–739 (2013).

Coens, K. L.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Coeur, C.

Cohen, E. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Cohen, R. C.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Colin, R.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M. F. Mérienne, and A. Jenouvrier, “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: Temperature and pressure effects,” J. Geophys. Res. 107(D18), 4348 (2002).

Coudert, L. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Crowley, J. N.

R. Meller, W. Raber, J. N. Crowley, M. E. Jenkin, and G. K. Moortgat, “The UV-visible absorption spectrum of methylglyoxal,” J. Photochem. Photobiol. Chem. 62(2), 163–171 (1991).

Cubison, M. J.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Daniels, M. J. S.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

de Gouw, J.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Devi, V. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Dewaele, D.

T. Wu, W. Chen, E. Fertein, F. Cazier, D. Dewaele, and X. Gao, “Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air,” Appl. Phys. B 106(2), 501–509 (2012).

DiGangi, J. P.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Dix, B.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, “The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases,” Atmos. Meas. Tech. 6(3), 719–739 (2013).

Docherty, K. S.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Dong, M.

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[PubMed]

Drouin, B. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Dubé, W. P.

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

Edwards, P. M.

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

Eloranta, E. W.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

Erdesz, F.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

Fairall, C. W.

S. Coburn, I. Ortega, R. Thalman, B. Blomquist, C. W. Fairall, and R. Volkamer, “Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument,” Atmos. Meas. Tech. 7(10), 3579–3595 (2014).

Fally, S.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M. F. Mérienne, and A. Jenouvrier, “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: Temperature and pressure effects,” J. Geophys. Res. 107(D18), 4348 (2002).

Faloona, I. C.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Fang, B.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[PubMed]

Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
[PubMed]

Farmer, D. K.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Fayt, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Fertein, E.

H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
[PubMed]

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

T. Wu, W. Chen, E. Fertein, F. Cazier, D. Dewaele, and X. Gao, “Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air,” Appl. Phys. B 106(2), 501–509 (2012).

T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, K. Rössner, and D. Brückner, “Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm,” Opt. Lett. 35(5), 634–636 (2010).
[PubMed]

Fiedler, S. E.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).

Filsinger, F.

R. Sinreich, R. Volkamer, F. Filsinger, U. Frieß, C. Kern, U. Platt, O. Sebastián, and T. Wagner, “MAX-DOAS detection of glyoxal during ICARTT 2004,” Atmos. Chem. Phys. 7(5), 1293–1303 (2007).

Flaud, J. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Freshwater, R.

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

Frieß, U.

R. Sinreich, R. Volkamer, F. Filsinger, U. Frieß, C. Kern, U. Platt, O. Sebastián, and T. Wagner, “MAX-DOAS detection of glyoxal during ICARTT 2004,” Atmos. Chem. Phys. 7(5), 1293–1303 (2007).

Fu, T. M.

T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze, “Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols,” J. Geophys. Res. 113(D15), D15303 (2008).

Fuchs, H.

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).

Gai, Y.

Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
[PubMed]

Galloway, M. M.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Gamache, R. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Gao, X.

H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
[PubMed]

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[PubMed]

T. Wu, W. Chen, E. Fertein, F. Cazier, D. Dewaele, and X. Gao, “Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air,” Appl. Phys. B 106(2), 501–509 (2012).

T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, K. Rössner, and D. Brückner, “Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm,” Opt. Lett. 35(5), 634–636 (2010).
[PubMed]

T. Wu, W. Zhao, W. Chen, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).

Gherman, T.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[PubMed]

Gilman, J. B.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Goldenstein, C. S.

C. S. Goldenstein, V. A. Millera, R. M. Spearrina, and C. L. Stranda, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transf. 200, 249–257 (2017).

Goldstein, A. H.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Gonzalez Abad, G.

C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance, “Glyoxal retrieval from the Ozone Monitoring Instrument,” Atmos. Meas. Tech. 7(11), 3891–3907 (2014).

Goodall, I. C. A.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

Gordon, I. E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Gordon, T. D.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

Gu, X.

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[PubMed]

Harman, T. L.

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[PubMed]

Harrison, J. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Hartmann, J. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

He, X.

