Abstract

We demonstrate surface enhanced infrared absorption spectroscopy using 1-dimensional highly doped semiconductors based on Si-doped InAsSb plasmonic nano-antennas. Engineering the plasmonic array to support the localized surface plasmon resonance aligned with the molecular vibrational absorption mode of interest involves finely setting the doping level and nano-antenna width. Heavily doped nano-antennas require a wider size compared to lightly doped resonators. Increasing the doping level, and consequently the width of the nano-antenna, enhances the vibrational absorption of a ~15 nm thick organic layer up to 2 orders of magnitude compared to the unstructured sample and therefore improves sensing. These results pave the way towards molecule fingerprint sensor manufacturing by tailoring the plasmonic resonators to get a maximum surface enhanced infrared absorption at the target vibrational mode.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range

Franziska B. Barho, Fernando Gonzalez-Posada, Maria-José Milla-Rodrigo, Mario Bomers, Laurent Cerutti, and Thierry Taliercio
Opt. Express 24(14) 16175-16190 (2016)

Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix

Thierry Taliercio, Vilianne NTsame Guilengui, Laurent Cerutti, Jean-Baptiste Rodriguez, Franziska Barho, Maria-José Milla Rodrigo, Fernando Gonzalez-Posada, Eric Tournié, Michael Niehle, and Achim Trampert
Opt. Express 23(23) 29423-29433 (2015)

Surface enhanced infrared absorption of chemisorbed carbon monoxide using plasmonic nanoantennas

J. Haase, S. Bagiante, H. Sigg, and J. A. van Bokhoven
Opt. Lett. 42(10) 1931-1934 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. S. and W. Paul, High Pressure Semiconductor Physics I (Elsevier, 1998), Vol. 54.
  2. Y. Chen, J. Dai, M. Yan, and M. Qiu, “Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance,” Opt. Express 21(18), 20873–20879 (2013).
    [Crossref] [PubMed]
  3. Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
    [Crossref]
  4. Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification,” J. Phys. Chem. C 120(19), 10569–10577 (2016).
    [Crossref]
  5. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
    [PubMed]
  6. E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
    [Crossref] [PubMed]
  7. T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).
  8. V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
    [Crossref] [PubMed]
  9. M. Osawa, Surface-Enhanced Infrared Absorption (Springer, 2001), pp. 163–187
  10. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
    [Crossref] [PubMed]
  11. L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
    [Crossref] [PubMed]
  12. F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
    [Crossref] [PubMed]
  13. A. G. Marín, T. García-Mendiola, C. N. Bernabeu, M. J. Hernández, J. Piqueras, J. L. Pau, F. Pariente, and E. Lorenzo, “Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing,” Nanoscale 8(18), 9842–9851 (2016).
    [Crossref] [PubMed]
  14. C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
    [Crossref]
  15. D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 2014–2017 (2006).
    [Crossref]
  16. V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 1–4 (2012).
  17. S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
    [Crossref] [PubMed]
  18. L. Baldassarre, E. Calandrini, A. Samarelli, K. Gallacher, D. J. Paul, J. Frigerio, G. Isella, E. Sakat, M. Finazzi, P. Biagioni, and M. Ortolani, “Mid-infrared plasmonic platform based on heavily doped epitaxial Ge-on-Si: Retrieving the optical constants of thin Ge epilayers,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2014), pp. 1–3.
    [Crossref]
  19. M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, M. Bomers, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures,” Nanotechnology 27(42), 425201 (2016).
    [Crossref] [PubMed]
  20. F. B. Barho, F. Gonzalez-Posada, M.-J. Milla-Rodrigo, M. Bomers, L. Cerutti, and T. Taliercio, “All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range,” Opt. Express 24(14), 16175–16190 (2016).
    [Crossref] [PubMed]
  21. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
    [Crossref] [PubMed]
  22. T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–24303 (2014).
    [Crossref] [PubMed]
  23. S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1−XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
    [Crossref]
  24. A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
    [Crossref]
  25. J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
    [Crossref] [PubMed]
  26. D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976(1-3), 274–281 (2010).
    [Crossref]
  27. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
    [Crossref] [PubMed]
  28. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
    [Crossref] [PubMed]
  29. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
    [Crossref] [PubMed]
  30. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
    [Crossref] [PubMed]
  31. F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
    [Crossref] [PubMed]
  32. L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
    [Crossref] [PubMed]
  33. R. Adato, S. Aksu, and H. Altug, “Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy,” Mater. Today 18(8), 436–446 (2015).
    [Crossref]
  34. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  35. T. Taliercio, V. N’Tsame Guilengui, and E. Tournié, “Arrays of doped and un-doped semiconductors for sensor applications,” Appl. Phys., A Mater. Sci. Process. 109(4), 943–947 (2012).
    [Crossref]
  36. T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13(6), 2857–2863 (2013).
    [Crossref] [PubMed]
  37. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
    [Crossref] [PubMed]
  38. A. B. Dahlin, “Sensing applications based on plasmonic nanopores: The hole story,” Analyst (Lond.) 140(14), 4748–4759 (2015).
    [Crossref] [PubMed]

