Abstract

The functionality of a pulse timing discriminator, which is commonly required in optical communication systems and artificial neuromorphic engineering, was implemented into chalcogenide phase-change materials. GeSbTe (GST) and GeCuTe (GCT), which exhibit opposite refractive index behavior in their respective crystalline and amorphous phases, were employed. A GST/GCT double layer enabled the order of arrival of two counter-propagating femtosecond pulses to be encoded as a difference in the degree of amorphization of the GCT layer, i.e., either a brighter or darker contrast of the amorphized area with respect to the crystalline background. Nonthermal ultrafast amorphization contributed to a picosecond time resolution in the discrimination of the pulse arrival order.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation

Quansheng Ren, Yaolin Zhang, Rui Wang, and Jianye Zhao
Opt. Express 23(19) 25247-25258 (2015)

Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials

Kotaro Makino, Junji Tominaga, and Muneaki Hase
Opt. Express 19(2) 1260-1270 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: shedding new light on habitat characterization and modeling,” Front. Ecol. Environ 6, 90–98 (2008).
  2. T. Von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15, 363–372 (2009).
  3. R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).
  4. V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, and P. Wambacq, “A 42 mW 200 fs-Jitter 60 GHz Sub-Sampling PLL in 40 nm CMOS,” IEEE J. Sol. St. Circ. 50, 2025–2036 (2015).
  5. S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through spike-timing-dependent synaptic plasticity,” Nat. Neurosci. 3(9), 919–926 (2000).
    [PubMed]
  6. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Lett. 10(4), 1297–1301 (2010).
    [PubMed]
  7. E. S. Awad, C. K. J. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).
  8. A. J. Lowery and L. Zhuang, “Photonic integrated circuit as a picosecond pulse timing discriminator,” Opt. Express 24(8), 8776–8781 (2016).
    [PubMed]
  9. M. P. Fok, Y. Tian, D. Rosenbluth, and P. R. Prucnal, “Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-dependent plasticity,” Opt. Lett. 38(4), 419–421 (2013).
    [PubMed]
  10. R. Toole and M. P. Fok, “Photonic implementation of a neuronal algorithm applicable towards angle of arrival detection and localization,” Opt. Express 23(12), 16133–16141 (2015).
    [PubMed]
  11. Q. Ren, Y. Zhang, R. Wang, and J. Zhao, “Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation,” Opt. Express 23(19), 25247–25258 (2015).
    [PubMed]
  12. R. Damani and J. A. Salehi, “Almost Zero-Jitter Optical Clock Recovery Using All-Optical Kerr Shutter Switching Techniques,” J. Lightwave Technol. 33, 1737–1747 (2015).
  13. D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: materials, devices and applications,” Nanotechnology 24(38), 382001 (2013).
    [PubMed]
  14. M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and H. Kohlstedt, “An Electronic Version of Pavlov’s Dog,” Adv. Funct. Mater. 22, 2744–2749 (2012).
  15. B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, and C. Soci, “Amorphous Metal-Sulphide Microfi bers Enable Photonic Synapses for Brain-Like Computing,” Adv. Opt. Mater. 3, 635–641 (2015).
  16. S. D. Ha and S. Ramanathan, “Adaptive oxide electronics: A review,” J. Appl. Phys. 110, 071101 (2011).
  17. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
  18. K. Kieu, K. Narumi, and M. Mansuripur, “Investigation of crystallization and amorphization dynamics of phase-change thin films by subnanosecond laser pulses,” Appl. Opt. 45(30), 7826–7831 (2006).
    [PubMed]
  19. M. Konishi, H. Santo, Y. Hongo, K. Tajima, M. Hosoi, and T. Saiki, “Ultrafast amorphization in Ge10Sb2Te13 thin film induced by single femtosecond laser pulse,” Appl. Opt. 49(18), 3470–3473 (2010).
    [PubMed]
  20. J. Takeda, W. Oba, Y. Minami, T. Saiki, and I. Katayama, “Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy,” Appl. Phys. Lett. 104, 261903 (2014).
  21. L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
    [PubMed]
  22. M. Hase, P. Fons, K. Mitrofanov, A. V. Kolobov, and J. Tominaga, “Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons,” Nat. Commun. 6, 8367 (2015).
    [PubMed]
  23. E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
    [PubMed]
  24. M. Naruse, F. Peper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, and M. Ohtsu, “Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions,” ACM J. Emerg. Technol. Comput. Syst. 8, 4 (2012).
  25. Y. Saito, Y. Sutou, and J. Koike, “Optical contrast and laser-induced phase transition in GeCu2Te3 thin film,” Appl. Phys. Lett. 102, 051910 (2013).
  26. Y. Saito, Y. Sutou, and J. Koike, “Phase Change Characteristics in GeTe−CuTe Pseudobinary Alloy Films,” J. Phys. Chem. C 118, 26973–26980 (2014).