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

Henry, S. B.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

S. B. Henry, A. Kammrath, and F. N. Keutsch, “Quantification of gas-phase glyoxal and methylglyoxal via the Laser-Induced Phosphorescence of (methyl) GLyOxal Spectrometry (LIPGLOS) Method,” Atmos. Meas. Tech. 5(1), 181–192 (2012).

Henze, D. K.

T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze, “Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols,” J. Geophys. Res. 113(D15), D15303 (2008).

Hermans, C.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M. F. Mérienne, and A. Jenouvrier, “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: Temperature and pressure effects,” J. Geophys. Res. 107(D18), 4348 (2002).

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).

Hill, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Hodges, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Hofzumahaus, A.

X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner, and A. Wahner, “MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China,” Atmos. Chem. Phys. 13(4), 2133–2151 (2013).

Hottle, J. R.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Hu, C.

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[PubMed]

Huang, W.

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[PubMed]

Huang, Y.

Huisman, A. J.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Ironmonger, C.

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

Jacob, D. J.

C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance, “Glyoxal retrieval from the Ozone Monitoring Instrument,” Atmos. Meas. Tech. 7(11), 3891–3907 (2014).

T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze, “Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols,” J. Geophys. Res. 113(D15), D15303 (2008).

Jacquemart, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Jenkin, M. E.

R. Meller, W. Raber, J. N. Crowley, M. E. Jenkin, and G. K. Moortgat, “The UV-visible absorption spectrum of methylglyoxal,” J. Photochem. Photobiol. Chem. 62(2), 163–171 (1991).

Jenouvrier, A.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M. F. Mérienne, and A. Jenouvrier, “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: Temperature and pressure effects,” J. Geophys. Res. 107(D18), 4348 (2002).

Jimenez, J. L.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, and M. J. Molina, “A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol,” Geophys. Res. Lett. 34(19), L19807 (2007).

Jolly, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Jones, R. L.

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109(4), 581–591 (2012).

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.) 131(8), 916–922 (2006).
[PubMed]

Kalman, R. E.

R. E. Kalman, “A new approach to linear filtering and predication problems,” Trans. ASME, J. Basic Eng. 82(D), 35–45 (1960).

Kammrath, A.

S. B. Henry, A. Kammrath, and F. N. Keutsch, “Quantification of gas-phase glyoxal and methylglyoxal via the Laser-Induced Phosphorescence of (methyl) GLyOxal Spectrometry (LIPGLOS) Method,” Atmos. Meas. Tech. 5(1), 181–192 (2012).

Kanakidou, M.

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

Karl, T.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Keller-Rudek, H.

H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen, “The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest,” Earth Syst. Sci. Data 5(2), 365–373 (2013).

Kennedy, O. J.

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

Kern, C.

R. Sinreich, R. Volkamer, F. Filsinger, U. Frieß, C. Kern, U. Platt, O. Sebastián, and T. Wagner, “MAX-DOAS detection of glyoxal during ICARTT 2004,” Atmos. Chem. Phys. 7(5), 1293–1303 (2007).

Kerstel, E.

Keutsch, F. N.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

S. B. Henry, A. Kammrath, and F. N. Keutsch, “Quantification of gas-phase glyoxal and methylglyoxal via the Laser-Induced Phosphorescence of (methyl) GLyOxal Spectrometry (LIPGLOS) Method,” Atmos. Meas. Tech. 5(1), 181–192 (2012).

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Kim, S.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Koenig, T. K.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

Koeth, J.

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, K. Rössner, and D. Brückner, “Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm,” Opt. Lett. 35(5), 634–636 (2010).
[PubMed]

Kurosu, T.

C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance, “Glyoxal retrieval from the Ozone Monitoring Instrument,” Atmos. Meas. Tech. 7(11), 3891–3907 (2014).

Kuster, W. C.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

LaFranchi, B. W.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Lamouroux, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Langford, A. O.

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).

Langridge, J. M.

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.) 131(8), 916–922 (2006).
[PubMed]

Law, D. C.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

Le Roy, R. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Leleux, D. P.

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[PubMed]

Lewis, A. C.

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

Li, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Li, X.

