Abstract

In this paper, the relation between the laser-induced damage threshold (LIDT) and the electric field intensity (EFI) distribution inside a CM is investigated experimentally. We show that it is possible to increase the LIDT values by slightly modifying the electric field of a standing wave distribution without loss of spectral and dispersion performance. Suggested CM design improvement could increase reliability and LIDT performance of both CM elements and high-power systems they are used in.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers

Marine Chorel, Thomas Lanternier, Éric Lavastre, Nicolas Bonod, Bruno Bousquet, and Jérôme Néauport
Opt. Express 26(9) 11764-11774 (2018)

Effect of electric field on laser induced damage threshold of multilayer dielectric gratings

J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer
Opt. Express 15(19) 12508-12522 (2007)

Femtosecond laser-induced damage of HfO2/SiO2 mirror with different stack structure

Shunli Chen, Yuan’an Zhao, Zhenkun Yu, Zhou Fang, Dawei Li, Hongbo He, and Jianda Shao
Appl. Opt. 51(25) 6188-6195 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
    [PubMed]
  2. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
  3. R. Ell, U. Morgner, F. X. Kãârtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26(6), 373–375 (2001).
    [PubMed]
  4. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22(11), 831–833 (1997).
    [PubMed]
  5. N. Matuschek, Theory and Design of Double-chirped Mirrors (Hartung-Gorre, 1999).
  6. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).
  7. B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, “Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25(4), 275–277 (2000).
    [PubMed]
  8. R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).
  9. V. Pervak, O. Razskazovskaya, B. Angelov Ivan, L. Vodopyanov Konstantin, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).
  10. J. A. Dobrowolski and R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedures,” Appl. Opt. 29(19), 2876–2893 (1990).
    [PubMed]
  11. K. Starke, T. Gross, and D. Ristau, “Laser-induced damage investigation in chirped mirrors for ultrashort-pulse laser systems,” Proc. SPIE 4347, 528–534 (2001).
  12. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
    [PubMed]
  13. B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37(9), 1478–1480 (2012).
    [PubMed]
  14. A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188–C196 (2011).
    [PubMed]
  15. I. B. Angelov, M. von Pechmann, M. K. Trubetskov, F. Krausz, and V. Pervak, “Optical breakdown of multilayer thin-films induced by ultrashort pulses at MHz repetition rates,” Opt. Express 21(25), 31453–31461 (2013).
    [PubMed]
  16. S. Chen, Y. A. Zhao, H. He, and J. Shao, “Effect of standing-wave field distribution on femtosecond laser-induced damage of HfO2/SiO2 mirror coating,” Chin. Opt. Lett. 9(8), 083101 (2011).
  17. G. Abromavicius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).
  18. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15(19), 12508–12522 (2007).
    [PubMed]
  19. V. Pervak, M. Trubetskov, and A. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2009).
  20. I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage of dispersive coatings,” Proc. SPIE 8190, 81900B (2011).
  21. O. Razskazovskaya, T. T. Luu, M. K. Trubetskov, E. Goulielmakis, and V. Pervak, “Nonlinear behavior and damage of dispersive multilayer optical coatings induced by two-photon absorption,” Proc. SPIE 9237, 92370L (2014).
  22. “Optilayer software”, available from: http://www.optilayer.com/ , revised date: 2017–04–09.
  23. L. Smalakys, G. Batavičiūtė, E. Pupka, and A. Melninkaitis, “Parametric analysis of damage probability: a tool to identify weak layers within multilayer coatings,” Appl. Opt. 54(10), 2953–2962 (2015).
    [PubMed]
  24. T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
    [PubMed]
  25. Laser and laser-related equipment – Test methods for laser-induced damage threshold – Part 1: Definitions and general principles (ISO 21254–1:2011).
  26. Laser and laser-related equipment – Test methods for laser-induced damage threshold – Part 2: Threshold determination (ISO 21254–2:2011).
  27. G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
    [PubMed]
  28. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3), 175–190 (1997).
  29. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [PubMed]
  30. J. Jasapara, A. V. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).

2015 (1)

2014 (2)

O. Razskazovskaya, T. T. Luu, M. K. Trubetskov, E. Goulielmakis, and V. Pervak, “Nonlinear behavior and damage of dispersive multilayer optical coatings induced by two-photon absorption,” Proc. SPIE 9237, 92370L (2014).

