Abstract

Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system

Sensen Li, Yulei Wang, Zhiwei Lu, Lei Ding, Pengyuan Du, Yi Chen, Zhenxing Zheng, Dexin Ba, Yongkang Dong, Hang Yuan, Zhenxu Bai, Zhaohong Liu, and Can Cui
Opt. Express 23(2) 681-689 (2015)

Precision optical path alignment system for point diffraction interferometer based on image information

Zhuo Zhao, Bing Li, Xiaoqin Kang, Lei Chen, and Xiang Wei
Appl. Opt. 58(14) 3703-3711 (2019)

National Ignition Facility system alignment

S. C. Burkhart, E. Bliss, P. Di Nicola, D. Kalantar, R. Lowe-Webb, T. McCarville, D. Nelson, T. Salmon, T. Schindler, J. Villanueva, and K. Wilhelmsen
Appl. Opt. 50(8) 1136-1157 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. O. Nuckolls, L. O. Wood, A. L. Thiessen, and G. E. Zimmerman, “Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications,” Nature 239, 139–142 (1972).
  2. J. M. Dawson, “On the Production of Plasma by Giant Pulse Lasers,” Phys. Fluids 7, 981–987 (1964).
  3. N. G. Basov and O. N. Krokhin, “Conditions for heating up of a plasma by the radiation from an optial generator,” Sov. Phys. JETP 46(1), 171 (1964).
  4. G. C. Wang, “Suggestion of Neutron Generation with Powerful lasers,” Chin. J. Lasers 14, 641–645 (1987).
  5. J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
  6. J. D. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
  7. J. D. Lindl, O. L. Landen, J. Edwards, E. I. Moses, and N. Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 20501 (2014).
  8. E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 410064 (2009).
  9. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
    [PubMed]
  10. G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).
  11. D. Clery, “Physics. Laser fusion, with a difference,” Science 347(6218), 111–112 (2015).
    [PubMed]
  12. C. Cavailler, “Inertial fusion with the LMJ,” Plasma Phys. Contr. Fusion 47, B389–B403 (2005).
  13. M. L. Andre, “The French Megajoule Laser Project (LMJ),” Fusion Eng. Des. 44, 43–49 (1999).
  14. W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).
  15. V. B. Rozanov, S. Y. Gus’Kov, G. A. V. N. Demchenko, R. V. S. Y. Yakhin, and N. V. Zmitrenko, “Direct drive targets for the megajoule facility UFL-2 M,” J. Phys. Conf. Ser. 688, 12095 (2016).
  16. M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2, 2–5 (2006).
  17. B. J. Le Garrec, C. Hernandez-Gomez, T. Winstone, and J. Collier, “HiPER laser architecture principles,” J. Phys. Conf. Ser. 244, 32020 (2010).
  18. H. Azechi and F. Project, “The FIREX program on the way to inertial fusion energy,” J. Phys. Conf. Ser. 112, 12002 (2008).
  19. S. C. Burkhart, E. Bliss, P. Di Nicola, D. Kalantar, R. Lowe-Webb, T. McCarville, D. Nelson, T. Salmon, T. Schindler, J. Villanueva, and K. Wilhelmsen, “National Ignition Facility system alignment,” Appl. Opt. 50(8), 1136–1157 (2011).
    [PubMed]
  20. R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
  21. A. A. S. Awwal, “Multi-object feature detection and error correction for NIF automatic optical alignment,” Proc. SPIE 6310, 63100Q (2006).
  22. A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched filter based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).
  23. L. Hilsz, S. Challois, F. Nicaise, M. Luttmann, and A. Adolf, “Redesign of the image processing techniques used for the alignment of the LMJ amplifier section,” Proc. SPIE 7797, 77970A (2010).
  24. L. Hilsz, J. Benoit, F. Poutriquet, O. Bach, F. Nicaise, and A. Adolf, “Redesign of image processing techniques used for the alignment of the LMJ transportion section,” Proc. SPIE 7797, 77970D (2010).
  25. M. Luttmann, V. Denis, C. Lanternier, M. Péalatb, and E. Companic, “Laser Megajoule alignment to target chamber center,” Proc. SPIE Vol. 7916, 79160N (2011).
  26. P. Vivini and M. N. Icolaizeau, “The LMJ: overview of recent advancements and very first experiments,” High Power Lasers for Fusion Research III, Proc. SPIE 9345, 934503 (2015).
  27. H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).
  28. Z. S. Da, D. J. Li, W. Zou, and Z. T. Peng, “Mathematical Model for Beam Automatic Fast Alignment,” Acta Photomica Sinica 37(12), 2534–2538 (2008).
  29. R. H. Xu, J. H. He, W. Wang, Z. Z. Wang, Z. J. Zhang, J. N. Zhao, and C. W. Ma, “Automatic Alignment Algorithm of High-power Laser Beam,” Guangzi Xuebao 44(2), 214002 (2015).

