Abstract

When two signals having overlapping frequency content are received at the same time, they interfere to obstruct detection of the information carried by each individual signal. We introduce here a new nonlinear optoelectronic filtering technique that enables the ability to individually detect two concurrent and spectrally overlapping signals, even when the amplitude ratio between the signals is as high as 100,000. We demonstrate our system for application in steganography where we unveil the information carried by a hidden desired RF signal, while a dominant interferer signal is intentionally transmitted nearby and at the same frequency. Our signal recovery technique, which operates assuming no a priori knowledge of either signal, presents an additional pathway that can be used to control how information can be processed and communicated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical investigation of all-optical add-drop multiplexing for spectrally overlapping OFDM signals

S. Sygletos, S. Fabbri, E. Giacoumidis, M. Sorokina, D. M. Marom, M.F.C. Stephens, D. Klonidis, I. Tomkos, and A. D. Ellis
Opt. Express 23(5) 5888-5897 (2015)

Microwave photonic RF front-end for co-frequency co-time full duplex 5G communication with integrated RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion

Linbojie Huang, Yucheng Zhang, Xiaolei Li, Lei Deng, Mengfan Cheng, Songnian Fu, Ming Tang, and Deming Liu
Opt. Express 27(22) 32147-32157 (2019)

Dedicated Protection With Signal Overlap in Elastic Optical Networks

F. Cugini, M. Ruiz, T. Foggi, L. Velasco, N. Sambo, and P. Castoldi
J. Opt. Commun. Netw. 9(12) 1074-1084 (2017)

References

  • View by:
  • |
  • |
  • |

  1. O. Oyman, “Opportunistic scheduling and spectrum reuse in relay-based cellular networks,” IEEE Trans. Wirel. Commun. 9(3), 1074–1085 (2010).
  2. D. Charadia, E. McMilin, and S. Katti, “Full duplex radios,” Proc. ACM SIGCOMM, (2013).
  3. N. F. Johnson and S. Jajodia, “Exploring steganography: seeing the unseen,” Computer 31(2), 26–34 (1998).
  4. J. E. Lenz, “A review of magnetic sensors,” Proc. IEEE 78(6), 973–989 (1990).
  5. F. G. Schröder, Instruments and Methods for the Radio Detection of High Energy Cosmic Rays (Springer, 2012).
  6. C. H. Cox III, Analog Optical Links: Theory and Practice (Cambridge University Press, 2006).
  7. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
  8. J. Capmany, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
  9. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
  10. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
  11. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
  12. L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
  13. V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of Microwave Photonics (Wiley, 2015).
  14. A. Ramaswamy, A. Johansson, J. Klamkin, H. Chou, C. Sheldon, M. J. Rodwell, L. A. Coldren, and J. E. Bowers, “Integrated coherent receivers for high-linearity microwave photonic links,” J. Lightwave Technol. 26(1), 209–216 (2008).
  15. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
  16. Y. Hua, P. Liang, Y. Ma, A. C. Cirik, and Q. Gao, “A method for broadband full-duplex MIMO radio,” IEEE Signal Process. Lett. 19(12), 793–796 (2012).
  17. A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).
  18. S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).
  19. E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Trans. Wirel. Commun. 14(7), 3519–3532 (2015).
  20. K. E. Kolodziej, J. G. McMichael, and B. T. Perry, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wirel. Commun. 15(6), 4321–4334 (2016).
  21. M. P. Chang, C. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(9), 1018 (2015).
  22. W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “A nonlinear optoelectronic filter for electronic signal processing,” Sci. Rep. 4, 3613 (2014).
    [PubMed]
  23. V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).
  24. V. J. Urick, J. F. Diehl, J. D. McKinney, J. M. Singley, and C. E. Sunderman, “Nonlinear optical angle modulation for suppression of RF interference,” IEEE Trans. Microw. Theory Tech. 64(7), 2198–2204 (2016).
  25. J. M. Dailey, A. Agarwal, P. Toliver, R. Miller, J. Morman, and J. C. Liberti, “Photonics-based same-frequency RF interference mitigation” in IEEE International Topical Meeting on Microwave Photonics (2016).
  26. S. Katzenbeisser, Information Hiding Techniques for Steganography and Digital Watermarking (Artech House Print, 1999)
  27. R. J. Anderson and F. A. P. Petitcolas, “On the limits of steganography,” IEEE J. Sel. Areas Comm. 16(4), 474–481 (1998).
  28. I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and T. Kalker, Digital Watermarking and Steganography ()Morgan Kaufmann Publishers, 2008).
  29. N. Provos and P. Honeyman, “Hide and seek: an introduction to steganography,” IEEE Secur. Priv. 99(3), 32–44 (2003).
  30. A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital image steganography: survey and analysis of current methods,” Signal Process. 90(3), 727–752 (2010).
  31. L. M. Marvel, C. R. Boncelet, and C. T. Retter, “Spread spectrum image steganography,” IEEE Trans. Image Process. 8(8), 1075–1083 (1999).
    [PubMed]
  32. D. Artz, “Digital steganography: hiding data within data,” IEEE Internet Comput. 5(3), 75–80 (2001).
  33. B. H. Kolner and D. W. Dolfi, “Intermodulation distortion and compression in an integrated electrooptic modulator,” Appl. Opt. 26(17), 3676–3680 (1987).
    [PubMed]
  34. W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photonics J. 4(5), 1256–1266 (2012).
  35. C. A. Flory and R. C. Taber, “High performance distributed Bragg reflector microwave resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(2), 486–495 (1997).
    [PubMed]
  36. J. Korhonen, Introduction to 4G Mobile Communications (Artech House, 2014).
  37. J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
    [PubMed]
  38. M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
  39. P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