V. Pervak, O. Razskazovskaya, B. Angelov Ivan, L. Vodopyanov Konstantin, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

2013 (2)

I. B. Angelov, M. von Pechmann, M. K. Trubetskov, F. Krausz, and V. Pervak, “Optical breakdown of multilayer thin-films induced by ultrashort pulses at MHz repetition rates,” Opt. Express 21(25), 31453–31461 (2013).
[PubMed]

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
[PubMed]

2012 (1)

2011 (3)

2009 (2)

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
[PubMed]

V. Pervak, M. Trubetskov, and A. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2009).

2008 (1)

2007 (3)

G. Abromavicius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).

J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15(19), 12508–12522 (2007).
[PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).

2001 (3)

R. Ell, U. Morgner, F. X. Kãârtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26(6), 373–375 (2001).
[PubMed]

K. Starke, T. Gross, and D. Ristau, “Laser-induced damage investigation in chirped mirrors for ultrashort-pulse laser systems,” Proc. SPIE 4347, 528–534 (2001).

J. Jasapara, A. V. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).

2000 (3)

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).

B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, “Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25(4), 275–277 (2000).
[PubMed]

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

1997 (2)

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[PubMed]

1994 (1)

1990 (1)

Abromavicius, G.

G. Abromavicius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).

Amotchkina, T. V.

Angelov, I. B.

I. B. Angelov, M. von Pechmann, M. K. Trubetskov, F. Krausz, and V. Pervak, “Optical breakdown of multilayer thin-films induced by ultrashort pulses at MHz repetition rates,” Opt. Express 21(25), 31453–31461 (2013).
[PubMed]

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage of dispersive coatings,” Proc. SPIE 8190, 81900B (2011).

Angelov Ivan, B.

V. Pervak, O. Razskazovskaya, B. Angelov Ivan, L. Vodopyanov Konstantin, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

Angelow, G.

Apai, P.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

Apolonski, A.

Austin, R. R.

Balas, M.

Bataviciute, G.

L. Smalakys, G. Batavičiūtė, E. Pupka, and A. Melninkaitis, “Parametric analysis of damage probability: a tool to identify weak layers within multilayer coatings,” Appl. Opt. 54(10), 2953–2962 (2015).
[PubMed]

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
[PubMed]

Boiko, A.

Bonod, N.

Buzelis, R.

G. Abromavicius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).

Chen, S.

Chmel, A. E.

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3), 175–190 (1997).

Commandré, M.

de Villele, G.

DeBell, G.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

Desserouer, F.

Diddams, S. A.

Dobrowolski, J. A.

Drazdys, R.

Dupuy, G.

Ehlers, H.

Ell, R.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[PubMed]

Ferencz, K.

Flamand, J.

Fu, X.

Fujimoto, J. G.

Gallais, L.

Gallmann, L.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).

Golubovic, B.

Goulielmakis, E.

O. Razskazovskaya, T. T. Luu, M. K. Trubetskov, E. Goulielmakis, and V. Pervak, “Nonlinear behavior and damage of dispersive multilayer optical coatings induced by two-photon absorption,” Proc. SPIE 9237, 92370L (2014).

Grigas, P.

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
[PubMed]

Gross, T.

K. Starke, T. Gross, and D. Ristau, “Laser-induced damage investigation in chirped mirrors for ultrashort-pulse laser systems,” Proc. SPIE 4347, 528–534 (2001).

Grupe, D.

Haus, H. A.

He, H.

Heine, C.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[PubMed]

Ippen, E. P.

Jasapara, J.

J. Jasapara, A. V. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).

Jensen, L.

Jones, D. J.

Jupé, M.

Kãârtner, F. X.

Kaladgew, S.

Karsch, S.

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage of dispersive coatings,” Proc. SPIE 8190, 81900B (2011).

Kärtner, F. X.

Keller, U.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22(11), 831–833 (1997).
[PubMed]

Kemp, R. A.

Kicas, S.

Köházi-Kis, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

Kovács, A. P.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

Krausz, F.

Lakó, S.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

Lavastre, E.

Lederer, M. J.

Louderback, A. W.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

Luther-Davies, B.