2016 (1)

V. B. Rozanov, S. Y. Gus’Kov, G. A. V. N. Demchenko, R. V. S. Y. Yakhin, and N. V. Zmitrenko, “Direct drive targets for the megajoule facility UFL-2 M,” J. Phys. Conf. Ser. 688, 12095 (2016).

2015 (3)

D. Clery, “Physics. Laser fusion, with a difference,” Science 347(6218), 111–112 (2015).
[PubMed]

P. Vivini and M. N. Icolaizeau, “The LMJ: overview of recent advancements and very first experiments,” High Power Lasers for Fusion Research III, Proc. SPIE 9345, 934503 (2015).

R. H. Xu, J. H. He, W. Wang, Z. Z. Wang, Z. J. Zhang, J. N. Zhao, and C. W. Ma, “Automatic Alignment Algorithm of High-power Laser Beam,” Guangzi Xuebao 44(2), 214002 (2015).

2014 (1)

J. D. Lindl, O. L. Landen, J. Edwards, E. I. Moses, and N. Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 20501 (2014).

2013 (1)

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

2011 (1)

2010 (3)

L. Hilsz, S. Challois, F. Nicaise, M. Luttmann, and A. Adolf, “Redesign of the image processing techniques used for the alignment of the LMJ amplifier section,” Proc. SPIE 7797, 77970A (2010).

L. Hilsz, J. Benoit, F. Poutriquet, O. Bach, F. Nicaise, and A. Adolf, “Redesign of image processing techniques used for the alignment of the LMJ transportion section,” Proc. SPIE 7797, 77970D (2010).

B. J. Le Garrec, C. Hernandez-Gomez, T. Winstone, and J. Collier, “HiPER laser architecture principles,” J. Phys. Conf. Ser. 244, 32020 (2010).

2009 (2)

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 410064 (2009).

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched filter based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).

2008 (3)

Z. S. Da, D. J. Li, W. Zou, and Z. T. Peng, “Mathematical Model for Beam Automatic Fast Alignment,” Acta Photomica Sinica 37(12), 2534–2538 (2008).

H. Azechi and F. Project, “The FIREX program on the way to inertial fusion energy,” J. Phys. Conf. Ser. 112, 12002 (2008).

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

2007 (1)

2006 (2)

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2, 2–5 (2006).

A. A. S. Awwal, “Multi-object feature detection and error correction for NIF automatic optical alignment,” Proc. SPIE 6310, 63100Q (2006).

2005 (1)

C. Cavailler, “Inertial fusion with the LMJ,” Plasma Phys. Contr. Fusion 47, B389–B403 (2005).

2004 (3)

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

1999 (1)

M. L. Andre, “The French Megajoule Laser Project (LMJ),” Fusion Eng. Des. 44, 43–49 (1999).

1995 (1)

J. D. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).

1987 (1)

G. C. Wang, “Suggestion of Neutron Generation with Powerful lasers,” Chin. J. Lasers 14, 641–645 (1987).

1972 (1)

J. O. Nuckolls, L. O. Wood, A. L. Thiessen, and G. E. Zimmerman, “Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications,” Nature 239, 139–142 (1972).

1964 (2)

J. M. Dawson, “On the Production of Plasma by Giant Pulse Lasers,” Phys. Fluids 7, 981–987 (1964).

N. G. Basov and O. N. Krokhin, “Conditions for heating up of a plasma by the radiation from an optial generator,” Sov. Phys. JETP 46(1), 171 (1964).

Adolf, A.

L. Hilsz, S. Challois, F. Nicaise, M. Luttmann, and A. Adolf, “Redesign of the image processing techniques used for the alignment of the LMJ amplifier section,” Proc. SPIE 7797, 77970A (2010).