2016 (2)

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

A. J. Lowery and L. Zhuang, “Photonic integrated circuit as a picosecond pulse timing discriminator,” Opt. Express 24(8), 8776–8781 (2016).
[PubMed]

2015 (7)

R. Damani and J. A. Salehi, “Almost Zero-Jitter Optical Clock Recovery Using All-Optical Kerr Shutter Switching Techniques,” J. Lightwave Technol. 33, 1737–1747 (2015).

R. Toole and M. P. Fok, “Photonic implementation of a neuronal algorithm applicable towards angle of arrival detection and localization,” Opt. Express 23(12), 16133–16141 (2015).
[PubMed]

Q. Ren, Y. Zhang, R. Wang, and J. Zhao, “Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation,” Opt. Express 23(19), 25247–25258 (2015).
[PubMed]

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
[PubMed]

M. Hase, P. Fons, K. Mitrofanov, A. V. Kolobov, and J. Tominaga, “Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons,” Nat. Commun. 6, 8367 (2015).
[PubMed]

B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, and C. Soci, “Amorphous Metal-Sulphide Microfi bers Enable Photonic Synapses for Brain-Like Computing,” Adv. Opt. Mater. 3, 635–641 (2015).

V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, and P. Wambacq, “A 42 mW 200 fs-Jitter 60 GHz Sub-Sampling PLL in 40 nm CMOS,” IEEE J. Sol. St. Circ. 50, 2025–2036 (2015).

2014 (2)

J. Takeda, W. Oba, Y. Minami, T. Saiki, and I. Katayama, “Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy,” Appl. Phys. Lett. 104, 261903 (2014).

Y. Saito, Y. Sutou, and J. Koike, “Phase Change Characteristics in GeTe−CuTe Pseudobinary Alloy Films,” J. Phys. Chem. C 118, 26973–26980 (2014).

2013 (3)

Y. Saito, Y. Sutou, and J. Koike, “Optical contrast and laser-induced phase transition in GeCu2Te3 thin film,” Appl. Phys. Lett. 102, 051910 (2013).

M. P. Fok, Y. Tian, D. Rosenbluth, and P. R. Prucnal, “Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-dependent plasticity,” Opt. Lett. 38(4), 419–421 (2013).
[PubMed]

D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: materials, devices and applications,” Nanotechnology 24(38), 382001 (2013).
[PubMed]

2012 (2)

M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and H. Kohlstedt, “An Electronic Version of Pavlov’s Dog,” Adv. Funct. Mater. 22, 2744–2749 (2012).

M. Naruse, F. Peper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, and M. Ohtsu, “Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions,” ACM J. Emerg. Technol. Comput. Syst. 8, 4 (2012).

2011 (1)

S. D. Ha and S. Ramanathan, “Adaptive oxide electronics: A review,” J. Appl. Phys. 110, 071101 (2011).

2010 (2)

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Lett. 10(4), 1297–1301 (2010).
[PubMed]

M. Konishi, H. Santo, Y. Hongo, K. Tajima, M. Hosoi, and T. Saiki, “Ultrafast amorphization in Ge10Sb2Te13 thin film induced by single femtosecond laser pulse,” Appl. Opt. 49(18), 3470–3473 (2010).
[PubMed]

2009 (1)

T. Von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15, 363–372 (2009).

2008 (1)

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: shedding new light on habitat characterization and modeling,” Front. Ecol. Environ 6, 90–98 (2008).

2006 (1)

2002 (1)

E. S. Awad, C. K. J. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).

2001 (1)

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).

2000 (1)

S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through spike-timing-dependent synaptic plasticity,” Nat. Neurosci. 3(9), 919–926 (2000).
[PubMed]

1987 (1)

R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).

Abbott, L. F.

S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through spike-timing-dependent synaptic plasticity,” Nat. Neurosci. 3(9), 919–926 (2000).
[PubMed]

Akahane, K.

M. Naruse, F. Peper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, and M. Ohtsu, “Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions,” ACM J. Emerg. Technol. Comput. Syst. 8, 4 (2012).

