Abstract

We propose QPSK millimeter-wave (mm-wave) vector signal generation for D-band based on balanced precoding-assisted photonic frequency quadrupling technology employing a single intensity modulator without an optical filter. The intensity MZM is driven by a balanced pre-coding 37-GHz QPSK RF signal. The modulated optical subcarriers are directly sent into the single ended photodiode to generate 148-GHz QPSK vector signal. We experimentally demonstrate 1-Gbaud 148-GHz QPSK mm-wave vector signal generation, and investigate the bit-error-rate (BER) performance of the vector signals at 148-GHz. The experimental results show that the BER value can be achieved as low as 1.448 × 10−3 when the optical power into photodiode is 8.8dBm. To the best of our knowledge, it is the first time to realize the frequency-quadrupling vector mm-wave signal generation at D-band based on only one MZM without an optical filter.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of frequency quadrupling using a single Mach-Zehnder modulator for millimeter-wave generation and distribution over fiber systems

Mohmoud Mohamed, Xiupu Zhang, Bouchaib Hraimel, and Ke Wu
Opt. Express 16(14) 10786-10802 (2008)

W-band OFDM photonic vector signal generation employing a single Mach-Zehnder modulator and precoding

Jiangnan Xiao, Xinying Li, Yuming Xu, Ziran Zhang, Long Chen, and Jianjun Yu
Opt. Express 23(18) 24029-24034 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Zhang, M. Zhu, C. Ye, S. H. Fan, C. Liu, X. Hu, P. Cao, Q. Chang, Y. Su, and G. K. Chang, “Generation and transmission of multiband and multi-gigabit 60-GHz MMW signals in an RoF system with frequency quintupling technique,” Opt. Express 21(8), 9899–9905 (2013).
    [PubMed]
  2. T. Ohno, F. Nakajima, T. Furuta, and H. Ito, “A 240-GMz active mode-locked laser diode for ultra-broadband fiber-radio transmission systems,” in OFC 2005 (2005), paper PDP13.
  3. J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photonics Technol. Lett. 19(19), 1499–1501 (2007).
  4. J. Yu, T. Wang, Z. Xu, Z. Jia, and G. K. Chang, “A cost-effective scheme to generate and de-multiplex multiple frequency millimeter-wave signals in a ROF network,” in ECOC 2007 (2007), pp. 1–2.
  5. H. T. Huang, C. T. Lin, C. H. Ho, W. L. Liang, C. C. Wei, Y. H. Cheng, and S. Chi, “High spectral efficient W-band OFDM-RoF system with direct-detection by two cascaded single-drive MZMs,” Opt. Express 21(14), 16615–16620 (2013).
    [PubMed]
  6. J. Lu, Z. Dong, J. Liu, X. Zeng, Y. Hu, and J. Gao, “Generation of a frequency sextupled optical millimeter wave with a suppressed central carrier using one single-electrode modulator,” Opt. Fiber Technol. 20(5), 533–536 (2014).
  7. X. Li, J. Yu, and G. K. Chang, “Frequency-quadrupling vector mm-wave signal generation by only one single-drive MZM,” IEEE Photonics Technol. Lett. 28(12), 1302–1305 (2016).
  8. C. T. Lin, P. T. Shih, W. J. Jiang, E. Z. Wong, J. J. Chen, and S. Chi, “Photonic vector signal generation at microwave/millimeter-wave bands employing an optical frequency quadrupling scheme,” Opt. Lett. 34(14), 2171–2173 (2009).
    [PubMed]
  9. X. Li, J. Yu, J. Xiao, and Y. Xu, “Fiber-wireless-fiber link for 128-Gb/s PDM-16QAM signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(19), 1948–1951 (2014).
  10. A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, “40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission,” Opt. Express 19(26), B56–B63 (2011).
    [PubMed]
  11. L. Zhao, J. Yu, L. Chen, P. Min, J. Li, and R. Wang, “16QAM vector mm-wave signal generation based on phase modulator with photonic frequency doubling and pre-coding,” IEEE Photonics J. 8(2), 5500708 (2016).
  12. J. Ma, “Dual-tone QPSK optical millimeter-wave signal generation by frequency nonupling the RF signal without phase precoding,” IEEE Photonics J. 8(4), 7803407 (2016).
  13. J. Xiao, Z. Zhang, X. Li, Y. Xu, L. Chen, and J. Yu, “High-frequency photonic vector signal generation employing a single phase modulator,” IEEE Photonics J. 7(2), 7101206 (2015).
  14. C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microw. Theory Tech. 57(8), 2084–2092 (2009).
  15. X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
  16. X. Li, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and J. Yu, “W-Band 8QAM Vector Signal Generation by MZM-Based Photonic Frequency Octupling,” IEEE Photonics Technol. Lett. 27(12), 1257–1260 (2015).
  17. X. Li, Y. Xu, J. Xiao, and J. Yu, “W-band millimeter-wave vector signal generation based on precoding-assisted random photonic frequency tripling scheme enabled by phase modulator,” IEEE Photonics J. 8(2), 5500410 (2016).
  18. X. Li, J. Yu, Z. Zhang, J. Xiao, and G.-K. Chang, “Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM,” Opt. Commun. 355, 125–129 (2015).
  19. J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photonics Technol. Lett. 20, 478–480 (2008).
  20. X. Li and J. Yu, “Over 100 Gb/s Ultrabroadband MIMO Wireless Signal Delivery System at the D-Band,” IEEE Photonics J. 8(5), 1–10 (2016).
  21. J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).
  22. Y. Wang, Y. Xu, X. Li, J. Yu, and N. Chi, “Balanced precoding technique for vector signal generation based on OCS,” IEEE Photonics Technol. Lett. 27(23), 2469–2472 (2015).