L. Hilsz, J. Benoit, F. Poutriquet, O. Bach, F. Nicaise, and A. Adolf, “Redesign of image processing techniques used for the alignment of the LMJ transportion section,” Proc. SPIE 7797, 77970D (2010).

Al-Ayat, R.

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 410064 (2009).

Amendt, P.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).

Andre, M. L.

M. L. Andre, “The French Megajoule Laser Project (LMJ),” Fusion Eng. Des. 44, 43–49 (1999).

Arnold, T. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Auerbach, J. M.

Awwal, A. A. S.

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched filter based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).

A. A. S. Awwal, “Multi-object feature detection and error correction for NIF automatic optical alignment,” Proc. SPIE 6310, 63100Q (2006).

Azechi, H.

H. Azechi and F. Project, “The FIREX program on the way to inertial fusion energy,” J. Phys. Conf. Ser. 112, 12002 (2008).

Bach, O.

L. Hilsz, J. Benoit, F. Poutriquet, O. Bach, F. Nicaise, and A. Adolf, “Redesign of image processing techniques used for the alignment of the LMJ transportion section,” Proc. SPIE 7797, 77970D (2010).

Basov, N. G.

N. G. Basov and O. N. Krokhin, “Conditions for heating up of a plasma by the radiation from an optial generator,” Sov. Phys. JETP 46(1), 171 (1964).

Beer, N. R.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Benoit, J.

L. Hilsz, J. Benoit, F. Poutriquet, O. Bach, F. Nicaise, and A. Adolf, “Redesign of image processing techniques used for the alignment of the LMJ transportion section,” Proc. SPIE 7797, 77970D (2010).

Berger, R. L.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).

Bliss, E.

Bliss, E. S.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Bowers, M. W.

Boyd, R. N.

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 410064 (2009).

Burkhart, S. C.

S. C. Burkhart, E. Bliss, P. Di Nicola, D. Kalantar, R. Lowe-Webb, T. McCarville, D. Nelson, T. Salmon, T. Schindler, J. Villanueva, and K. Wilhelmsen, “National Ignition Facility system alignment,” Appl. Opt. 50(8), 1136–1157 (2011).
[PubMed]

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Cavailler, C.

C. Cavailler, “Inertial fusion with the LMJ,” Plasma Phys. Contr. Fusion 47, B389–B403 (2005).

Challois, S.

L. Hilsz, S. Challois, F. Nicaise, M. Luttmann, and A. Adolf, “Redesign of the image processing techniques used for the alignment of the LMJ amplifier section,” Proc. SPIE 7797, 77970A (2010).

Clery, D.

D. Clery, “Physics. Laser fusion, with a difference,” Science 347(6218), 111–112 (2015).
[PubMed]

Cohen, S. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Collier, J.

B. J. Le Garrec, C. Hernandez-Gomez, T. Winstone, and J. Collier, “HiPER laser architecture principles,” J. Phys. Conf. Ser. 244, 32020 (2010).

Da, Z. S.

Z. S. Da, D. J. Li, W. Zou, and Z. T. Peng, “Mathematical Model for Beam Automatic Fast Alignment,” Acta Photomica Sinica 37(12), 2534–2538 (2008).

Dawson, J. M.

J. M. Dawson, “On the Production of Plasma by Giant Pulse Lasers,” Phys. Fluids 7, 981–987 (1964).

Demchenko, G. A. V. N.

V. B. Rozanov, S. Y. Gus’Kov, G. A. V. N. Demchenko, R. V. S. Y. Yakhin, and N. V. Zmitrenko, “Direct drive targets for the megajoule facility UFL-2 M,” J. Phys. Conf. Ser. 688, 12095 (2016).

Di Nicola, P.

Dixit, S. N.

Dunne, M.

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2, 2–5 (2006).

Edwards, J.

J. D. Lindl, O. L. Landen, J. Edwards, E. I. Moses, and N. Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 20501 (2014).

Erbert, G. V.

Fan, D. Y.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Feng, B.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Glendinning, S. G.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).

Glenzer, S. H.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).

Gong, L.

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

Guo, L. F.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Gus’Kov, S. Y.

V. B. Rozanov, S. Y. Gus’Kov, G. A. V. N. Demchenko, R. V. S. Y. Yakhin, and N. V. Zmitrenko, “Direct drive targets for the megajoule facility UFL-2 M,” J. Phys. Conf. Ser. 688, 12095 (2016).

Haan, S. W.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).