X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner, and A. Wahner, “MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China,” Atmos. Chem. Phys. 13(4), 2133–2151 (2013).

Li, Y. P.

X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner, and A. Wahner, “MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China,” Atmos. Chem. Phys. 13(4), 2133–2151 (2013).

Lin, X.

Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
[PubMed]

Liu, D.

Liu, P.

Liu, S. C.

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

Liu, W.

F. Peng, T. Luo, Y. Yuang, L. Qiu, P. Xie, and W. Liu, “Elimination of atmospheric interfering absorption for the measurement of glyoxal by LP-DOAS,” Guangzi Xuebao 39(10), 1889–1895 (2010).

Liu, X.

C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance, “Glyoxal retrieval from the Ozone Monitoring Instrument,” Atmos. Meas. Tech. 7(11), 3891–3907 (2014).

Liu, Z.

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

Long, D. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Lu, K.

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner, and A. Wahner, “MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China,” Atmos. Chem. Phys. 13(4), 2133–2151 (2013).

Luo, T.

F. Peng, T. Luo, Y. Yuang, L. Qiu, P. Xie, and W. Liu, “Elimination of atmospheric interfering absorption for the measurement of glyoxal by LP-DOAS,” Guangzi Xuebao 39(10), 1889–1895 (2010).

Lyulin, O. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Mackie, C. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Mak, J.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Mao, J.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Masselin, P.

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

Massie, S. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

McLeod, M. W.

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

Meller, R.

R. Meller, W. Raber, J. N. Crowley, M. E. Jenkin, and G. K. Moortgat, “The UV-visible absorption spectrum of methylglyoxal,” J. Photochem. Photobiol. Chem. 62(2), 163–171 (1991).

Mérienne, M. F.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M. F. Mérienne, and A. Jenouvrier, “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: Temperature and pressure effects,” J. Geophys. Res. 107(D18), 4348 (2002).

Mikhailenko, S. N.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Millera, V. A.

C. S. Goldenstein, V. A. Millera, R. M. Spearrina, and C. L. Stranda, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transf. 200, 249–257 (2017).

Min, K. E.

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

Molina, L. T.

R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, and M. J. Molina, “A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol,” Geophys. Res. Lett. 34(19), L19807 (2007).

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32(8), L08806 (2005).

Molina, M. J.

R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, and M. J. Molina, “A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol,” Geophys. Res. Lett. 34(19), L19807 (2007).

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32(8), L08806 (2005).

Monks, P. S.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

Moortgat, G. K.

H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen, “The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest,” Earth Syst. Sci. Data 5(2), 365–373 (2013).

R. Meller, W. Raber, J. N. Crowley, M. E. Jenkin, and G. K. Moortgat, “The UV-visible absorption spectrum of methylglyoxal,” J. Photochem. Photobiol. Chem. 62(2), 163–171 (1991).

Morley, B.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

Mücke, R.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).

Muller, H. S. P.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Muñoz, A.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

Murphy, D. M.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

Myriokefalitakis, S.

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

Naumenko, O. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Naus, H.

Nightingale, R.

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

Nikitin, A. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Norris, O.

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

Oetjen, H.

S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, “The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases,” Atmos. Meas. Tech. 6(3), 719–739 (2013).

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

Orlando, J.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Orphal, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[PubMed]

Ortega, I.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

S. Coburn, I. Ortega, R. Thalman, B. Blomquist, C. W. Fairall, and R. Volkamer, “Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument,” Atmos. Meas. Tech. 7(10), 3579–3595 (2014).

S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, “The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases,” Atmos. Meas. Tech. 6(3), 719–739 (2013).

Ouyang, B.

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109(4), 581–591 (2012).

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

Pang, X.

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

Peng, F.

F. Peng, T. Luo, Y. Yuang, L. Qiu, P. Xie, and W. Liu, “Elimination of atmospheric interfering absorption for the measurement of glyoxal by LP-DOAS,” Guangzi Xuebao 39(10), 1889–1895 (2010).

Peppe, S.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

Perevalov, V. I.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Perrin, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Pierce, B. R.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

Platt, U.