Alferness, R. C.

R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).

Awad, E. S.

E. S. Awad, C. K. J. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).

Bartsch, T.

M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and H. Kohlstedt, “An Electronic Version of Pavlov’s Dog,” Adv. Funct. Mater. 22, 2744–2749 (2012).

Bastock, P.

B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, and C. Soci, “Amorphous Metal-Sulphide Microfi bers Enable Photonic Synapses for Brain-Like Computing,” Adv. Opt. Mater. 3, 635–641 (2015).

Bertoni, R.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
[PubMed]

Bhadviya, B. B.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Lett. 10(4), 1297–1301 (2010).
[PubMed]

Buhl, L. L.

R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).

Chang, T.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Lett. 10(4), 1297–1301 (2010).
[PubMed]

Chen, M. W.

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Cho, P. S.

E. S. Awad, C. K. J. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).

Clawges, R. M.

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: shedding new light on habitat characterization and modeling,” Front. Ecol. Environ 6, 90–98 (2008).

Craig, C.

B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, and C. Soci, “Amorphous Metal-Sulphide Microfi bers Enable Photonic Synapses for Brain-Like Computing,” Adv. Opt. Mater. 3, 635–641 (2015).

Damani, R.

Ebong, I.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Lett. 10(4), 1297–1301 (2010).
[PubMed]

Eisenstein, G.

R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).

Ernstorfer, R.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
[PubMed]

Fok, M. P.

Fons, P.

M. Hase, P. Fons, K. Mitrofanov, A. V. Kolobov, and J. Tominaga, “Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons,” Nat. Commun. 6, 8367 (2015).
[PubMed]

Friedrich, I.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).

Gholipour, B.

B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, and C. Soci, “Amorphous Metal-Sulphide Microfi bers Enable Photonic Synapses for Brain-Like Computing,” Adv. Opt. Mater. 3, 635–641 (2015).

Goldhar, J.

E. S. Awad, C. K. J. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).

Gould, W. A.

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: shedding new light on habitat characterization and modeling,” Front. Ecol. Environ 6, 90–98 (2008).

Guan, P. F.

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Ha, S. D.

S. D. Ha and S. Ramanathan, “Adaptive oxide electronics: A review,” J. Appl. Phys. 110, 071101 (2011).

Hase, M.

M. Hase, P. Fons, K. Mitrofanov, A. V. Kolobov, and J. Tominaga, “Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons,” Nat. Commun. 6, 8367 (2015).
[PubMed]

Hewak, D.

B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, and C. Soci, “Amorphous Metal-Sulphide Microfi bers Enable Photonic Synapses for Brain-Like Computing,” Adv. Opt. Mater. 3, 635–641 (2015).

Hirata, A.

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Hongo, Y.

Honkanen, S.

T. Von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15, 363–372 (2009).

Hosoi, M.

Ichitsubo, T.

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Ignatov, M.

M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and H. Kohlstedt, “An Electronic Version of Pavlov’s Dog,” Adv. Funct. Mater. 22, 2744–2749 (2012).

Jo, S. H.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Lett. 10(4), 1297–1301 (2010).
[PubMed]

Kasper, B. L.

R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).

Katayama, I.

J. Takeda, W. Oba, Y. Minami, T. Saiki, and I. Katayama, “Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy,” Appl. Phys. Lett. 104, 261903 (2014).

Kawaguchi, T.

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Kawazoe, T.

M. Naruse, F. Peper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, and M. Ohtsu, “Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions,” ACM J. Emerg. Technol. Comput. Syst. 8, 4 (2012).

Khan, K.

B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, and C. Soci, “Amorphous Metal-Sulphide Microfi bers Enable Photonic Synapses for Brain-Like Computing,” Adv. Opt. Mater. 3, 635–641 (2015).

Kieu, K.

Kohlstedt, H.

M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and H. Kohlstedt, “An Electronic Version of Pavlov’s Dog,” Adv. Funct. Mater. 22, 2744–2749 (2012).

Koike, J.

Y. Saito, Y. Sutou, and J. Koike, “Phase Change Characteristics in GeTe−CuTe Pseudobinary Alloy Films,” J. Phys. Chem. C 118, 26973–26980 (2014).

Y. Saito, Y. Sutou, and J. Koike, “Optical contrast and laser-induced phase transition in GeCu2Te3 thin film,” Appl. Phys. Lett. 102, 051910 (2013).