2016 (5)

X. Li, J. Yu, and G. K. Chang, “Frequency-quadrupling vector mm-wave signal generation by only one single-drive MZM,” IEEE Photonics Technol. Lett. 28(12), 1302–1305 (2016).

L. Zhao, J. Yu, L. Chen, P. Min, J. Li, and R. Wang, “16QAM vector mm-wave signal generation based on phase modulator with photonic frequency doubling and pre-coding,” IEEE Photonics J. 8(2), 5500708 (2016).

J. Ma, “Dual-tone QPSK optical millimeter-wave signal generation by frequency nonupling the RF signal without phase precoding,” IEEE Photonics J. 8(4), 7803407 (2016).

X. Li, Y. Xu, J. Xiao, and J. Yu, “W-band millimeter-wave vector signal generation based on precoding-assisted random photonic frequency tripling scheme enabled by phase modulator,” IEEE Photonics J. 8(2), 5500410 (2016).

X. Li and J. Yu, “Over 100 Gb/s Ultrabroadband MIMO Wireless Signal Delivery System at the D-Band,” IEEE Photonics J. 8(5), 1–10 (2016).

2015 (5)

Y. Wang, Y. Xu, X. Li, J. Yu, and N. Chi, “Balanced precoding technique for vector signal generation based on OCS,” IEEE Photonics Technol. Lett. 27(23), 2469–2472 (2015).

X. Li, J. Yu, Z. Zhang, J. Xiao, and G.-K. Chang, “Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM,” Opt. Commun. 355, 125–129 (2015).

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).

X. Li, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and J. Yu, “W-Band 8QAM Vector Signal Generation by MZM-Based Photonic Frequency Octupling,” IEEE Photonics Technol. Lett. 27(12), 1257–1260 (2015).

J. Xiao, Z. Zhang, X. Li, Y. Xu, L. Chen, and J. Yu, “High-frequency photonic vector signal generation employing a single phase modulator,” IEEE Photonics J. 7(2), 7101206 (2015).

2014 (2)

X. Li, J. Yu, J. Xiao, and Y. Xu, “Fiber-wireless-fiber link for 128-Gb/s PDM-16QAM signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(19), 1948–1951 (2014).

J. Lu, Z. Dong, J. Liu, X. Zeng, Y. Hu, and J. Gao, “Generation of a frequency sextupled optical millimeter wave with a suppressed central carrier using one single-electrode modulator,” Opt. Fiber Technol. 20(5), 533–536 (2014).

2013 (2)

2011 (1)

2010 (1)

J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).

2009 (2)

C. T. Lin, P. T. Shih, W. J. Jiang, E. Z. Wong, J. J. Chen, and S. Chi, “Photonic vector signal generation at microwave/millimeter-wave bands employing an optical frequency quadrupling scheme,” Opt. Lett. 34(14), 2171–2173 (2009).
[PubMed]

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microw. Theory Tech. 57(8), 2084–2092 (2009).