R. Sinreich, R. Volkamer, F. Filsinger, U. Frieß, C. Kern, U. Platt, O. Sebastián, and T. Wagner, “MAX-DOAS detection of glyoxal during ICARTT 2004,” Atmos. Chem. Phys. 7(5), 1293–1303 (2007).

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

R. Volkamer, P. Spietz, J. P. Burrows, and U. Platt, “High-resolution absorption cross-sections of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol. Chem. 172(1), 35–46 (2005).

Polovtseva, E. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Qian, X.

Qiu, L.

F. Peng, T. Luo, Y. Yuang, L. Qiu, P. Xie, and W. Liu, “Elimination of atmospheric interfering absorption for the measurement of glyoxal by LP-DOAS,” Guangzi Xuebao 39(10), 1889–1895 (2010).

Raber, W.

R. Meller, W. Raber, J. N. Crowley, M. E. Jenkin, and G. K. Moortgat, “The UV-visible absorption spectrum of methylglyoxal,” J. Photochem. Photobiol. Chem. 62(2), 163–171 (1991).

Reeves, M.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

Richard, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Richardson, M. S.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

Richter, A.

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

Rickard, A. R.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

Riris, H.

Ródenas, M.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Ródenas García, M.

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

Rohrer, F.

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

Romashkin, P. A.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

Rössner, K.

Rothman, L. S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Ruth, A. A.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[PubMed]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).

Salcedo, D.

R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, and M. J. Molina, “A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol,” Geophys. Res. Lett. 34(19), L19807 (2007).

San Martini, F.

R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, and M. J. Molina, “A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol,” Geophys. Res. Lett. 34(19), L19807 (2007).

Sánchez, P.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

Sander, R.

H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen, “The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest,” Earth Syst. Sci. Data 5(2), 365–373 (2013).

Schandl, J.

P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” Opt. Eng. 33(9), 3093–3105 (1994).

Scheumann, B.

P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” Opt. Eng. 33(9), 3093–3105 (1994).

Sebastián, O.

R. Sinreich, R. Volkamer, F. Filsinger, U. Frieß, C. Kern, U. Platt, O. Sebastián, and T. Wagner, “MAX-DOAS detection of glyoxal during ICARTT 2004,” Atmos. Chem. Phys. 7(5), 1293–1303 (2007).

Seco, R.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Sendall, J.

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

Shao, M.

X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner, and A. Wahner, “MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China,” Atmos. Chem. Phys. 13(4), 2133–2151 (2013).

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

Shirley, T.

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32(8), L08806 (2005).

Sinreich, R.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, “The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases,” Atmos. Meas. Tech. 6(3), 719–739 (2013).

R. Sinreich, R. Volkamer, F. Filsinger, U. Frieß, C. Kern, U. Platt, O. Sebastián, and T. Wagner, “MAX-DOAS detection of glyoxal during ICARTT 2004,” Atmos. Chem. Phys. 7(5), 1293–1303 (2007).

Slemr, F.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).

Smith, M. A. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Sneep, M.

M. Sneep and W. Ubachs, “Direct measurement of the Rayleigh scattering cross section in various gases,” J. Quant. Spectrosc. Radiat. Transf. 92(3), 293–310 (2005).

Sörensen, R.

H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen, “The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest,” Earth Syst. Sci. Data 5(2), 365–373 (2013).

Spearrina, R. M.

C. S. Goldenstein, V. A. Millera, R. M. Spearrina, and C. L. Stranda, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transf. 200, 249–257 (2017).

Spietz, P.

R. Volkamer, P. Spietz, J. P. Burrows, and U. Platt, “High-resolution absorption cross-sections of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol. Chem. 172(1), 35–46 (2005).

Starikova, E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Stranda, C. L.

C. S. Goldenstein, V. A. Millera, R. M. Spearrina, and C. L. Stranda, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transf. 200, 249–257 (2017).

Stutz, J.

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

Su, L.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Sung, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Tashkun, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Tennyson, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Thalman, R.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

S. Coburn, I. Ortega, R. Thalman, B. Blomquist, C. W. Fairall, and R. Volkamer, “Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument,” Atmos. Meas. Tech. 7(10), 3579–3595 (2014).