Kolobov, A. V.

M. Hase, P. Fons, K. Mitrofanov, A. V. Kolobov, and J. Tominaga, “Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons,” Nat. Commun. 6, 8367 (2015).
[PubMed]

Konishi, M.

Koren, U.

R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).

Korotky, S. K.

R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).

Kuijk, M.

V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, and P. Wambacq, “A 42 mW 200 fs-Jitter 60 GHz Sub-Sampling PLL in 40 nm CMOS,” IEEE J. Sol. St. Circ. 50, 2025–2036 (2015).

Küppers, F.

T. Von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15, 363–372 (2009).

Kuzum, D.

D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: materials, devices and applications,” Nanotechnology 24(38), 382001 (2013).
[PubMed]

Lowery, A. J.

Lu, W.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Lett. 10(4), 1297–1301 (2010).
[PubMed]

Ludvigsen, H.

T. Von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15, 363–372 (2009).

Mansuripur, M.

Martinuzzi, S.

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: shedding new light on habitat characterization and modeling,” Front. Ecol. Environ 6, 90–98 (2008).

Matsubara, E.

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Matsunaga, T.

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Mazumder, P.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Lett. 10(4), 1297–1301 (2010).
[PubMed]

Meuffels, P.

M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and H. Kohlstedt, “An Electronic Version of Pavlov’s Dog,” Adv. Funct. Mater. 22, 2744–2749 (2012).

Miller, K. D.

S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through spike-timing-dependent synaptic plasticity,” Nat. Neurosci. 3(9), 919–926 (2000).
[PubMed]

Miller, T. A.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
[PubMed]

Minami, Y.

J. Takeda, W. Oba, Y. Minami, T. Saiki, and I. Katayama, “Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy,” Appl. Phys. Lett. 104, 261903 (2014).

Mitrofanov, K.

M. Hase, P. Fons, K. Mitrofanov, A. V. Kolobov, and J. Tominaga, “Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons,” Nat. Commun. 6, 8367 (2015).
[PubMed]

Moulton, N.

E. S. Awad, C. K. J. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).

Narumi, K.

Naruse, M.

M. Naruse, F. Peper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, and M. Ohtsu, “Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions,” ACM J. Emerg. Technol. Comput. Syst. 8, 4 (2012).

Oba, W.

J. Takeda, W. Oba, Y. Minami, T. Saiki, and I. Katayama, “Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy,” Appl. Phys. Lett. 104, 261903 (2014).

Ohtsu, M.

M. Naruse, F. Peper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, and M. Ohtsu, “Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions,” ACM J. Emerg. Technol. Comput. Syst. 8, 4 (2012).

Okada, S.

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Osmond, J.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
[PubMed]

Parvais, B.

V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, and P. Wambacq, “A 42 mW 200 fs-Jitter 60 GHz Sub-Sampling PLL in 40 nm CMOS,” IEEE J. Sol. St. Circ. 50, 2025–2036 (2015).

Patelczyk, T.

M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and H. Kohlstedt, “An Electronic Version of Pavlov’s Dog,” Adv. Funct. Mater. 22, 2744–2749 (2012).

Peper, F.

M. Naruse, F. Peper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, and M. Ohtsu, “Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions,” ACM J. Emerg. Technol. Comput. Syst. 8, 4 (2012).

Prucnal, P. R.

Pruneri, V.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
[PubMed]

Raczkowski, K.

V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, and P. Wambacq, “A 42 mW 200 fs-Jitter 60 GHz Sub-Sampling PLL in 40 nm CMOS,” IEEE J. Sol. St. Circ. 50, 2025–2036 (2015).

Ramanathan, S.

S. D. Ha and S. Ramanathan, “Adaptive oxide electronics: A review,” J. Appl. Phys. 110, 071101 (2011).

Raybon, G.

R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).

Ren, Q.

Richardson, C. K. J.

E. S. Awad, C. K. J. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).

Rosenbluth, D.

Rudé, M.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
[PubMed]

Saiki, T.

J. Takeda, W. Oba, Y. Minami, T. Saiki, and I. Katayama, “Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy,” Appl. Phys. Lett. 104, 261903 (2014).

M. Konishi, H. Santo, Y. Hongo, K. Tajima, M. Hosoi, and T. Saiki, “Ultrafast amorphization in Ge10Sb2Te13 thin film induced by single femtosecond laser pulse,” Appl. Opt. 49(18), 3470–3473 (2010).
[PubMed]

Saito, Y.