Haynam, C. A.

He, J. H.

R. H. Xu, J. H. He, W. Wang, Z. Z. Wang, Z. J. Zhang, J. N. Zhao, and C. W. Ma, “Automatic Alignment Algorithm of High-power Laser Beam,” Guangzi Xuebao 44(2), 214002 (2015).

He, S. B.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Hernandez-Gomez, C.

B. J. Le Garrec, C. Hernandez-Gomez, T. Winstone, and J. Collier, “HiPER laser architecture principles,” J. Phys. Conf. Ser. 244, 32020 (2010).

Hilsz, L.

L. Hilsz, S. Challois, F. Nicaise, M. Luttmann, and A. Adolf, “Redesign of the image processing techniques used for the alignment of the LMJ amplifier section,” Proc. SPIE 7797, 77970A (2010).

L. Hilsz, J. Benoit, F. Poutriquet, O. Bach, F. Nicaise, and A. Adolf, “Redesign of image processing techniques used for the alignment of the LMJ transportion section,” Proc. SPIE 7797, 77970D (2010).

Hu, D. X.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Icolaizeau, M. N.

P. Vivini and M. N. Icolaizeau, “The LMJ: overview of recent advancements and very first experiments,” High Power Lasers for Fusion Research III, Proc. SPIE 9345, 934503 (2015).

Jancaitis, K. S.

Jiang, X. D.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Jiang, Z. C.

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

Jing, F.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Kalantar, D.

Kauffman, R. L.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).

Keane, C. J.

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 410064 (2009).

Krokhin, O. N.

N. G. Basov and O. N. Krokhin, “Conditions for heating up of a plasma by the radiation from an optial generator,” Sov. Phys. JETP 46(1), 171 (1964).

Landen, O. L.

J. D. Lindl, O. L. Landen, J. Edwards, E. I. Moses, and N. Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 20501 (2014).

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).

Latta, M. R.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Le Garrec, B. J.

B. J. Le Garrec, C. Hernandez-Gomez, T. Winstone, and J. Collier, “HiPER laser architecture principles,” J. Phys. Conf. Ser. 244, 32020 (2010).

Li, D. J.

Z. S. Da, D. J. Li, W. Zou, and Z. T. Peng, “Mathematical Model for Beam Automatic Fast Alignment,” Acta Photomica Sinica 37(12), 2534–2538 (2008).

Li, H.

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

Li, M. Z.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Li, X. Q.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Lin, Q.

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

Lindl, J. D.

J. D. Lindl, O. L. Landen, J. Edwards, E. I. Moses, and N. Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 20501 (2014).

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).

J. D. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).

Liu, D. Z.

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

Lowe-Webb, R.

Luttmann, M.

L. Hilsz, S. Challois, F. Nicaise, M. Luttmann, and A. Adolf, “Redesign of the image processing techniques used for the alignment of the LMJ amplifier section,” Proc. SPIE 7797, 77970A (2010).

Ma, C. W.

R. H. Xu, J. H. He, W. Wang, Z. Z. Wang, Z. J. Zhang, J. N. Zhao, and C. W. Ma, “Automatic Alignment Algorithm of High-power Laser Beam,” Guangzi Xuebao 44(2), 214002 (2015).

Manes, K. R.

Marshall, C. D.

McCarville, T.

Mehta, N. C.

Menapace, J.

Miller, G. H.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).

Moses, E.

Moses, E. I.

J. D. Lindl, O. L. Landen, J. Edwards, E. I. Moses, and N. Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 20501 (2014).

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 410064 (2009).

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).

Murray, J. R.

Nelson, D.

Nicaise, F.

L. Hilsz, J. Benoit, F. Poutriquet, O. Bach, F. Nicaise, and A. Adolf, “Redesign of image processing techniques used for the alignment of the LMJ transportion section,” Proc. SPIE 7797, 77970D (2010).

L. Hilsz, S. Challois, F. Nicaise, M. Luttmann, and A. Adolf, “Redesign of the image processing techniques used for the alignment of the LMJ amplifier section,” Proc. SPIE 7797, 77970A (2010).

Nostrand, M. C.

Nuckolls, J. O.

J. O. Nuckolls, L. O. Wood, A. L. Thiessen, and G. E. Zimmerman, “Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications,” Nature 239, 139–142 (1972).

Orth, C. D.

Patterson, R.

Peng, Z. T.