2016 (5)

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

A. G. Marín, T. García-Mendiola, C. N. Bernabeu, M. J. Hernández, J. Piqueras, J. L. Pau, F. Pariente, and E. Lorenzo, “Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing,” Nanoscale 8(18), 9842–9851 (2016).
[Crossref] [PubMed]

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, M. Bomers, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures,” Nanotechnology 27(42), 425201 (2016).
[Crossref] [PubMed]

Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification,” J. Phys. Chem. C 120(19), 10569–10577 (2016).
[Crossref]

F. B. Barho, F. Gonzalez-Posada, M.-J. Milla-Rodrigo, M. Bomers, L. Cerutti, and T. Taliercio, “All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range,” Opt. Express 24(14), 16175–16190 (2016).
[Crossref] [PubMed]

2015 (9)

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
[Crossref] [PubMed]

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1−XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

R. Adato, S. Aksu, and H. Altug, “Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy,” Mater. Today 18(8), 436–446 (2015).
[Crossref]

A. B. Dahlin, “Sensing applications based on plasmonic nanopores: The hole story,” Analyst (Lond.) 140(14), 4748–4759 (2015).
[Crossref] [PubMed]

2014 (4)

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

2013 (6)

Y. Chen, J. Dai, M. Yan, and M. Qiu, “Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance,” Opt. Express 21(18), 20873–20879 (2013).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13(6), 2857–2863 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (2)

T. Taliercio, V. N’Tsame Guilengui, and E. Tournié, “Arrays of doped and un-doped semiconductors for sensor applications,” Appl. Phys., A Mater. Sci. Process. 109(4), 943–947 (2012).
[Crossref]

V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 1–4 (2012).

2011 (2)

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

2010 (2)

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976(1-3), 274–281 (2010).
[Crossref]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
[Crossref] [PubMed]

2009 (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

2008 (3)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
[PubMed]

2006 (1)

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 2014–2017 (2006).
[Crossref]

Adato, R.

R. Adato, S. Aksu, and H. Altug, “Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy,” Mater. Today 18(8), 436–446 (2015).
[Crossref]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Aizpurua, J.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Aksu, S.

R. Adato, S. Aksu, and H. Altug, “Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy,” Mater. Today 18(8), 436–446 (2015).
[Crossref]

Altug, H.

R. Adato, S. Aksu, and H. Altug, “Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy,” Mater. Today 18(8), 436–446 (2015).
[Crossref]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Baldassarre, L.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Barho, F.

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, M. Bomers, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures,” Nanotechnology 27(42), 425201 (2016).
[Crossref] [PubMed]

Barho, F. B.

Barritault, P.

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1−XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Beck, S.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Bernabeu, C. N.

A. G. Marín, T. García-Mendiola, C. N. Bernabeu, M. J. Hernández, J. Piqueras, J. L. Pau, F. Pariente, and E. Lorenzo, “Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing,” Nanoscale 8(18), 9842–9851 (2016).
[Crossref] [PubMed]

Berrier, A.

Biagioni, P.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13(6), 2857–2863 (2013).
[Crossref] [PubMed]

Bomers, M.

F. B. Barho, F. Gonzalez-Posada, M.-J. Milla-Rodrigo, M. Bomers, L. Cerutti, and T. Taliercio, “All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range,” Opt. Express 24(14), 16175–16190 (2016).
[Crossref] [PubMed]

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, M. Bomers, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures,” Nanotechnology 27(42), 425201 (2016).
[Crossref] [PubMed]

Brown, L. V.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Caglayan, H.

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13(6), 2857–2863 (2013).
[Crossref] [PubMed]

Cai, D.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976(1-3), 274–281 (2010).
[Crossref]

Calandrini, E.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Cerutti, L.