2008 (1)

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photonics Technol. Lett. 20, 478–480 (2008).

2007 (1)

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photonics Technol. Lett. 19(19), 1499–1501 (2007).

Cao, P.

Chang, G. K.

X. Li, J. Yu, and G. K. Chang, “Frequency-quadrupling vector mm-wave signal generation by only one single-drive MZM,” IEEE Photonics Technol. Lett. 28(12), 1302–1305 (2016).

L. Zhang, M. Zhu, C. Ye, S. H. Fan, C. Liu, X. Hu, P. Cao, Q. Chang, Y. Su, and G. K. Chang, “Generation and transmission of multiband and multi-gigabit 60-GHz MMW signals in an RoF system with frequency quintupling technique,” Opt. Express 21(8), 9899–9905 (2013).
[PubMed]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photonics Technol. Lett. 19(19), 1499–1501 (2007).

Chang, G.-K.

X. Li, J. Yu, Z. Zhang, J. Xiao, and G.-K. Chang, “Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM,” Opt. Commun. 355, 125–129 (2015).

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photonics Technol. Lett. 20, 478–480 (2008).

Chang, Q.

Chen, J.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microw. Theory Tech. 57(8), 2084–2092 (2009).

Chen, J. J.

Chen, L.

L. Zhao, J. Yu, L. Chen, P. Min, J. Li, and R. Wang, “16QAM vector mm-wave signal generation based on phase modulator with photonic frequency doubling and pre-coding,” IEEE Photonics J. 8(2), 5500708 (2016).

J. Xiao, Z. Zhang, X. Li, Y. Xu, L. Chen, and J. Yu, “High-frequency photonic vector signal generation employing a single phase modulator,” IEEE Photonics J. 7(2), 7101206 (2015).

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).

Cheng, Y. H.

Chi, N.

Y. Wang, Y. Xu, X. Li, J. Yu, and N. Chi, “Balanced precoding technique for vector signal generation based on OCS,” IEEE Photonics Technol. Lett. 27(23), 2469–2472 (2015).

Chi, S.

Dai, S. P.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microw. Theory Tech. 57(8), 2084–2092 (2009).

Dong, Z.

J. Lu, Z. Dong, J. Liu, X. Zeng, Y. Hu, and J. Gao, “Generation of a frequency sextupled optical millimeter wave with a suppressed central carrier using one single-electrode modulator,” Opt. Fiber Technol. 20(5), 533–536 (2014).

Fan, S. H.

Gao, J.

J. Lu, Z. Dong, J. Liu, X. Zeng, Y. Hu, and J. Gao, “Generation of a frequency sextupled optical millimeter wave with a suppressed central carrier using one single-electrode modulator,” Opt. Fiber Technol. 20(5), 533–536 (2014).

Ho, C. H.

Ho, Y. L.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microw. Theory Tech. 57(8), 2084–2092 (2009).

Hosako, I.

Hu, X.

Hu, Y.

J. Lu, Z. Dong, J. Liu, X. Zeng, Y. Hu, and J. Gao, “Generation of a frequency sextupled optical millimeter wave with a suppressed central carrier using one single-electrode modulator,” Opt. Fiber Technol. 20(5), 533–536 (2014).

Huang, H. T.

Huang, M.-F.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photonics Technol. Lett. 20, 478–480 (2008).

Inagaki, K.

Jia, Z.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photonics Technol. Lett. 20, 478–480 (2008).

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photonics Technol. Lett. 19(19), 1499–1501 (2007).

Jiang, W.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microw. Theory Tech. 57(8), 2084–2092 (2009).

Jiang, W. J.

Kanno, A.

Kawanishi, T.

Kitayama, K.

Kuri, T.

Li, J.

L. Zhao, J. Yu, L. Chen, P. Min, J. Li, and R. Wang, “16QAM vector mm-wave signal generation based on phase modulator with photonic frequency doubling and pre-coding,” IEEE Photonics J. 8(2), 5500708 (2016).

Li, X.

X. Li, J. Yu, and G. K. Chang, “Frequency-quadrupling vector mm-wave signal generation by only one single-drive MZM,” IEEE Photonics Technol. Lett. 28(12), 1302–1305 (2016).