Z. S. Da, D. J. Li, W. Zou, and Z. T. Peng, “Mathematical Model for Beam Automatic Fast Alignment,” Acta Photomica Sinica 37(12), 2534–2538 (2008).

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Pigg, D. C.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Poutriquet, F.

L. Hilsz, J. Benoit, F. Poutriquet, O. Bach, F. Nicaise, and A. Adolf, “Redesign of image processing techniques used for the alignment of the LMJ transportion section,” Proc. SPIE 7797, 77970D (2010).

Project, F.

H. Azechi and F. Project, “The FIREX program on the way to inertial fusion energy,” J. Phys. Conf. Ser. 112, 12002 (2008).

Remington, B. A.

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 410064 (2009).

Rice, K. L.

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched filter based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).

Rozanov, V. B.

V. B. Rozanov, S. Y. Gus’Kov, G. A. V. N. Demchenko, R. V. S. Y. Yakhin, and N. V. Zmitrenko, “Direct drive targets for the megajoule facility UFL-2 M,” J. Phys. Conf. Ser. 688, 12095 (2016).

Sacks, R. A.

Salmon, J. T.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Salmon, T.

Schindler, T.

Shaw, M. J.

Spaeth, M.

Stolz, C. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Su, J. Q.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Sui, Z.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Suter, L. J.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).

Sutton, S. B.

Taha, T. M.

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched filter based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).

Team, N.

J. D. Lindl, O. L. Landen, J. Edwards, E. I. Moses, and N. Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 20501 (2014).

Thiessen, A. L.

J. O. Nuckolls, L. O. Wood, A. L. Thiessen, and G. E. Zimmerman, “Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications,” Nature 239, 139–142 (1972).

Van Atta, R. L.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Van Wonterghem, B. M.

Villanueva, J.

Vivini, P.

P. Vivini and M. N. Icolaizeau, “The LMJ: overview of recent advancements and very first experiments,” High Power Lasers for Fusion Research III, Proc. SPIE 9345, 934503 (2015).

Wang, G. C.

G. C. Wang, “Suggestion of Neutron Generation with Powerful lasers,” Chin. J. Lasers 14, 641–645 (1987).

Wang, J. J.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Wang, W.

R. H. Xu, J. H. He, W. Wang, Z. Z. Wang, Z. J. Zhang, J. N. Zhao, and C. W. Ma, “Automatic Alignment Algorithm of High-power Laser Beam,” Guangzi Xuebao 44(2), 214002 (2015).

Wang, Z. Z.

R. H. Xu, J. H. He, W. Wang, Z. Z. Wang, Z. J. Zhang, J. N. Zhao, and C. W. Ma, “Automatic Alignment Algorithm of High-power Laser Beam,” Guangzi Xuebao 44(2), 214002 (2015).

Wang’, D. F.

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

Wegner, P. J.

Wei, X. F.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

White, R. K.

Widmayer, C. C.

Wilhelmsen, K.

Williams, W. H.

Winstone, T.

B. J. Le Garrec, C. Hernandez-Gomez, T. Winstone, and J. Collier, “HiPER laser architecture principles,” J. Phys. Conf. Ser. 244, 32020 (2010).

Winters, S. E.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Wood, L. O.

J. O. Nuckolls, L. O. Wood, A. L. Thiessen, and G. E. Zimmerman, “Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications,” Nature 239, 139–142 (1972).

Wuest, C. R.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).

Xiang, Y.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Xu, R. H.

R. H. Xu, J. H. He, W. Wang, Z. Z. Wang, Z. J. Zhang, J. N. Zhao, and C. W. Ma, “Automatic Alignment Algorithm of High-power Laser Beam,” Guangzi Xuebao 44(2), 214002 (2015).

Yakhin, R. V. S. Y.

V. B. Rozanov, S. Y. Gus’Kov, G. A. V. N. Demchenko, R. V. S. Y. Yakhin, and N. V. Zmitrenko, “Direct drive targets for the megajoule facility UFL-2 M,” J. Phys. Conf. Ser. 688, 12095 (2016).

Yang, S. T.

You, Y.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Yu, H. W.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Yuan, X. D.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Zacharias, R. A.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Zhang, W. Y.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Zhang, X. M.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Zhang, Y. L.

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

Zhang, Z. J.