2016 (2)

K. E. Kolodziej, J. G. McMichael, and B. T. Perry, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wirel. Commun. 15(6), 4321–4334 (2016).

V. J. Urick, J. F. Diehl, J. D. McKinney, J. M. Singley, and C. E. Sunderman, “Nonlinear optical angle modulation for suppression of RF interference,” IEEE Trans. Microw. Theory Tech. 64(7), 2198–2204 (2016).

2015 (3)

M. P. Chang, C. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(9), 1018 (2015).

E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Trans. Wirel. Commun. 14(7), 3519–3532 (2015).

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).

2014 (3)

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “A nonlinear optoelectronic filter for electronic signal processing,” Sci. Rep. 4, 3613 (2014).
[PubMed]

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).

2013 (2)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).

M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).

2012 (3)

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
[PubMed]

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photonics J. 4(5), 1256–1266 (2012).

Y. Hua, P. Liang, Y. Ma, A. C. Cirik, and Q. Gao, “A method for broadband full-duplex MIMO radio,” IEEE Signal Process. Lett. 19(12), 793–796 (2012).

2011 (3)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

2010 (3)

A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital image steganography: survey and analysis of current methods,” Signal Process. 90(3), 727–752 (2010).

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).

O. Oyman, “Opportunistic scheduling and spectrum reuse in relay-based cellular networks,” IEEE Trans. Wirel. Commun. 9(3), 1074–1085 (2010).

2009 (1)

2008 (1)

2007 (1)

J. Capmany, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).

2006 (1)

2003 (1)

N. Provos and P. Honeyman, “Hide and seek: an introduction to steganography,” IEEE Secur. Priv. 99(3), 32–44 (2003).

2001 (1)

D. Artz, “Digital steganography: hiding data within data,” IEEE Internet Comput. 5(3), 75–80 (2001).

1999 (1)

L. M. Marvel, C. R. Boncelet, and C. T. Retter, “Spread spectrum image steganography,” IEEE Trans. Image Process. 8(8), 1075–1083 (1999).
[PubMed]

1998 (2)

R. J. Anderson and F. A. P. Petitcolas, “On the limits of steganography,” IEEE J. Sel. Areas Comm. 16(4), 474–481 (1998).

N. F. Johnson and S. Jajodia, “Exploring steganography: seeing the unseen,” Computer 31(2), 26–34 (1998).

1997 (1)

C. A. Flory and R. C. Taber, “High performance distributed Bragg reflector microwave resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(2), 486–495 (1997).
[PubMed]

1990 (1)

J. E. Lenz, “A review of magnetic sensors,” Proc. IEEE 78(6), 973–989 (1990).

1987 (1)

Ahmed, E.

E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Trans. Wirel. Commun. 14(7), 3519–3532 (2015).

Anderson, R. J.

R. J. Anderson and F. A. P. Petitcolas, “On the limits of steganography,” IEEE J. Sel. Areas Comm. 16(4), 474–481 (1998).