X. Li and J. Yu, “Over 100 Gb/s Ultrabroadband MIMO Wireless Signal Delivery System at the D-Band,” IEEE Photonics J. 8(5), 1–10 (2016).

X. Li, Y. Xu, J. Xiao, and J. Yu, “W-band millimeter-wave vector signal generation based on precoding-assisted random photonic frequency tripling scheme enabled by phase modulator,” IEEE Photonics J. 8(2), 5500410 (2016).

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).

X. Li, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and J. Yu, “W-Band 8QAM Vector Signal Generation by MZM-Based Photonic Frequency Octupling,” IEEE Photonics Technol. Lett. 27(12), 1257–1260 (2015).

Y. Wang, Y. Xu, X. Li, J. Yu, and N. Chi, “Balanced precoding technique for vector signal generation based on OCS,” IEEE Photonics Technol. Lett. 27(23), 2469–2472 (2015).

X. Li, J. Yu, Z. Zhang, J. Xiao, and G.-K. Chang, “Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM,” Opt. Commun. 355, 125–129 (2015).

J. Xiao, Z. Zhang, X. Li, Y. Xu, L. Chen, and J. Yu, “High-frequency photonic vector signal generation employing a single phase modulator,” IEEE Photonics J. 7(2), 7101206 (2015).

X. Li, J. Yu, J. Xiao, and Y. Xu, “Fiber-wireless-fiber link for 128-Gb/s PDM-16QAM signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(19), 1948–1951 (2014).

Liang, W. L.

Lin, C. T.

Liu, C.

Liu, J.

J. Lu, Z. Dong, J. Liu, X. Zeng, Y. Hu, and J. Gao, “Generation of a frequency sextupled optical millimeter wave with a suppressed central carrier using one single-electrode modulator,” Opt. Fiber Technol. 20(5), 533–536 (2014).

Lu, J.

J. Lu, Z. Dong, J. Liu, X. Zeng, Y. Hu, and J. Gao, “Generation of a frequency sextupled optical millimeter wave with a suppressed central carrier using one single-electrode modulator,” Opt. Fiber Technol. 20(5), 533–536 (2014).

Ma, J.

J. Ma, “Dual-tone QPSK optical millimeter-wave signal generation by frequency nonupling the RF signal without phase precoding,” IEEE Photonics J. 8(4), 7803407 (2016).

Min, P.

L. Zhao, J. Yu, L. Chen, P. Min, J. Li, and R. Wang, “16QAM vector mm-wave signal generation based on phase modulator with photonic frequency doubling and pre-coding,” IEEE Photonics J. 8(2), 5500708 (2016).

Morohashi, I.

Peng, P. C.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microw. Theory Tech. 57(8), 2084–2092 (2009).

Sakamoto, T.

Shih, P. T.

C. T. Lin, P. T. Shih, W. J. Jiang, E. Z. Wong, J. J. Chen, and S. Chi, “Photonic vector signal generation at microwave/millimeter-wave bands employing an optical frequency quadrupling scheme,” Opt. Lett. 34(14), 2171–2173 (2009).
[PubMed]

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microw. Theory Tech. 57(8), 2084–2092 (2009).

Su, Y.

Wang, R.

L. Zhao, J. Yu, L. Chen, P. Min, J. Li, and R. Wang, “16QAM vector mm-wave signal generation based on phase modulator with photonic frequency doubling and pre-coding,” IEEE Photonics J. 8(2), 5500708 (2016).

Wang, T.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photonics Technol. Lett. 20, 478–480 (2008).

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photonics Technol. Lett. 19(19), 1499–1501 (2007).

Wang, Y.

Y. Wang, Y. Xu, X. Li, J. Yu, and N. Chi, “Balanced precoding technique for vector signal generation based on OCS,” IEEE Photonics Technol. Lett. 27(23), 2469–2472 (2015).

Wei, C. C.

Wong, E. Z.

Xiao, J.

X. Li, Y. Xu, J. Xiao, and J. Yu, “W-band millimeter-wave vector signal generation based on precoding-assisted random photonic frequency tripling scheme enabled by phase modulator,” IEEE Photonics J. 8(2), 5500410 (2016).