R. Thalman, K. J. Zarzana, M. A. Tolbert, and R. Volkamer, “Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air,” J. Quant. Spectrosc. Radiat. Transf. 147(5), 171–177 (2014).

R. Thalman and R. Volkamer, “Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure,” Phys. Chem. Chem. Phys. 15(37), 15371–15381 (2013).
[PubMed]

R. Thalman and R. Volkamer, “Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode,” Atmos. Meas. Tech. 3(6), 1797–1814 (2010).

Thornton, J. A.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Tittel, F. K.

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[PubMed]

Tolbert, M. A.

R. Thalman, K. J. Zarzana, M. A. Tolbert, and R. Volkamer, “Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air,” J. Quant. Spectrosc. Radiat. Transf. 147(5), 171–177 (2014).

Toon, G. C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Tyndall, G.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Tyuterev, V. G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Ubachs, W.

M. Sneep and W. Ubachs, “Direct measurement of the Rayleigh scattering cross section in various gases,” J. Quant. Spectrosc. Radiat. Transf. 92(3), 293–310 (2005).

H. Naus and W. Ubachs, “Experimental verification of Rayleigh scattering cross sections,” Opt. Lett. 25(5), 347–349 (2000).
[PubMed]

Vandaele, A. C.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M. F. Mérienne, and A. Jenouvrier, “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: Temperature and pressure effects,” J. Geophys. Res. 107(D18), 4348 (2002).

Vaughan, S.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[PubMed]

Vázquez, M.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Venables, D. S.

Vera, T.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Volkamer, R.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

S. Coburn, I. Ortega, R. Thalman, B. Blomquist, C. W. Fairall, and R. Volkamer, “Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument,” Atmos. Meas. Tech. 7(10), 3579–3595 (2014).

R. Thalman, K. J. Zarzana, M. A. Tolbert, and R. Volkamer, “Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air,” J. Quant. Spectrosc. Radiat. Transf. 147(5), 171–177 (2014).

S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, “The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases,” Atmos. Meas. Tech. 6(3), 719–739 (2013).

R. Thalman and R. Volkamer, “Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure,” Phys. Chem. Chem. Phys. 15(37), 15371–15381 (2013).
[PubMed]

R. Thalman and R. Volkamer, “Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode,” Atmos. Meas. Tech. 3(6), 1797–1814 (2010).

R. Sinreich, R. Volkamer, F. Filsinger, U. Frieß, C. Kern, U. Platt, O. Sebastián, and T. Wagner, “MAX-DOAS detection of glyoxal during ICARTT 2004,” Atmos. Chem. Phys. 7(5), 1293–1303 (2007).

R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, and M. J. Molina, “A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol,” Geophys. Res. Lett. 34(19), L19807 (2007).

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32(8), L08806 (2005).

R. Volkamer, P. Spietz, J. P. Burrows, and U. Platt, “High-resolution absorption cross-sections of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol. Chem. 172(1), 35–46 (2005).

Vrekoussis, M.

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze, “Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols,” J. Geophys. Res. 113(D15), D15303 (2008).

Wagner, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Wagner, N. L.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

Wagner, T.

X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner, and A. Wahner, “MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China,” Atmos. Chem. Phys. 13(4), 2133–2151 (2013).

R. Sinreich, R. Volkamer, F. Filsinger, U. Frieß, C. Kern, U. Platt, O. Sebastián, and T. Wagner, “MAX-DOAS detection of glyoxal during ICARTT 2004,” Atmos. Chem. Phys. 7(5), 1293–1303 (2007).

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

Wahner, A.

X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner, and A. Wahner, “MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China,” Atmos. Chem. Phys. 13(4), 2133–2151 (2013).

Wang, G.

Wang, H.

C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance, “Glyoxal retrieval from the Ozone Monitoring Instrument,” Atmos. Meas. Tech. 7(11), 3891–3907 (2014).

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

Wang, S.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[PubMed]

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

Wang, Y.

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

Wang, Z.

Warren, R. E.

Washenfelder, R. A.

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).

Waxman, E.

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

Werle, P.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).

Werle, P. W.

P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” Opt. Eng. 33(9), 3093–3105 (1994).

Wittrock, F.

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze, “Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols,” J. Geophys. Res. 113(D15), D15303 (2008).