Artz, D.

D. Artz, “Digital steganography: hiding data within data,” IEEE Internet Comput. 5(3), 75–80 (2001).

Bauters, J. E.

M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

Bliss, D. W.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).

Boncelet, C. R.

L. M. Marvel, C. R. Boncelet, and C. T. Retter, “Spread spectrum image steganography,” IEEE Trans. Image Process. 8(8), 1075–1083 (1999).
[PubMed]

Bowers, J. E.

M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).

A. Ramaswamy, A. Johansson, J. Klamkin, H. Chou, C. Sheldon, M. J. Rodwell, L. A. Coldren, and J. E. Bowers, “Integrated coherent receivers for high-linearity microwave photonic links,” J. Lightwave Technol. 26(1), 209–216 (2008).

Brand, J.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).

J. Capmany, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).

Chang, M. P.

M. P. Chang, C. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(9), 1018 (2015).

Charadia, D.

D. Charadia, E. McMilin, and S. Katti, “Full duplex radios,” Proc. ACM SIGCOMM, (2013).

Cheddad, A.

A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital image steganography: survey and analysis of current methods,” Signal Process. 90(3), 727–752 (2010).

Choi, J.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).

Chou, H.

Cirik, A. C.

Y. Hua, P. Liang, Y. Ma, A. C. Cirik, and Q. Gao, “A method for broadband full-duplex MIMO radio,” IEEE Signal Process. Lett. 19(12), 793–796 (2012).

Coldren, L. A.

Condell, J.

A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital image steganography: survey and analysis of current methods,” Signal Process. 90(3), 727–752 (2010).

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).

Curran, K.

A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital image steganography: survey and analysis of current methods,” Signal Process. 90(3), 727–752 (2010).

Davenport, M. L.

M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).

Delfyett, P. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

Diddams, S. A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

Diehl, J. F.

V. J. Urick, J. F. Diehl, J. D. McKinney, J. M. Singley, and C. E. Sunderman, “Nonlinear optical angle modulation for suppression of RF interference,” IEEE Trans. Microw. Theory Tech. 64(7), 2198–2204 (2016).

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).

Dolfi, D. W.

Donnelly, J. P.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

Doylend, J. K.

M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).

Eltawil, A. M.

E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Trans. Wirel. Commun. 14(7), 3519–3532 (2015).

Flory, C. A.

C. A. Flory and R. C. Taber, “High performance distributed Bragg reflector microwave resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(2), 486–495 (1997).
[PubMed]

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

Gao, Q.

Y. Hua, P. Liang, Y. Ma, A. C. Cirik, and Q. Gao, “A method for broadband full-duplex MIMO radio,” IEEE Signal Process. Lett. 19(12), 793–796 (2012).

Gee, S.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

Georgas, M.

Gopinath, J. T.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

Guo, D.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).

Heck, M. J. R.

M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).

Honeyman, P.

N. Provos and P. Honeyman, “Hide and seek: an introduction to steganography,” IEEE Secur. Priv. 99(3), 32–44 (2003).

Hong, S.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).

Hua, Y.

Y. Hua, P. Liang, Y. Ma, A. C. Cirik, and Q. Gao, “A method for broadband full-duplex MIMO radio,” IEEE Signal Process. Lett. 19(12), 793–796 (2012).

Jain, M.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).

Jain, S.

M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).

Jajodia, S.

N. F. Johnson and S. Jajodia, “Exploring steganography: seeing the unseen,” Computer 31(2), 26–34 (1998).

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

Johansson, A.

Johnson, N. F.

N. F. Johnson and S. Jajodia, “Exploring steganography: seeing the unseen,” Computer 31(2), 26–34 (1998).

Juodawlkis, P. W.

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “A nonlinear optoelectronic filter for electronic signal processing,” Sci. Rep. 4, 3613 (2014).
[PubMed]

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photonics J. 4(5), 1256–1266 (2012).

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

Katti, S.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).

D. Charadia, E. McMilin, and S. Katti, “Full duplex radios,” Proc. ACM SIGCOMM, (2013).

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

Klamkin, J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

A. Ramaswamy, A. Johansson, J. Klamkin, H. Chou, C. Sheldon, M. J. Rodwell, L. A. Coldren, and J. E. Bowers, “Integrated coherent receivers for high-linearity microwave photonic links,” J. Lightwave Technol. 26(1), 209–216 (2008).