R. H. Xu, J. H. He, W. Wang, Z. Z. Wang, Z. J. Zhang, J. N. Zhao, and C. W. Ma, “Automatic Alignment Algorithm of High-power Laser Beam,” Guangzi Xuebao 44(2), 214002 (2015).

Zhao, J. N.

R. H. Xu, J. H. He, W. Wang, Z. Z. Wang, Z. J. Zhang, J. N. Zhao, and C. W. Ma, “Automatic Alignment Algorithm of High-power Laser Beam,” Guangzi Xuebao 44(2), 214002 (2015).

Zheng, K. X.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Zheng, W. G.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Zhou, H.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Zhu, B. Q.

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

Zhu, J. Q.

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

Zhu, Q. H.

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

Zimmerman, G. E.

J. O. Nuckolls, L. O. Wood, A. L. Thiessen, and G. E. Zimmerman, “Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications,” Nature 239, 139–142 (1972).

Zmitrenko, N. V.

V. B. Rozanov, S. Y. Gus’Kov, G. A. V. N. Demchenko, R. V. S. Y. Yakhin, and N. V. Zmitrenko, “Direct drive targets for the megajoule facility UFL-2 M,” J. Phys. Conf. Ser. 688, 12095 (2016).

Zou, W.

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

Z. S. Da, D. J. Li, W. Zou, and Z. T. Peng, “Mathematical Model for Beam Automatic Fast Alignment,” Acta Photomica Sinica 37(12), 2534–2538 (2008).

Acta Photomica Sinica (1)

Z. S. Da, D. J. Li, W. Zou, and Z. T. Peng, “Mathematical Model for Beam Automatic Fast Alignment,” Acta Photomica Sinica 37(12), 2534–2538 (2008).

Appl. Opt. (2)

Chin. J. Lasers (2)

H. Li, D. F. Wang’, W. Zou, Q. Lin, Y. L. Zhang, Z. C. Jiang, D. Z. Liu, B. Q. Zhu, J. Q. Zhu, and L. Gong, “Design of High Power Laser Beam Automatic Alignment System,” Chin. J. Lasers 40(10), 1002003 (2013).

G. C. Wang, “Suggestion of Neutron Generation with Powerful lasers,” Chin. J. Lasers 14, 641–645 (1987).

Fusion Eng. Des. (1)

M. L. Andre, “The French Megajoule Laser Project (LMJ),” Fusion Eng. Des. 44, 43–49 (1999).

Guangzi Xuebao (1)

R. H. Xu, J. H. He, W. Wang, Z. Z. Wang, Z. J. Zhang, J. N. Zhao, and C. W. Ma, “Automatic Alignment Algorithm of High-power Laser Beam,” Guangzi Xuebao 44(2), 214002 (2015).

High Power Lasers for Fusion Research III, Proc. SPIE (1)

P. Vivini and M. N. Icolaizeau, “The LMJ: overview of recent advancements and very first experiments,” High Power Lasers for Fusion Research III, Proc. SPIE 9345, 934503 (2015).

J. Phys. Conf. Ser. (4)

W. G. Zheng, X. M. Zhang, X. F. Wei, F. Jing, Z. Sui, K. X. Zheng, X. D. Yuan, X. D. Jiang, J. Q. Su, H. Zhou, M. Z. Li, J. J. Wang, D. X. Hu, S. B. He, Y. Xiang, Z. T. Peng, B. Feng, L. F. Guo, X. Q. Li, Q. H. Zhu, H. W. Yu, Y. You, D. Y. Fan, and W. Y. Zhang, “Status of the SG-III solid-state laser facility,” J. Phys. Conf. Ser. 112, 32009 (2008).

V. B. Rozanov, S. Y. Gus’Kov, G. A. V. N. Demchenko, R. V. S. Y. Yakhin, and N. V. Zmitrenko, “Direct drive targets for the megajoule facility UFL-2 M,” J. Phys. Conf. Ser. 688, 12095 (2016).

B. J. Le Garrec, C. Hernandez-Gomez, T. Winstone, and J. Collier, “HiPER laser architecture principles,” J. Phys. Conf. Ser. 244, 32020 (2010).

H. Azechi and F. Project, “The FIREX program on the way to inertial fusion energy,” J. Phys. Conf. Ser. 112, 12002 (2008).

Nat. Phys. (1)

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2, 2–5 (2006).

Nature (1)

J. O. Nuckolls, L. O. Wood, A. L. Thiessen, and G. E. Zimmerman, “Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications,” Nature 239, 139–142 (1972).