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, M. Bomers, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures,” Nanotechnology 27(42), 425201 (2016).
[Crossref] [PubMed]

F. B. Barho, F. Gonzalez-Posada, M.-J. Milla-Rodrigo, M. Bomers, L. Cerutti, and T. Taliercio, “All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range,” Opt. Express 24(14), 16175–16190 (2016).
[Crossref] [PubMed]

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1−XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 1–4 (2012).

Chen, Y.

Christ, A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Czapla, B.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

Dahlin, A. B.

A. B. Dahlin, “Sensing applications based on plasmonic nanopores: The hole story,” Analyst (Lond.) 140(14), 4748–4759 (2015).
[Crossref] [PubMed]

Dai, J.

Do, B. T.

Ekinci, Y.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

Enders, D.

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 2014–2017 (2006).
[Crossref]

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Francescato, Y.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Frigerio, J.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Gallacher, K.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Gallinet, B.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

García-Mendiola, T.

A. G. Marín, T. García-Mendiola, C. N. Bernabeu, M. J. Hernández, J. Piqueras, J. L. Pau, F. Pariente, and E. Lorenzo, “Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing,” Nanoscale 8(18), 9842–9851 (2016).
[Crossref] [PubMed]

Gérard, B.

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1−XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Giannini, V.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
[Crossref] [PubMed]

Giessen, H.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Gippius, N. A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

Glaser, T.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Gonzalez-Posada, F.

González-Posada, F.

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, M. Bomers, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures,” Nanotechnology 27(42), 425201 (2016).
[Crossref] [PubMed]

Gordon, T. R.

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13(6), 2857–2863 (2013).
[Crossref] [PubMed]

Greffet, J.-J.

Grisard, A.

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1−XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Guilengui, V. N.

T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 1–4 (2012).

Guo, H.

J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
[Crossref] [PubMed]

Halas, N. J.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Heise, H. M.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976(1-3), 274–281 (2010).
[Crossref]

Hengstler, D.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Hentschel, M.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Hernández, M. J.

A. G. Marín, T. García-Mendiola, C. N. Bernabeu, M. J. Hernández, J. Piqueras, J. L. Pau, F. Pariente, and E. Lorenzo, “Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing,” Nanoscale 8(18), 9842–9851 (2016).
[Crossref] [PubMed]

Hillenbrand, R.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Huck, C.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).

Isella, G.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Jerabek, V.

Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification,” J. Phys. Chem. C 120(19), 10569–10577 (2016).
[Crossref]

Kalachyova, Y.

Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification,” J. Phys. Chem. C 120(19), 10569–10577 (2016).
[Crossref]

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Kazuma, E.

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

Klein, D. R.

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13(6), 2857–2863 (2013).
[Crossref] [PubMed]

Kostejn, M.

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Kuckuk, R.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976(1-3), 274–281 (2010).
[Crossref]

Lapcak, L.

Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification,” J. Phys. Chem. C 120(19), 10569–10577 (2016).
[Crossref]

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Lartigue, O.

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1−XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Law, S.

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

Liu, J.

J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
[Crossref] [PubMed]

Lorenzo, E.

A. G. Marín, T. García-Mendiola, C. N. Bernabeu, M. J. Hernández, J. Piqueras, J. L. Pau, F. Pariente, and E. Lorenzo, “Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing,” Nanoscale 8(18), 9842–9851 (2016).
[Crossref] [PubMed]

Lyutakov, O.

Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification,” J. Phys. Chem. C 120(19), 10569–10577 (2016).
[Crossref]

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Maier, S. A.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
[Crossref] [PubMed]

Mares, D.

Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification,” J. Phys. Chem. C 120(19), 10569–10577 (2016).
[Crossref]

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Marín, A. G.

A. G. Marín, T. García-Mendiola, C. N. Bernabeu, M. J. Hernández, J. Piqueras, J. L. Pau, F. Pariente, and E. Lorenzo, “Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing,” Nanoscale 8(18), 9842–9851 (2016).
[Crossref] [PubMed]

Martin, O. J. F.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

Mayo, J.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

Milla, M. J.

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, M. Bomers, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures,” Nanotechnology 27(42), 425201 (2016).
[Crossref] [PubMed]

Milla-Rodrigo, M.-J.

Murray, C. B.

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13(6), 2857–2863 (2013).
[Crossref] [PubMed]

N’Tsame Guilengui, V.

T. Taliercio, V. N’Tsame Guilengui, and E. Tournié, “Arrays of doped and un-doped semiconductors for sensor applications,” Appl. Phys., A Mater. Sci. Process. 109(4), 943–947 (2012).
[Crossref]

Naik, G. V.

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13(6), 2857–2863 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Narayanaswamy, A.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

Neubrech, F.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Neuman, T.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).