Kolner, B. H.

Kolodziej, K. E.

K. E. Kolodziej, J. G. McMichael, and B. T. Perry, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wirel. Commun. 15(6), 4321–4334 (2016).

Kurczveil, G.

M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).

Lee, C.

M. P. Chang, C. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(9), 1018 (2015).

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

Lenz, J. E.

J. E. Lenz, “A review of magnetic sensors,” Proc. IEEE 78(6), 973–989 (1990).

Leu, J.

Levis, P.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).

Li, H.

Liang, P.

Y. Hua, P. Liang, Y. Ma, A. C. Cirik, and Q. Gao, “A method for broadband full-duplex MIMO radio,” IEEE Signal Process. Lett. 19(12), 793–796 (2012).

Loh, W.

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “A nonlinear optoelectronic filter for electronic signal processing,” Sci. Rep. 4, 3613 (2014).
[PubMed]

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photonics J. 4(5), 1256–1266 (2012).

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

Ma, Y.

Y. Hua, P. Liang, Y. Ma, A. C. Cirik, and Q. Gao, “A method for broadband full-duplex MIMO radio,” IEEE Signal Process. Lett. 19(12), 793–796 (2012).

Maleki, L.

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).

Marvel, L. M.

L. M. Marvel, C. R. Boncelet, and C. T. Retter, “Spread spectrum image steganography,” IEEE Trans. Image Process. 8(8), 1075–1083 (1999).
[PubMed]

Mc Kevitt, P.

A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital image steganography: survey and analysis of current methods,” Signal Process. 90(3), 727–752 (2010).

McKinney, J. D.

V. J. Urick, J. F. Diehl, J. D. McKinney, J. M. Singley, and C. E. Sunderman, “Nonlinear optical angle modulation for suppression of RF interference,” IEEE Trans. Microw. Theory Tech. 64(7), 2198–2204 (2016).

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).

McMichael, J. G.

K. E. Kolodziej, J. G. McMichael, and B. T. Perry, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wirel. Commun. 15(6), 4321–4334 (2016).

McMilin, E.

D. Charadia, E. McMilin, and S. Katti, “Full duplex radios,” Proc. ACM SIGCOMM, (2013).

Mehlman, J.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).

Missaggia, L. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

Moss, B.

Napoleone, A.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

O’Donnell, F. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

Oakley, D. C.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

Orcutt, J. S.

Oyman, O.

O. Oyman, “Opportunistic scheduling and spectrum reuse in relay-based cellular networks,” IEEE Trans. Wirel. Commun. 9(3), 1074–1085 (2010).

Perry, B. T.

K. E. Kolodziej, J. G. McMichael, and B. T. Perry, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wirel. Commun. 15(6), 4321–4334 (2016).

Petitcolas, F. A. P.

R. J. Anderson and F. A. P. Petitcolas, “On the limits of steganography,” IEEE J. Sel. Areas Comm. 16(4), 474–481 (1998).

Plant, J. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

Popovic, M.

Provos, N.

N. Provos and P. Honeyman, “Hide and seek: an introduction to steganography,” IEEE Secur. Priv. 99(3), 32–44 (2003).

Prucnal, P. R.

M. P. Chang, C. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(9), 1018 (2015).

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

Ram, R. J.

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “A nonlinear optoelectronic filter for electronic signal processing,” Sci. Rep. 4, 3613 (2014).
[PubMed]

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
[PubMed]

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photonics J. 4(5), 1256–1266 (2012).

Ramaswamy, A.

Rangarajan, S.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).

Retter, C. T.

L. M. Marvel, C. R. Boncelet, and C. T. Retter, “Spread spectrum image steganography,” IEEE Trans. Image Process. 8(8), 1075–1083 (1999).
[PubMed]

Ripin, D. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

Rodwell, M. J.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

Sabharwal, A.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).

Schniter, P.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).

Seeds, A. J.

Shainline, J.

Sheldon, C.

Singley, J. M.

V. J. Urick, J. F. Diehl, J. D. McKinney, J. M. Singley, and C. E. Sunderman, “Nonlinear optical angle modulation for suppression of RF interference,” IEEE Trans. Microw. Theory Tech. 64(7), 2198–2204 (2016).