X. Li, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and J. Yu, “W-Band 8QAM Vector Signal Generation by MZM-Based Photonic Frequency Octupling,” IEEE Photonics Technol. Lett. 27(12), 1257–1260 (2015).

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).

X. Li, J. Yu, Z. Zhang, J. Xiao, and G.-K. Chang, “Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM,” Opt. Commun. 355, 125–129 (2015).

J. Xiao, Z. Zhang, X. Li, Y. Xu, L. Chen, and J. Yu, “High-frequency photonic vector signal generation employing a single phase modulator,” IEEE Photonics J. 7(2), 7101206 (2015).

X. Li, J. Yu, J. Xiao, and Y. Xu, “Fiber-wireless-fiber link for 128-Gb/s PDM-16QAM signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(19), 1948–1951 (2014).

Xu, Y.

X. Li, Y. Xu, J. Xiao, and J. Yu, “W-band millimeter-wave vector signal generation based on precoding-assisted random photonic frequency tripling scheme enabled by phase modulator,” IEEE Photonics J. 8(2), 5500410 (2016).

X. Li, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and J. Yu, “W-Band 8QAM Vector Signal Generation by MZM-Based Photonic Frequency Octupling,” IEEE Photonics Technol. Lett. 27(12), 1257–1260 (2015).

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).

Y. Wang, Y. Xu, X. Li, J. Yu, and N. Chi, “Balanced precoding technique for vector signal generation based on OCS,” IEEE Photonics Technol. Lett. 27(23), 2469–2472 (2015).

J. Xiao, Z. Zhang, X. Li, Y. Xu, L. Chen, and J. Yu, “High-frequency photonic vector signal generation employing a single phase modulator,” IEEE Photonics J. 7(2), 7101206 (2015).

X. Li, J. Yu, J. Xiao, and Y. Xu, “Fiber-wireless-fiber link for 128-Gb/s PDM-16QAM signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(19), 1948–1951 (2014).

Ye, C.

Yoshida, Y.

Yu, J.

X. Li, J. Yu, and G. K. Chang, “Frequency-quadrupling vector mm-wave signal generation by only one single-drive MZM,” IEEE Photonics Technol. Lett. 28(12), 1302–1305 (2016).

L. Zhao, J. Yu, L. Chen, P. Min, J. Li, and R. Wang, “16QAM vector mm-wave signal generation based on phase modulator with photonic frequency doubling and pre-coding,” IEEE Photonics J. 8(2), 5500708 (2016).

X. Li and J. Yu, “Over 100 Gb/s Ultrabroadband MIMO Wireless Signal Delivery System at the D-Band,” IEEE Photonics J. 8(5), 1–10 (2016).

X. Li, Y. Xu, J. Xiao, and J. Yu, “W-band millimeter-wave vector signal generation based on precoding-assisted random photonic frequency tripling scheme enabled by phase modulator,” IEEE Photonics J. 8(2), 5500410 (2016).

X. Li, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and J. Yu, “W-Band 8QAM Vector Signal Generation by MZM-Based Photonic Frequency Octupling,” IEEE Photonics Technol. Lett. 27(12), 1257–1260 (2015).

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).

Y. Wang, Y. Xu, X. Li, J. Yu, and N. Chi, “Balanced precoding technique for vector signal generation based on OCS,” IEEE Photonics Technol. Lett. 27(23), 2469–2472 (2015).

X. Li, J. Yu, Z. Zhang, J. Xiao, and G.-K. Chang, “Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM,” Opt. Commun. 355, 125–129 (2015).

J. Xiao, Z. Zhang, X. Li, Y. Xu, L. Chen, and J. Yu, “High-frequency photonic vector signal generation employing a single phase modulator,” IEEE Photonics J. 7(2), 7101206 (2015).

X. Li, J. Yu, J. Xiao, and Y. Xu, “Fiber-wireless-fiber link for 128-Gb/s PDM-16QAM signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(19), 1948–1951 (2014).

J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photonics Technol. Lett. 20, 478–480 (2008).

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photonics Technol. Lett. 19(19), 1499–1501 (2007).

Zeng, X.

J. Lu, Z. Dong, J. Liu, X. Zeng, Y. Hu, and J. Gao, “Generation of a frequency sextupled optical millimeter wave with a suppressed central carrier using one single-electrode modulator,” Opt. Fiber Technol. 20(5), 533–536 (2014).