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

Wolfe, D.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

Wolfe, G. M.

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

Wu, T.

H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
[PubMed]

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

T. Wu, W. Chen, E. Fertein, F. Cazier, D. Dewaele, and X. Gao, “Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air,” Appl. Phys. B 106(2), 501–509 (2012).

T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, K. Rössner, and D. Brückner, “Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm,” Opt. Lett. 35(5), 634–636 (2010).
[PubMed]

T. Wu, W. Zhao, W. Chen, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).

Xie, P.

F. Peng, T. Luo, Y. Yuang, L. Qiu, P. Xie, and W. Liu, “Elimination of atmospheric interfering absorption for the measurement of glyoxal by LP-DOAS,” Guangzi Xuebao 39(10), 1889–1895 (2010).

Xu, X.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[PubMed]

Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
[PubMed]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).

Yang, C.

Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
[PubMed]

Yi, H.

Yuang, Y.

F. Peng, T. Luo, Y. Yuang, L. Qiu, P. Xie, and W. Liu, “Elimination of atmospheric interfering absorption for the measurement of glyoxal by LP-DOAS,” Guangzi Xuebao 39(10), 1889–1895 (2010).

Zarzana, K. J.

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

R. Thalman, K. J. Zarzana, M. A. Tolbert, and R. Volkamer, “Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air,” J. Quant. Spectrosc. Radiat. Transf. 147(5), 171–177 (2014).

Zhang, Q.

Zhang, W.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[PubMed]

H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
[PubMed]

Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
[PubMed]

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[PubMed]

Zhang, Y.

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

Zhao, W.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[PubMed]

H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
[PubMed]

Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
[PubMed]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[PubMed]

T. Wu, W. Zhao, W. Chen, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).

Zondlo, M. A.

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

Aerosol Sci. Technol. (1)

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 49(9), 717–726 (2015).

Anal. Chem. (1)

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[PubMed]

Analyst (Lond.) (2)

Y. Chen, C. Yang, W. Zhao, B. Fang, X. Xu, Y. Gai, X. Lin, W. Chen, and W. Zhang, “Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy,” Analyst (Lond.) 141(20), 5870–5878 (2016).
[PubMed]

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.) 131(8), 916–922 (2006).
[PubMed]

Appl. Opt. (2)

Appl. Phys. B (5)

T. Wu, W. Zhao, W. Chen, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[PubMed]

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109(4), 581–591 (2012).

T. Wu, W. Chen, E. Fertein, F. Cazier, D. Dewaele, and X. Gao, “Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air,” Appl. Phys. B 106(2), 501–509 (2012).

Atmos. Chem. Phys. (4)

A. J. Huisman, J. R. Hottle, M. M. Galloway, J. P. DiGangi, K. L. Coens, W. Choi, I. C. Faloona, J. B. Gilman, W. C. Kuster, J. de Gouw, N. C. Bouvier-Brown, A. H. Goldstein, B. W. LaFranchi, R. C. Cohen, G. M. Wolfe, J. A. Thornton, K. S. Docherty, D. K. Farmer, M. J. Cubison, J. L. Jimenez, J. Mao, W. H. Brune, and F. N. Keutsch, “Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007,” Atmos. Chem. Phys. 11(17), 8883–8897 (2011).

R. Sinreich, R. Volkamer, F. Filsinger, U. Frieß, C. Kern, U. Platt, O. Sebastián, and T. Wagner, “MAX-DOAS detection of glyoxal during ICARTT 2004,” Atmos. Chem. Phys. 7(5), 1293–1303 (2007).

X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner, and A. Wahner, “MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China,” Atmos. Chem. Phys. 13(4), 2133–2151 (2013).

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).

Atmos. Meas. Tech. (11)

R. Thalman and R. Volkamer, “Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode,” Atmos. Meas. Tech. 3(6), 1797–1814 (2010).

S. Coburn, I. Ortega, R. Thalman, B. Blomquist, C. W. Fairall, and R. Volkamer, “Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument,” Atmos. Meas. Tech. 7(10), 3579–3595 (2014).