Srinivasan, S.

M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).

Stojanovic, V.

Sun, C.

Sun, J.

Sunderman, C. E.

V. J. Urick, J. F. Diehl, J. D. McKinney, J. M. Singley, and C. E. Sunderman, “Nonlinear optical angle modulation for suppression of RF interference,” IEEE Trans. Microw. Theory Tech. 64(7), 2198–2204 (2016).

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).

Taber, R. C.

C. A. Flory and R. C. Taber, “High performance distributed Bragg reflector microwave resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(2), 486–495 (1997).
[PubMed]

Tang, Y.

M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

Urick, V. J.

V. J. Urick, J. F. Diehl, J. D. McKinney, J. M. Singley, and C. E. Sunderman, “Nonlinear optical angle modulation for suppression of RF interference,” IEEE Trans. Microw. Theory Tech. 64(7), 2198–2204 (2016).

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).

Uroševic, S.

Weaver, M.

Weiner, A. M.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).

Wichman, R.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).

Williams, K. J.

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).

Wu, B.

M. P. Chang, C. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(9), 1018 (2015).

Yao, J.

Yegnanarayanan, S.

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “A nonlinear optoelectronic filter for electronic signal processing,” Sci. Rep. 4, 3613 (2014).
[PubMed]

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photonics J. 4(5), 1256–1266 (2012).

Zgraggen, E.

Appl. Opt. (1)

Computer (1)

N. F. Johnson and S. Jajodia, “Exploring steganography: seeing the unseen,” Computer 31(2), 26–34 (1998).

IEEE Commun. Mag. (1)

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).

IEEE Internet Comput. (1)

D. Artz, “Digital steganography: hiding data within data,” IEEE Internet Comput. 5(3), 75–80 (2001).

IEEE J. Sel. Areas Comm. (2)

R. J. Anderson and F. A. P. Petitcolas, “On the limits of steganography,” IEEE J. Sel. Areas Comm. 16(4), 474–481 (1998).

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).

IEEE J. Sel. Top. Quantum Electron. (2)

M. J. R. Heck, J. E. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-µm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1698–1714 (2011).

IEEE Photonics J. (1)

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photonics J. 4(5), 1256–1266 (2012).

IEEE Photonics Technol. Lett. (2)

M. P. Chang, C. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(9), 1018 (2015).

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).

IEEE Secur. Priv. (1)

N. Provos and P. Honeyman, “Hide and seek: an introduction to steganography,” IEEE Secur. Priv. 99(3), 32–44 (2003).

IEEE Signal Process. Lett. (1)

Y. Hua, P. Liang, Y. Ma, A. C. Cirik, and Q. Gao, “A method for broadband full-duplex MIMO radio,” IEEE Signal Process. Lett. 19(12), 793–796 (2012).

IEEE Trans. Image Process. (1)

L. M. Marvel, C. R. Boncelet, and C. T. Retter, “Spread spectrum image steganography,” IEEE Trans. Image Process. 8(8), 1075–1083 (1999).
[PubMed]

IEEE Trans. Microw. Theory Tech. (1)

V. J. Urick, J. F. Diehl, J. D. McKinney, J. M. Singley, and C. E. Sunderman, “Nonlinear optical angle modulation for suppression of RF interference,” IEEE Trans. Microw. Theory Tech. 64(7), 2198–2204 (2016).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

C. A. Flory and R. C. Taber, “High performance distributed Bragg reflector microwave resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(2), 486–495 (1997).
[PubMed]

IEEE Trans. Wirel. Commun. (3)

E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Trans. Wirel. Commun. 14(7), 3519–3532 (2015).

K. E. Kolodziej, J. G. McMichael, and B. T. Perry, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wirel. Commun. 15(6), 4321–4334 (2016).

O. Oyman, “Opportunistic scheduling and spectrum reuse in relay-based cellular networks,” IEEE Trans. Wirel. Commun. 9(3), 1074–1085 (2010).

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).

Nat. Photonics (4)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).

J. Capmany, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).

Opt. Express (1)

Proc. IEEE (1)

J. E. Lenz, “A review of magnetic sensors,” Proc. IEEE 78(6), 973–989 (1990).

Sci. Rep. (1)

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “A nonlinear optoelectronic filter for electronic signal processing,” Sci. Rep. 4, 3613 (2014).
[PubMed]

Signal Process. (1)

A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital image steganography: survey and analysis of current methods,” Signal Process. 90(3), 727–752 (2010).