Neyer, A.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976(1-3), 274–281 (2010).
[Crossref]

Nordlander, P.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Ortolani, M.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Paik, T.

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13(6), 2857–2863 (2013).
[Crossref] [PubMed]

Pariente, F.

A. G. Marín, T. García-Mendiola, C. N. Bernabeu, M. J. Hernández, J. Piqueras, J. L. Pau, F. Pariente, and E. Lorenzo, “Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing,” Nanoscale 8(18), 9842–9851 (2016).
[Crossref] [PubMed]

Pau, J. L.

A. G. Marín, T. García-Mendiola, C. N. Bernabeu, M. J. Hernández, J. Piqueras, J. L. Pau, F. Pariente, and E. Lorenzo, “Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing,” Nanoscale 8(18), 9842–9851 (2016).
[Crossref] [PubMed]

Paul, D. J.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Piqueras, J.

A. G. Marín, T. García-Mendiola, C. N. Bernabeu, M. J. Hernández, J. Piqueras, J. L. Pau, F. Pariente, and E. Lorenzo, “Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing,” Nanoscale 8(18), 9842–9851 (2016).
[Crossref] [PubMed]

Pucci, A.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 2014–2017 (2006).
[Crossref]

Qiu, M.

Rivas, J. G.

Rodriguez, J. B.

V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 1–4 (2012).

Rodriguez, J.-B.

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, M. Bomers, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures,” Nanotechnology 27(42), 425201 (2016).
[Crossref] [PubMed]

Rosenberg, A.

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

Roux, S.

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1−XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Sakat, E.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Samarelli, A.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

Sendner, M.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Siegfried, T.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

Sigg, H.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

Smith, A. V.

Srinivasan, A.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

Svorcik, V.

Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification,” J. Phys. Chem. C 120(19), 10569–10577 (2016).
[Crossref]

Švorcík, V.

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Taliercio, T.

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, M. Bomers, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures,” Nanotechnology 27(42), 425201 (2016).
[Crossref] [PubMed]

F. B. Barho, F. Gonzalez-Posada, M.-J. Milla-Rodrigo, M. Bomers, L. Cerutti, and T. Taliercio, “All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range,” Opt. Express 24(14), 16175–16190 (2016).
[Crossref] [PubMed]

T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 1–4 (2012).

T. Taliercio, V. N’Tsame Guilengui, and E. Tournié, “Arrays of doped and un-doped semiconductors for sensor applications,” Appl. Phys., A Mater. Sci. Process. 109(4), 943–947 (2012).
[Crossref]

Tang, J.

J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
[Crossref] [PubMed]

Tatsuma, T.

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

Tikhodeev, S. G.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

Tournie, E.

V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 1–4 (2012).

Tournié, E.

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, M. Bomers, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures,” Nanotechnology 27(42), 425201 (2016).
[Crossref] [PubMed]

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1−XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

T. Taliercio, V. N’Tsame Guilengui, and E. Tournié, “Arrays of doped and un-doped semiconductors for sensor applications,” Appl. Phys., A Mater. Sci. Process. 109(4), 943–947 (2012).
[Crossref]

Tsoukalas, D.

J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
[Crossref] [PubMed]

Ulbrich, P.

Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification,” J. Phys. Chem. C 120(19), 10569–10577 (2016).
[Crossref]

Vogt, J.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Wasserman, D.

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

Xue, C.

J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
[Crossref] [PubMed]

Yan, M.

Yang, J.

J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
[Crossref] [PubMed]

Yang, X.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Yanik, A. A.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Yu, L.

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

Zaruba, K.

Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification,” J. Phys. Chem. C 120(19), 10569–10577 (2016).
[Crossref]

Zhang, B.

J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
[Crossref] [PubMed]

Zhang, W.

J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
[Crossref] [PubMed]

Zhao, K.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zhao, M.

J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
[Crossref] [PubMed]

Zheng, B. Y.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

ACS Nano (3)

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. B. Dahlin, “Sensing applications based on plasmonic nanopores: The hole story,” Analyst (Lond.) 140(14), 4748–4759 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 2014–2017 (2006).
[Crossref]

V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 1–4 (2012).