Zhang, J.

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).

X. Li, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and J. Yu, “W-Band 8QAM Vector Signal Generation by MZM-Based Photonic Frequency Octupling,” IEEE Photonics Technol. Lett. 27(12), 1257–1260 (2015).

Zhang, L.

Zhang, Z.

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).

X. Li, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and J. Yu, “W-Band 8QAM Vector Signal Generation by MZM-Based Photonic Frequency Octupling,” IEEE Photonics Technol. Lett. 27(12), 1257–1260 (2015).

X. Li, J. Yu, Z. Zhang, J. Xiao, and G.-K. Chang, “Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM,” Opt. Commun. 355, 125–129 (2015).

J. Xiao, Z. Zhang, X. Li, Y. Xu, L. Chen, and J. Yu, “High-frequency photonic vector signal generation employing a single phase modulator,” IEEE Photonics J. 7(2), 7101206 (2015).

Zhao, L.

L. Zhao, J. Yu, L. Chen, P. Min, J. Li, and R. Wang, “16QAM vector mm-wave signal generation based on phase modulator with photonic frequency doubling and pre-coding,” IEEE Photonics J. 8(2), 5500708 (2016).

Zhou, X.

J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).

Zhu, M.

IEEE Commun. Mag. (1)

J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).

IEEE Photonics J. (5)

X. Li, Y. Xu, J. Xiao, and J. Yu, “W-band millimeter-wave vector signal generation based on precoding-assisted random photonic frequency tripling scheme enabled by phase modulator,” IEEE Photonics J. 8(2), 5500410 (2016).

X. Li and J. Yu, “Over 100 Gb/s Ultrabroadband MIMO Wireless Signal Delivery System at the D-Band,” IEEE Photonics J. 8(5), 1–10 (2016).

L. Zhao, J. Yu, L. Chen, P. Min, J. Li, and R. Wang, “16QAM vector mm-wave signal generation based on phase modulator with photonic frequency doubling and pre-coding,” IEEE Photonics J. 8(2), 5500708 (2016).

J. Ma, “Dual-tone QPSK optical millimeter-wave signal generation by frequency nonupling the RF signal without phase precoding,” IEEE Photonics J. 8(4), 7803407 (2016).

J. Xiao, Z. Zhang, X. Li, Y. Xu, L. Chen, and J. Yu, “High-frequency photonic vector signal generation employing a single phase modulator,” IEEE Photonics J. 7(2), 7101206 (2015).

IEEE Photonics Technol. Lett. (7)

X. Li, J. Yu, J. Xiao, and Y. Xu, “Fiber-wireless-fiber link for 128-Gb/s PDM-16QAM signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(19), 1948–1951 (2014).

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).

X. Li, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and J. Yu, “W-Band 8QAM Vector Signal Generation by MZM-Based Photonic Frequency Octupling,” IEEE Photonics Technol. Lett. 27(12), 1257–1260 (2015).

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photonics Technol. Lett. 19(19), 1499–1501 (2007).

X. Li, J. Yu, and G. K. Chang, “Frequency-quadrupling vector mm-wave signal generation by only one single-drive MZM,” IEEE Photonics Technol. Lett. 28(12), 1302–1305 (2016).

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photonics Technol. Lett. 20, 478–480 (2008).

Y. Wang, Y. Xu, X. Li, J. Yu, and N. Chi, “Balanced precoding technique for vector signal generation based on OCS,” IEEE Photonics Technol. Lett. 27(23), 2469–2472 (2015).

IEEE Trans. Microw. Theory Tech. (1)

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microw. Theory Tech. 57(8), 2084–2092 (2009).

Opt. Commun. (1)

X. Li, J. Yu, Z. Zhang, J. Xiao, and G.-K. Chang, “Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM,” Opt. Commun. 355, 125–129 (2015).

Opt. Express (3)

Opt. Fiber Technol. (1)

J. Lu, Z. Dong, J. Liu, X. Zeng, Y. Hu, and J. Gao, “Generation of a frequency sextupled optical millimeter wave with a suppressed central carrier using one single-electrode modulator,” Opt. Fiber Technol. 20(5), 533–536 (2014).