Luu, T. T.

O. Razskazovskaya, T. T. Luu, M. K. Trubetskov, E. Goulielmakis, and V. Pervak, “Nonlinear behavior and damage of dispersive multilayer optical coatings induced by two-photon absorption,” Proc. SPIE 9237, 92370L (2014).

Major, Z.

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage of dispersive coatings,” Proc. SPIE 8190, 81900B (2011).

Mangote, B.

Matuschek, N.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22(11), 831–833 (1997).
[PubMed]

Mažule, L.

Melninkaitis, A.

Mende, M.

Mirauskas, J.

Morf, R.

Morgner, U.

Mott, L.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

Nampoothiri, A. V. V.

J. Jasapara, A. V. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).

Naumov, S.

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).

Neauport, J.

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[PubMed]

Pervak, V.

O. Razskazovskaya, T. T. Luu, M. K. Trubetskov, E. Goulielmakis, and V. Pervak, “Nonlinear behavior and damage of dispersive multilayer optical coatings induced by two-photon absorption,” Proc. SPIE 9237, 92370L (2014).

V. Pervak, O. Razskazovskaya, B. Angelov Ivan, L. Vodopyanov Konstantin, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

I. B. Angelov, M. von Pechmann, M. K. Trubetskov, F. Krausz, and V. Pervak, “Optical breakdown of multilayer thin-films induced by ultrashort pulses at MHz repetition rates,” Opt. Express 21(25), 31453–31461 (2013).
[PubMed]

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage of dispersive coatings,” Proc. SPIE 8190, 81900B (2011).

V. Pervak, M. Trubetskov, and A. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2009).

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
[PubMed]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).

Pupka, E.

Razé, G.

Razskazovskaya, O.

V. Pervak, O. Razskazovskaya, B. Angelov Ivan, L. Vodopyanov Konstantin, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

O. Razskazovskaya, T. T. Luu, M. K. Trubetskov, E. Goulielmakis, and V. Pervak, “Nonlinear behavior and damage of dispersive multilayer optical coatings induced by two-photon absorption,” Proc. SPIE 9237, 92370L (2014).

Reed, M. K.

Ristau, D.

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37(9), 1478–1480 (2012).
[PubMed]

J. Jasapara, A. V. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).

K. Starke, T. Gross, and D. Ristau, “Laser-induced damage investigation in chirped mirrors for ultrashort-pulse laser systems,” Proc. SPIE 4347, 528–534 (2001).

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[PubMed]

Rudolph, W.

J. Jasapara, A. V. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).

Scheuer, V.

Schibli, T.

Shao, J.

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[PubMed]

Sirutkaitis, V.

Smalakys, L.

L. Smalakys, G. Batavičiūtė, E. Pupka, and A. Melninkaitis, “Parametric analysis of damage probability: a tool to identify weak layers within multilayer coatings,” Appl. Opt. 54(10), 2953–2962 (2015).
[PubMed]

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
[PubMed]

Spielmann, C.

Starke, K.

K. Starke, T. Gross, and D. Ristau, “Laser-induced damage investigation in chirped mirrors for ultrashort-pulse laser systems,” Proc. SPIE 4347, 528–534 (2001).

J. Jasapara, A. V. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).

Steiner-Shepard, M. K.

Steinmeyer, G.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[PubMed]

Sugita, A.

Sutter, D. H.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).

Szipöcs, R.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
[PubMed]

Teisset, C.

Tikhonravov, A.

V. Pervak, M. Trubetskov, and A. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2009).

Tikhonravov, A. V.

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
[PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

Tilsch, M.

Tolenis, T.

Trubetskov, M.

V. Pervak, O. Razskazovskaya, B. Angelov Ivan, L. Vodopyanov Konstantin, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

V. Pervak, M. Trubetskov, and A. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2009).

Trubetskov, M. K.

O. Razskazovskaya, T. T. Luu, M. K. Trubetskov, E. Goulielmakis, and V. Pervak, “Nonlinear behavior and damage of dispersive multilayer optical coatings induced by two-photon absorption,” Proc. SPIE 9237, 92370L (2014).