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1−XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

T. Taliercio, V. N’Tsame Guilengui, and E. Tournié, “Arrays of doped and un-doped semiconductors for sensor applications,” Appl. Phys., A Mater. Sci. Process. 109(4), 943–947 (2012).
[Crossref]

J. Mol. Struct. (1)

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976(1-3), 274–281 (2010).
[Crossref]

J. Phys. Chem. C (3)

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification,” J. Phys. Chem. C 120(19), 10569–10577 (2016).
[Crossref]

Mater. Today (1)

R. Adato, S. Aksu, and H. Altug, “Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy,” Mater. Today 18(8), 436–446 (2015).
[Crossref]

Nano Lett. (8)

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13(6), 2857–2863 (2013).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

Nanoscale (2)

A. G. Marín, T. García-Mendiola, C. N. Bernabeu, M. J. Hernández, J. Piqueras, J. L. Pau, F. Pariente, and E. Lorenzo, “Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing,” Nanoscale 8(18), 9842–9851 (2016).
[Crossref] [PubMed]

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, M. Bomers, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures,” Nanotechnology 27(42), 425201 (2016).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. Lett. (1)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, “Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates,” Sci. Rep. 5(1), 16527 (2015).
[Crossref] [PubMed]

Other (3)

T. S. and W. Paul, High Pressure Semiconductor Physics I (Elsevier, 1998), Vol. 54.

M. Osawa, Surface-Enhanced Infrared Absorption (Springer, 2001), pp. 163–187

L. Baldassarre, E. Calandrini, A. Samarelli, K. Gallacher, D. J. Paul, J. Frigerio, G. Isella, E. Sakat, M. Finazzi, P. Biagioni, and M. Ortolani, “Mid-infrared plasmonic platform based on heavily doped epitaxial Ge-on-Si: Retrieving the optical constants of thin Ge epilayers,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2014), pp. 1–3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SEM images before and after PDMS coating of the three samples. (a)-(c) SEM plan-view images of the as-fabricated samples A (w ~645 nm), B (w ~490 nm) and C (w ~265 nm), respectively. (d) Standard and (e)-(f) High-resolution SEM (Hitachi S4800) cross-sectional image of the samples covered with PDMS and a 40 nm Au layer to increase contrast.
Fig. 2
Fig. 2 Reflectance spectra of the bare (solid symbols) and PDMS-coated (open symbols) samples from experiment in (a) the transversal, (b) longitudinal direction (compared to the antenna long-axis) and, FDTD simulations (c) transversal (d) longitudinal direction. Dashed dotted line indicates the Si-C bond stretching mode vibration at 800cm−1 of PDMS.
Fig. 3
Fig. 3 Baseline correction of the reflectance in transversal (black lines) and longitudinal (red lines) direction from (a) experiment and (b) FDTD calculations. SEIRA signal resulting from the ratio of the baseline correction in transversal and longitudinal direction, from (c) experiment and (d) FDTD calculations. A strong dependence of the vibrational signal on the nano-antenna characteristics is found. Heavier Si-doped and wider resonators (sample A) yields to a higher SEIRA. Simulations show a good qualitative agreement with experiments.
Fig. 4
Fig. 4 FDTD simulation of the E field. (a-c) Half-antenna cross-sectional images of the electric field extension and (d-f) zoom, calculated using 1nm mesh, in the bottom corner hot spot of the three samples. The solid and dash lines delimit the nano-antenna and the PDMS layer, respectively. The doping level clearly influences the electric field extension. The presence of electric field into the PDMS layer becomes more important for heavier doped resonators. The electric field locates in the hot-spot arising from PDMS-surface interface. Its extension into the PDMS layer and its penetration in the substrate depends on the doping level of the nano-antenna. The E field is larger extended into the PDMS layer for heavily doped nano-antennas (sample A), reaching even the top corner hot-spot and thus, making more sensitive the system to surrounding conditions.
Fig. 5
Fig. 5 Reflectance spectra of the three samples coated with PDMS (solid scatters), bare (open scatters) and Gallinet fitting (black lines) of (a) sample A, (b) sample B and (c) sample C. Adjusting the damping due to coupling,   γ c , the experimental results are well modelled using the approach proposed by Gallinet et al. [27] although the SPR shift is not considered. The depth of the band arising from the interaction between the vibrational and plasmonic modes directly indicates the coupling strength.

Tables (1)

Tables Icon

Table 1 Summary of the physical values of the three samples used to study SEIRA in 1-D InAsSb nano-antennas. Column 1 labels the sample and columns 2, 3 and 4 correspond to the plasma frequency, doping level and antenna width, respectively

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

 ε( ω )= ε ( 1 ω p 2 ω( ω+iγ ) ),
R= R a (ω ω 0 +qγ) 2 +b γ 2 (ω ω 0 ) 2 + γ 2

Metrics