Opt. Lett. (1)

Other (2)

T. Ohno, F. Nakajima, T. Furuta, and H. Ito, “A 240-GMz active mode-locked laser diode for ultra-broadband fiber-radio transmission systems,” in OFC 2005 (2005), paper PDP13.

J. Yu, T. Wang, Z. Xu, Z. Jia, and G. K. Chang, “A cost-effective scheme to generate and de-multiplex multiple frequency millimeter-wave signals in a ROF network,” in ECOC 2007 (2007), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of photonic mm-wave vector signal generation based on a balanced precoding-assisted scheme, (b) the output optical spectra from MZM with a frequency spacing of fs, (c1) the original constellation after QPSK mapping, Calculated constellation (c2) after unbalanced phase pre-coding, (c3) after balanced phase pre-coding. DAC: digital-to-analog converter, MZM: Mach-Zehnder modulator, PD: photodiode.
Fig. 2
Fig. 2 The curve of the first-kind Bessel function from 0th-order to 5th-order when the RF voltage Vdrive varies from 0 to 4-Vpp.
Fig. 3
Fig. 3 The experimental setup for the QPSK mm-wave vector signal generation at D-band adopting photonic frequency quadrupling scheme ( × 4). ECL: external cavity laser, IM: intensity LN modulator, EDFA: Erbium-doped fiber amplifier, ATT: attenuation, DAC: digital-to-analog converter, EA: electrical amplifier, PD: photodiode, Sage LNA: low-noise amplifier, OSC: oscilloscope.
Fig. 4
Fig. 4 (a) Measured optical spectra (0.01-nm resolution) of the output CW from ECL, (b) MZM output power changing with the DC-bias. (c) Measured optical spectra (0.01-nm resolution) after MZM.
Fig. 5
Fig. 5 For the 1-Gbaud/s 148GHz QPSK vector signal (a) measured BER performance changing with the input power, (b) the recovered QPSK constellation.
Fig. 6
Fig. 6 (a) Frequency response of an ideal LPF, fifth-order Bessel filter, first-order Gaussian filter and SRRC with α = 0.5 , the electrical spectrum influenced by DAC insufficient bandwidth of 22GHz when the baseband signal is low pass filtered enabled by (b) an ideal LPF, (c) fifth-order Bessel filter, (d) first-order Gaussian filter, (e) SRRC with α = 0.5 .
Fig. 7
Fig. 7 Calculated optical spectra after MZM when DAC bandwidth is (a) 40-GHz, (b)23-GHz. Constellation diagram without DAC low pass filtering effect when the baseband signal is low pass filtered by (a1) ILPF (a2) SRRC with α = 0.5 (a3) first-order Gaussian filter (a4) fifth-order Bessel filter; Constellation diagram with DAC low pass filtering effect when the baseband signal is low pass filtered by (b1) ideal LPF (b2) SRRC with α = 0.5 (b3) first-order Gaussian filter (b4) fifth-order Bessel filter.

Tables (1)

Tables Icon

Table 1 Comparison of Photonic Vector Millimeter Wave Generation Based on Pre-coding Scheme.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E C W ( t ) = E 0 exp ( j 2 π f c t ) .
V R F ( t ) = V d r i v e sin ( 2 π f s t + θ ( t ) ) .
E M Z M ( t ) = E 0 exp ( j 2 π f c t ) exp { j κ sin [ 2 π f s t + θ ( t ) ] } + E 0 exp ( j 2 π f c t ) exp { j κ sin [ 2 π f s t + θ ( t ) ] } = E 0 n = J n ( κ ) exp [ j 2 π ( f c + n f s ) t + j n θ ( t ) ] + E 0 n = J n ( κ ) exp [ j 2 π ( f c + n f s ) t + j n θ ( t ) ] = 2 E 0 n = J 2 n ( κ ) exp [ j 2 π ( f c + n f s ) t + j 2 n θ ( t ) ] .
i P D ( t ) = 1 2 R J 2 n ( κ ) J 2 n ( κ ) cos [ 2 π 4 n f s t + 4 n θ ( t ) ] .
H ( f ) = { 1 1 2 { 1 + cos [ π ( 2 T | f | 1 + α ) 2 α ] } 0 0 | f | 1 α 2 T 1 α 2 T | f | 1 + α 2 T | f | 1 + α 2 T

Metrics