I. B. Angelov, M. von Pechmann, M. K. Trubetskov, F. Krausz, and V. Pervak, “Optical breakdown of multilayer thin-films induced by ultrashort pulses at MHz repetition rates,” Opt. Express 21(25), 31453–31461 (2013).
[PubMed]

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
[PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

Trushin, S. A.

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage of dispersive coatings,” Proc. SPIE 8190, 81900B (2011).

Tschudi, T.

Van Engen, A. G.

Vodopyanov Konstantin, L.

V. Pervak, O. Razskazovskaya, B. Angelov Ivan, L. Vodopyanov Konstantin, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

von Conta, A.

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage of dispersive coatings,” Proc. SPIE 8190, 81900B (2011).

von Pechmann, M.

Zerrad, M.

Zhao, Y. A.

Adv. Opt. Technol. (1)

V. Pervak, O. Razskazovskaya, B. Angelov Ivan, L. Vodopyanov Konstantin, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

Appl. Opt. (4)

Appl. Phys. B (3)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(1), S51–S57 (2000).

Chin. Opt. Lett. (1)

Mater. Sci. Eng. B (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3), 175–190 (1997).

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. B (1)

J. Jasapara, A. V. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[PubMed]

Proc. SPIE (5)

V. Pervak, M. Trubetskov, and A. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2009).

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage of dispersive coatings,” Proc. SPIE 8190, 81900B (2011).

O. Razskazovskaya, T. T. Luu, M. K. Trubetskov, E. Goulielmakis, and V. Pervak, “Nonlinear behavior and damage of dispersive multilayer optical coatings induced by two-photon absorption,” Proc. SPIE 9237, 92370L (2014).

K. Starke, T. Gross, and D. Ristau, “Laser-induced damage investigation in chirped mirrors for ultrashort-pulse laser systems,” Proc. SPIE 4347, 528–534 (2001).

G. Abromavicius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).

Rev. Sci. Instrum. (1)

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
[PubMed]

Other (4)

“Optilayer software”, available from: http://www.optilayer.com/ , revised date: 2017–04–09.

Laser and laser-related equipment – Test methods for laser-induced damage threshold – Part 1: Definitions and general principles (ISO 21254–1:2011).

Laser and laser-related equipment – Test methods for laser-induced damage threshold – Part 2: Threshold determination (ISO 21254–2:2011).

N. Matuschek, Theory and Design of Double-chirped Mirrors (Hartung-Gorre, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Reflectance coefficient (a,c) and squared electric field distribution at 1030 nm wavelength (b,d) of GTI-1 (a,b) and GTI-2 (c,d) coatings.
Fig. 2
Fig. 2 LIDT and theoretical electric field dependence on measurement angle (AOI) for GTI-1 (a) and GTI-2 (b) coatings.
Fig. 3
Fig. 3 Damage morphology measured by dark field optical microscopy (a, d, g), transversal surface scan measurements by contact profilometer (b, e, h) and SEM cross section of the damaged sites (c, f, i); a-c GTI-1 sample AOI = 0°; d-f GTI-2 sample AOI = 0°; g-i GTI-2 sample AOI = 27°. Light and dark colour layers in SEM measurements indicate Ta2O5 and SiO2 layers respectively. White and black dotted lines mark Ta2O5 and SiO2 layers of maximum electric field intensity respectively. Platinum (Pt) layer overcoated just before SEM measurement is also designated in SEM scans.
Fig. 4
Fig. 4 Designs (a, b) and spectral parameters (c, d) of CM-1 (a) and CM-2 (b) chirped mirrors.
Fig. 5
Fig. 5 Squared electric field distribution at 1030 nm wavelength for CM-1 (a) and CM-2 (b) mirrors.
Fig. 6
Fig. 6 Damage morphology measured by dark field optical microscopy (a, d), transversal surface scan measurements by contact profilometer (b, e) and SEM cross-section of the damaged sites (c, f); a-c CM-1 sample AOI = 0°; d-f CM-2 sample AOI = 0°. Light and dark colour layers in SEM measurements indicate Ta2O5 and SiO2 layers respectively. White and black dotted lines mark Ta2O5 and SiO2 layers of maximum electric field intensity respectively. Platinum (Pt) layer overcoated just before SEM measurement is also designated in SEM scans.
Fig. 7
Fig. 7 LIDT dependence on the maximum squared electric field in damaged layers (H layers).

Metrics