R. Volkamer, S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, T. K. Koenig, B. Morley, I. Ortega, B. R. Pierce, M. Reeves, R. Sinreich, S. Wang, M. A. Zondlo, and P. A. Romashkin, “Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements,” Atmos. Meas. Tech. 8(5), 2121–2148 (2015).

K. E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, “A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor,” Atmos. Meas. Tech. 9(2), 423–440 (2016).

X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz, “A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques,” Atmos. Meas. Tech. 7(2), 373–389 (2014).

R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer, “Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions,” Atmos. Meas. Tech. 8(4), 1835–1862 (2015).

S. B. Henry, A. Kammrath, and F. N. Keutsch, “Quantification of gas-phase glyoxal and methylglyoxal via the Laser-Induced Phosphorescence of (methyl) GLyOxal Spectrometry (LIPGLOS) Method,” Atmos. Meas. Tech. 5(1), 181–192 (2012).

S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, “The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases,” Atmos. Meas. Tech. 6(3), 719–739 (2013).

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).

C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance, “Glyoxal retrieval from the Ozone Monitoring Instrument,” Atmos. Meas. Tech. 7(11), 3891–3907 (2014).

O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, “An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2,” Atmos. Meas. Tech. 4(9), 1759–1776 (2011).

Chem. Phys. Lett. (1)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).

Earth Syst. Sci. Data (1)

H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen, “The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest,” Earth Syst. Sci. Data 5(2), 365–373 (2013).

Geophys. Res. Lett. (4)

Z. Liu, Y. Wang, M. Vrekoussis, A. Richter, F. Wittrock, J. P. Burrows, M. Shao, C. C. Chang, S. C. Liu, H. Wang, and C. Cheng, “Exploring the missing source of glyoxal (CHOCHO) over China,” Geophys. Res. Lett. 39(10), L10812 (2012).

F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, “Simultaneous global observations of glyoxal and formaldehyde from space,” Geophys. Res. Lett. 33(16), L16804 (2006).

R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, and M. J. Molina, “A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol,” Geophys. Res. Lett. 34(19), L19807 (2007).

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32(8), L08806 (2005).

Guangzi Xuebao (1)

F. Peng, T. Luo, Y. Yuang, L. Qiu, P. Xie, and W. Liu, “Elimination of atmospheric interfering absorption for the measurement of glyoxal by LP-DOAS,” Guangzi Xuebao 39(10), 1889–1895 (2010).

J. Geophys. Res. (2)

T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze, “Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols,” J. Geophys. Res. 113(D15), D15303 (2008).

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M. F. Mérienne, and A. Jenouvrier, “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: Temperature and pressure effects,” J. Geophys. Res. 107(D18), 4348 (2002).

J. Photochem. Photobiol. Chem. (2)

R. Volkamer, P. Spietz, J. P. Burrows, and U. Platt, “High-resolution absorption cross-sections of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol. Chem. 172(1), 35–46 (2005).

R. Meller, W. Raber, J. N. Crowley, M. E. Jenkin, and G. K. Moortgat, “The UV-visible absorption spectrum of methylglyoxal,” J. Photochem. Photobiol. Chem. 62(2), 163–171 (1991).

J. Quant. Spectrosc. Radiat. Transf. (4)

M. Sneep and W. Ubachs, “Direct measurement of the Rayleigh scattering cross section in various gases,” J. Quant. Spectrosc. Radiat. Transf. 92(3), 293–310 (2005).

R. Thalman, K. J. Zarzana, M. A. Tolbert, and R. Volkamer, “Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air,” J. Quant. Spectrosc. Radiat. Transf. 147(5), 171–177 (2014).

C. S. Goldenstein, V. A. Millera, R. M. Spearrina, and C. L. Stranda, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transf. 200, 249–257 (2017).

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. N. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

Opt. Eng. (1)

P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” Opt. Eng. 33(9), 3093–3105 (1994).

Opt. Express (1)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (2)

R. Thalman and R. Volkamer, “Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure,” Phys. Chem. Chem. Phys. 15(37), 15371–15381 (2013).
[PubMed]

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[PubMed]

Sensors (Basel) (1)

T. Wu, W. Chen, E. Fertein, P. Masselin, X. Gao, W. Zhang, Y. Wang, J. Koeth, D. Brückner, and X. He, “Measurement of the D/H, 18O/16O, and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm,” Sensors (Basel) 14(5), 9027–9045 (2014).
[PubMed]

Trans. ASME, J. Basic Eng. (1)

R. E. Kalman, “A new approach to linear filtering and predication problems,” Trans. ASME, J. Basic Eng. 82(D), 35–45 (1960).