Y. Saito, Y. Sutou, and J. Koike, “Phase Change Characteristics in GeTe−CuTe Pseudobinary Alloy Films,” J. Phys. Chem. C 118, 26973–26980 (2014).

Y. Saito, Y. Sutou, and J. Koike, “Optical contrast and laser-induced phase transition in GeCu2Te3 thin film,” Appl. Phys. Lett. 102, 051910 (2013).

Salehi, J. A.

Santo, H.

Shi, Q.

V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, and P. Wambacq, “A 42 mW 200 fs-Jitter 60 GHz Sub-Sampling PLL in 40 nm CMOS,” IEEE J. Sol. St. Circ. 50, 2025–2036 (2015).

Simpson, R. E.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
[PubMed]

Soci, C.

B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, and C. Soci, “Amorphous Metal-Sulphide Microfi bers Enable Photonic Synapses for Brain-Like Computing,” Adv. Opt. Mater. 3, 635–641 (2015).

Song, S.

S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through spike-timing-dependent synaptic plasticity,” Nat. Neurosci. 3(9), 919–926 (2000).
[PubMed]

Soni, R.

M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and H. Kohlstedt, “An Electronic Version of Pavlov’s Dog,” Adv. Funct. Mater. 22, 2744–2749 (2012).

Sutou, Y.

Y. Saito, Y. Sutou, and J. Koike, “Phase Change Characteristics in GeTe−CuTe Pseudobinary Alloy Films,” J. Phys. Chem. C 118, 26973–26980 (2014).

Y. Saito, Y. Sutou, and J. Koike, “Optical contrast and laser-induced phase transition in GeCu2Te3 thin film,” Appl. Phys. Lett. 102, 051910 (2013).

Szortyka, V.

V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, and P. Wambacq, “A 42 mW 200 fs-Jitter 60 GHz Sub-Sampling PLL in 40 nm CMOS,” IEEE J. Sol. St. Circ. 50, 2025–2036 (2015).

Tajima, K.

Takeda, J.

J. Takeda, W. Oba, Y. Minami, T. Saiki, and I. Katayama, “Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy,” Appl. Phys. Lett. 104, 261903 (2014).

Tanimura, K.

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Tate, N.

M. Naruse, F. Peper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, and M. Ohtsu, “Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions,” ACM J. Emerg. Technol. Comput. Syst. 8, 4 (2012).

Tervonen, A.

T. Von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15, 363–372 (2009).

Tian, Y.

Tokuda, K.

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Tominaga, J.

M. Hase, P. Fons, K. Mitrofanov, A. V. Kolobov, and J. Tominaga, “Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons,” Nat. Commun. 6, 8367 (2015).
[PubMed]

Toole, R.

Tucker, R. S.

R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).

Veselka, J. J.

R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).

Vierling, K. T.

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: shedding new light on habitat characterization and modeling,” Front. Ecol. Environ 6, 90–98 (2008).

Vierling, L. A.

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: shedding new light on habitat characterization and modeling,” Front. Ecol. Environ 6, 90–98 (2008).

Von Lerber, T.

T. Von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15, 363–372 (2009).

Waldecker, L.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
[PubMed]

Wall, S.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
[PubMed]

Wambacq, P.

V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, and P. Wambacq, “A 42 mW 200 fs-Jitter 60 GHz Sub-Sampling PLL in 40 nm CMOS,” IEEE J. Sol. St. Circ. 50, 2025–2036 (2015).

Wang, R.

Weidenhof, V.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).

Wong, H.-S. P.

D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: materials, devices and applications,” Nanotechnology 24(38), 382001 (2013).
[PubMed]

Wuttig, M.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).

Yamada, N.

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Yamamoto, N.

M. Naruse, F. Peper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, and M. Ohtsu, “Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions,” ACM J. Emerg. Technol. Comput. Syst. 8, 4 (2012).

Yu, S.

D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: materials, devices and applications,” Nanotechnology 24(38), 382001 (2013).
[PubMed]

Zhang, Y.

Zhao, J.

Zhuang, L.

Ziegler, M.

M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and H. Kohlstedt, “An Electronic Version of Pavlov’s Dog,” Adv. Funct. Mater. 22, 2744–2749 (2012).

Ziegler, S.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).

ACM J. Emerg. Technol. Comput. Syst. (1)

M. Naruse, F. Peper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, and M. Ohtsu, “Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions,” ACM J. Emerg. Technol. Comput. Syst. 8, 4 (2012).