Other (8)

I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and T. Kalker, Digital Watermarking and Steganography ()Morgan Kaufmann Publishers, 2008).

J. Korhonen, Introduction to 4G Mobile Communications (Artech House, 2014).

J. M. Dailey, A. Agarwal, P. Toliver, R. Miller, J. Morman, and J. C. Liberti, “Photonics-based same-frequency RF interference mitigation” in IEEE International Topical Meeting on Microwave Photonics (2016).

S. Katzenbeisser, Information Hiding Techniques for Steganography and Digital Watermarking (Artech House Print, 1999)

F. G. Schröder, Instruments and Methods for the Radio Detection of High Energy Cosmic Rays (Springer, 2012).

C. H. Cox III, Analog Optical Links: Theory and Practice (Cambridge University Press, 2006).

D. Charadia, E. McMilin, and S. Katti, “Full duplex radios,” Proc. ACM SIGCOMM, (2013).

V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of Microwave Photonics (Wiley, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diagram of system concept for communication via a hidden desired signal. A desired signal (blue) and an intentionally transmitted spectrally overlapping interferer (red) are combined and sent to an intended receiver. An eavesdropper listening in is only able to detect the information of the interferer, whereas the optoelectronic filter rejects the interferer and passes the desired signal through for detection.
Fig. 2
Fig. 2 Nonlinear optoelectronic filter system schematic and operation. (a) System diagram of a planted interferer (Tx1) and a desired signal (Tx2) whose channels are combined and passed through an optoelectronic filter. The normalized power spectra in (b, c) of the detected signals at receivers Rx1 and Rx2 show the preferential suppression of the interferer signal. (d) illustrates the system diagram of the signal processing stage for bypassing the intermodulation spur of the optoelectronic filter. The RF spectrum at the signal processing stage in (e) illustrates that the desired signal and intermodulation spur combines to form a single signal at baseband.
Fig. 3
Fig. 3 Nonlinear optoelectronic filter interferer rejection. Measurement of the interferer rejection before and after the filter. The interferer (red), transmitted at 2.5 GHz, is initially 64 dB larger than the desired signal (blue) located only 4.5 Hz away and thus masks the presence of the desired signal in the spectrum. After passing through the optoelectronic filter, the amplitude ratio diminishes to 13 dB, which signifies a rejection ratio of 51 dB for the interferer.
Fig. 4
Fig. 4 Demonstration of signal masking and recovery using the nonlinear optoelectronic filter. (a−c) Measurements of the transmitted RF spectra, recovered interferer phase, and recovered desired signal phase when their frequencies are identical and the ratio between the interferer power and the desired signal power is 35 dB, 40 dB, and 45 dB. The desired signal noise intensifies as the power ratio increases; however, the recovered phase is always centered on its ideal transmitted value.
Fig. 5
Fig. 5 Analysis of the optoelectronic filter phase error. (a, b) IQ diagram indicating the spread in phase for the case where the interferer and desired signal power ratio is 35 dB. (c) RMS phase error for power ratios of 35 dB, 40 dB, and 45 dB. Without the optoelectronic filter, the phase is recovered at a rate given by chance and does not improve with averaging. With the filter, the phase error improves significantly and improves further with averaging since the distribution is centered on its ideal value.
Fig. 6
Fig. 6 Demonstration of the nonlinear optoelectronic filter at 10 kHz offset. (a) RF spectrum depicting an interferer and desired signal both QPSK modulated and separated by 10 kHz. (b) Interferer phase recovered through direct demodulation whose phase pattern spells out “MIT”. (c) Recovered desired signal phase using the nonlinear optoelectronic filter whose hidden phase pattern spells out “LL”.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V( t )= RP 2 [ 1+sin( π V π [ v int ( t )+ v ds ( t ) ] ) ],
V int ( t )=PR J 1 ( π v int V π ) J 0 ( π v ds V π )sin( ω int t ) V ds ( t )=PR J 0 ( π v int V π ) J 1 ( π v ds V π )sin( ω ds t ).
V mixed ( t )=Acos( ω ds t ω int t+ ϕ ds ( t ) ϕ int ( t ) ),

Metrics