Other (4)

W. Chen, H. Yi, T. Wu, W. Zhao, C. Lengignon, G. Wang, E. Fertein, C. Coeur, G. Wysocki, T. Wang, M. W. Sigrist, X. Gao, and W. Zhang, “Photonic sensing of reactive atmospheric species,” Encyclopedia of Analytical Chemistry, 1–60 (2017).

S. Ball and R. Jones, “Broadband Cavity Ring-Down Spectroscopy,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G. Berden and R. Engeln, eds. (John Wiley & Sons, Ltd, 2009).

A. A. Ruth, S. Dixneuf, and R. Raghunandan, “Broadband Cavity-Enhanced Absorption Spectroscopy with Incoherent Light,” in Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H. P. Loock, eds. (Springer-Verlag Berlin Heidelberg, 2014).

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy. Principles and Applications (Springer-Verlag Berlin Heidelberg, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Layout of the custom cage based optical system. The coupling system for transmitter (LED output) and receiver units (CCD spectrometer) were interchangeable. (b) Side view of the optical system with dimensions in mm.
Fig. 2
Fig. 2 Plot of the cavity transmission spectrum, convolved reference cross sections of CHOCHO, NO2, O4 and CH3COOCHO, and absorption optical depth of 1% H2O with 1 cm absorption pathlength at atmospheric pressure.
Fig. 3
Fig. 3 Experimental absorption spectra of (a) NO2 and (b) CHOCHO measured by BBCES associated with the fit residual (c). Red lines in (a) and (b) are the fitted absorption spectra for 26.6 ppbv NO2 and 100 ppbv CHOCHO. The 1σ standard deviation of the fit residual was 5.9 × 10−9 cm−1 (denoted by the dotted lines in (c)) for a 3 s spectrum acquisition time.
Fig. 4
Fig. 4 Performance evaluation of the BBCES instrument for NO2 (a-c) and CHOCHO (d-f) measurement with zero air. Upper panel: mixing ratio time series of NO2 (a) and CHOCHO (d); middle panel: Allan deviation plots for NO2 (b) and CHOCHO (e) mixing ratios. The white noise (σAllan ∝ t-1/2) and drift (σAllan ∝ tα, α = 0.5 - 1) dominated regions are shown as the olive dotted lines. The optimum averaging time is defined as the time when the Allan variance shifts from the white noise dominated region to a drift dominated region; and lower panel: frequency distribution of the zero air mixing ratio for NO2 (c) and CHOCHO (f).
Fig. 5
Fig. 5 Example time series of the transmitted intensity for each measurement at 460 nm.
Fig. 6
Fig. 6 Simultaneous measurement of ambient NO2 (a) and CHOCHO (b) and the associated fit residual (c). The 1σ standard deviation of the fit residual was 7.5 × 10−10 cm−1 with 21 s total acquisition time for each spectrum.
Fig. 7
Fig. 7 Ambient air measurement of NO2 (a) and CHOCHO (b) with the new BBCES instrument. A Kalman filter was used to improve the detection precision (red lines). The insets show a typical 1-h expanded view of the data with ρ set to 100.

Tables (1)

Tables Icon

Table 1 Comparison of CHOCHO detection precisions of BBCES instruments and other methods.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α ( λ ) = 1 d ( I 0 ( λ ) I ( λ ) 1 ) ( 1 R ( λ ) ) = i n i σ i ( s i + t i λ ) + P ( λ )
R ( λ ) = 1 d ( ( I C O 2 ( λ ) / I N 2 ( λ ) ) σ R a y C O 2 ( λ ) σ R a y N 2 ( λ ) 1 I C O 2 ( λ ) / I N 2 ( λ ) )
L O D expected,3 σ = 3 σ Gaussian + | background |
δ ^ k = δ ^ k + K k ( z k δ ^ k )

Metrics