Adv. Funct. Mater. (1)

M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and H. Kohlstedt, “An Electronic Version of Pavlov’s Dog,” Adv. Funct. Mater. 22, 2744–2749 (2012).

Adv. Opt. Mater. (1)

B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, and C. Soci, “Amorphous Metal-Sulphide Microfi bers Enable Photonic Synapses for Brain-Like Computing,” Adv. Opt. Mater. 3, 635–641 (2015).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. Takeda, W. Oba, Y. Minami, T. Saiki, and I. Katayama, “Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy,” Appl. Phys. Lett. 104, 261903 (2014).

Y. Saito, Y. Sutou, and J. Koike, “Optical contrast and laser-induced phase transition in GeCu2Te3 thin film,” Appl. Phys. Lett. 102, 051910 (2013).

Electron. Lett. (1)

R. S. Tucker, G. Eisenstein, S. K. Korotky, U. Koren, G. Raybon, J. J. Veselka, L. L. Buhl, B. L. Kasper, and R. C. Alferness, “Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system,” Electron. Lett. 23, 208–209 (1987).

Front. Ecol. Environ (1)

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: shedding new light on habitat characterization and modeling,” Front. Ecol. Environ 6, 90–98 (2008).

IEEE J. Sol. St. Circ. (1)

V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, and P. Wambacq, “A 42 mW 200 fs-Jitter 60 GHz Sub-Sampling PLL in 40 nm CMOS,” IEEE J. Sol. St. Circ. 50, 2025–2036 (2015).

IEEE Photonics Technol. Lett. (1)

E. S. Awad, C. K. J. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).

J. Appl. Phys. (2)

S. D. Ha and S. Ramanathan, “Adaptive oxide electronics: A review,” J. Appl. Phys. 110, 071101 (2011).

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).

J. Lightwave Technol. (1)

J. Phys. Chem. C (1)

Y. Saito, Y. Sutou, and J. Koike, “Phase Change Characteristics in GeTe−CuTe Pseudobinary Alloy Films,” J. Phys. Chem. C 118, 26973–26980 (2014).

Nano Lett. (1)

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Lett. 10(4), 1297–1301 (2010).
[PubMed]

Nanotechnology (1)

D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: materials, devices and applications,” Nanotechnology 24(38), 382001 (2013).
[PubMed]

Nat. Commun. (1)

M. Hase, P. Fons, K. Mitrofanov, A. V. Kolobov, and J. Tominaga, “Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons,” Nat. Commun. 6, 8367 (2015).
[PubMed]

Nat. Mater. (1)

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14(10), 991–995 (2015).
[PubMed]

Nat. Neurosci. (1)

S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through spike-timing-dependent synaptic plasticity,” Nat. Neurosci. 3(9), 919–926 (2000).
[PubMed]

Opt. Express (3)

Opt. Fiber Technol. (1)

T. Von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15, 363–372 (2009).

Opt. Lett. (1)

Phys. Rev. Lett. (1)

E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, “Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials,” Phys. Rev. Lett. 117(13), 135501 (2016).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Principle for encoding the arrival order of two counter-propagating pulses using a GST/GCT double layer structure.
Fig. 2
Fig. 2 Schematic diagrams of single-layered (a) GST and (b) GCT samples. Scanning laser micrographs of amorphous marks created in (c) GST and (d) GCT layers by single femtosecond pulse excitation.
Fig. 3
Fig. 3 Calculation of the electric field intensity distribution in the GST/GCT double layer structure for a pulse incident from the (a) GCT side and (c) GST side. Distribution of electric field intensity along the vertical direction z, for a pulse incident from the (b) GCT side and (d) GST side. Amo: amorphous, Cry: crystalline.
Fig. 4
Fig. 4 (a) Schematic of sample structure. (b) CLSM observation of amorphous marks from the GST side. Amorphous marks were created by two counter-propagating femtosecond pulses with time delays ranging from Δt = −10 ps to Δt = + 10 ps. Δt is defined as a positive delay when the pulse was incident from the GST side first. The fluences of pulses incident from the GST and GCT sides were 34 and 46 mJ/cm2, respectively. (c) Same as in (b) except the observation was performed from the GCT side and the fluence of both pulses was 38 mJ/cm2. The contrast of the images in (b) and (c) is enhanced to clearly show the features of interest.

Metrics