Opt. Eng. (2)

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).

Opt. Laser Technol. (1)

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched filter based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).

Phys. Fluids (1)

J. M. Dawson, “On the Production of Plasma by Giant Pulse Lasers,” Phys. Fluids 7, 981–987 (1964).

Phys. Plasmas (4)

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).

J. D. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).

J. D. Lindl, O. L. Landen, J. Edwards, E. I. Moses, and N. Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 20501 (2014).

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 410064 (2009).

Plasma Phys. Contr. Fusion (1)

C. Cavailler, “Inertial fusion with the LMJ,” Plasma Phys. Contr. Fusion 47, B389–B403 (2005).

Proc. SPIE (3)

L. Hilsz, S. Challois, F. Nicaise, M. Luttmann, and A. Adolf, “Redesign of the image processing techniques used for the alignment of the LMJ amplifier section,” Proc. SPIE 7797, 77970A (2010).

L. Hilsz, J. Benoit, F. Poutriquet, O. Bach, F. Nicaise, and A. Adolf, “Redesign of image processing techniques used for the alignment of the LMJ transportion section,” Proc. SPIE 7797, 77970D (2010).

A. A. S. Awwal, “Multi-object feature detection and error correction for NIF automatic optical alignment,” Proc. SPIE 6310, 63100Q (2006).

Science (1)

D. Clery, “Physics. Laser fusion, with a difference,” Science 347(6218), 111–112 (2015).
[PubMed]

Sov. Phys. JETP (1)

N. G. Basov and O. N. Krokhin, “Conditions for heating up of a plasma by the radiation from an optial generator,” Sov. Phys. JETP 46(1), 171 (1964).

Other (1)

M. Luttmann, V. Denis, C. Lanternier, M. Péalatb, and E. Companic, “Laser Megajoule alignment to target chamber center,” Proc. SPIE Vol. 7916, 79160N (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Optical schematic of the alignment system based on the novel method.
Fig. 2
Fig. 2 1D distribution of the logarithmic amplitude of the frequency spectrum, the window function of the filter pinhole, the frequency spectrum after the filter pinhole and the 2D-PSD of the near-field image with the beam pointing at the center of the pinhole.
Fig. 3
Fig. 3 1D distribution of the logarithmic amplitude of the frequency spectrum, the window function of the filter pinhole, the frequency spectrum after the filter pinhole and the 2D-PSD of the near-field image with the beam pointing at the right side of the pinhole with a distance d.
Fig. 4
Fig. 4 Simulation results of the amplitude of (a) the beam in the object plane, (b) the frequency spectrum after the pinhole and (c) the 2D-PSD of the near-field image with the beam pointing at the center of the pinhole.
Fig. 5
Fig. 5 Simulation results of the amplitude of (a-c) the frequency spectrum after the pinhole and (d-f) the 2D-PSD of the near-field image with the beam pointing at the left, upper and upper left sides of the pinhole.
Fig. 6
Fig. 6 Experimental setup based on the novel beam alignment method.
Fig. 7
Fig. 7 (a-d) The near-field images and (e-h) their 2D-PSD and (i-l) binary images when the beam points at the center, lower, left, and upper sides of the filter pinhole.
Fig. 8
Fig. 8 The relationship of the central distance with the pointing offset in (a) the horizontal and (b) the vertical directions.

Tables (1)

Tables Icon

Table 1 Central Positions of Two Overlapping Circles in the 2D-PSD and the Pointing Error Before and After Alignment

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ˜ ( x f , y f )= 1 jλ f 0 exp[ jk 2 f 0 (1 d 0 f 0 )( x f 2 + y f 2 )]F{ E ˜ (x,y)}.
E ˜ ( x f , y f )= 1 jλf F{ E ˜ (x,y)}.
E ˜ ( x f , y f )= { E ˜ ( x f , y f )circ( x f 2 + y f 2 r f ) } x f = x f , y f = y f .
E ˜ ( x , y )= 1 jλf F{ E ˜ ( x f , y f )}.
I( x , y )= E ˜ ( x , y ) E ˜ ( x , y ).
PS D 2D ( x If , y If )= | F{I( x , y )} | 2 A .
PS D 2D ( x If , y If )= | E ˜ ( x f , y f ) E ˜ ( x f , y f ) | 2 .

Metrics