Abstract

Discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-S-OFDM) has demonstrated its capability in reducing peak to average ratio (PAPR), while maintaining reliable transmissions. This paper investigates the application of DFT-S-OFDM technology in visible light communications (VLC), and reveals the mechanism on how a multiple lighting distributed layout affects its performance. In addition, an optimization approach of lighting layout is proposed through making a trade-off between the strong interfered areas and the maximum delay spread inside. Eventually, a Gbit/s DFT-S-OFDM based multiple lighting VLC downlink prototype is achieved for the first time in the form of real-time baseband modem and compact size components.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
PAPR analysis for OFDM visible light communication

Jiaheng Wang, Yang Xu, Xintong Ling, Rong Zhang, Zhi Ding, and Chunming Zhao
Opt. Express 24(24) 27457-27474 (2016)

An adaptive scaling and biasing scheme for OFDM-based visible light communication systems

Zhaocheng Wang, Qi Wang, Sheng Chen, and Lajos Hanzo
Opt. Express 22(10) 12707-12715 (2014)

Time domain reshuffling for OFDM based indoor visible light communication systems

Xiaodi You, Jian Chen, Changyuan Yu, and Huanhuan Zheng
Opt. Express 25(10) 11606-11621 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  2. H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
    [Crossref]
  3. B. Bai, Z. Xu, and Y. Fan, “Joint LED dimming and high capacity visible light communication by overlapping PPM,” in Proc. Annual Wireless and Optical Communications Conference (2010), pp. 1–5.
  4. F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation,” IEEE Photonic. Tech. L.,  24(19), 1730–1732 (2012).
    [Crossref]
  5. J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).
  6. A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications,” IEEE Photonic. Tech. L. 25(2), 171–174 (2013).
    [Crossref]
  7. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  8. M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
    [Crossref]
  9. F. Zafar, M. Bakaul, and R. Parthiban, “Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
    [Crossref]
  10. J. Wang, Y. Xu, X. Ling, R. Zhang, Z. Ding, and C. Zhao, “PAPR analysis for OFDM visible light communication,” Opt. Express 24(24), 27457–27474(2016).
    [Crossref] [PubMed]
  11. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
    [Crossref]
  12. X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver,” Opt. Express 23(17), 22034–22042 (2015).
    [Crossref] [PubMed]
  13. S. William, Y. Tang, and B. S. Krongold, “DFT-spread OFDM for optical communications,” in Proc. IEEE International Conferenceon Optical Internet (IEEE, 2010), pp. 1–3.
  14. A. Sahin, R. Yang, E. Bala, M. C. Beluri, and R. L. Olesen, “Flexible DFT-S-OFDM: Solutions and Challenges,” IEEE Commun. Mag. 54(11), 106–112 (2016).
    [Crossref]
  15. L. Tao, J. Yu, Q. Yang, M. Luo, Z. He, Y. Shao, and N. Chi, “Spectrally efficient localized carrier distribution scheme for multiple-user DFT-S OFDM ROF-PON wireless access systems,” Opt. Express 20(28), 29665–29672 (2012).
    [Crossref]
  16. L. Tao, J. Yu, Y. Fang, J. Zhang, Y. Shao, and N. Chi, “Analysis of noise spread in optical DFT-S OFDM systems,” J. Lightwave Technol. 30(20), 3219–3225 (2012).
    [Crossref]
  17. M. Shi, C. Wang, H. Guo, Y. Wang, X. Li, and N. Chi, “A high-speed visible light communication system based on DFT-S OFDM,” in Proc. IEEE International Conference on Communication Systems (IEEE, 2016), pp. 1–5.
  18. M. T. Niaz, F. Imdad, S. Kim, and H. S. Kim, “Deployment methods of visible light communication lights for energy efficient buildings,” Opt. Eng. 55(10), 106113 (2016).
    [Crossref]
  19. X. Deng, J. M. P. G. Linnartz, K. Arulandu, G. Zhou, and Y. Wu, “Effect of buck driver ripple on BER performance in visible light communication using LED,” in Proc. IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 1368–1373.
  20. Y. Wang, J. Marcos Alonso, and X. Ruan, “A review of LED drivers and related technologies,” IEEE Trans. Ind. Electron. 64(7), 5754–5765 (2017).
    [Crossref]
  21. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [Crossref]
  22. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mbs downlink and 225-Mbs uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [Crossref] [PubMed]
  23. M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
    [Crossref]
  24. T. Komine, J. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
    [Crossref]
  25. L. Yang and J. Armstrong, “Oversampling to reduce the effect of timing jitter on high speed OFDM systems,” IEEE Commun. Lett. 14(3), 196–198 (2010).
    [Crossref]
  26. K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Photonic. Tech. L. 15(2), 217–219 (2011).
  27. J. Proakis, Digital Communications (McGraw-Hill, 2001) 4th ed.
  28. A. Burton, H. Le Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proc. International Conference on Communications and Electronics (2012), pp. 48–53.
  29. J. Ding, Z. Xu, and L. Hanzo, “Accuracy of the point-source model of a multi-led array in high-speed visible light communication channel characterization,” IEEE Photon. J. 7(4), 1–14 (2015).

2017 (4)

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

Y. Wang, J. Marcos Alonso, and X. Ruan, “A review of LED drivers and related technologies,” IEEE Trans. Ind. Electron. 64(7), 5754–5765 (2017).
[Crossref]

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

2016 (3)

A. Sahin, R. Yang, E. Bala, M. C. Beluri, and R. L. Olesen, “Flexible DFT-S-OFDM: Solutions and Challenges,” IEEE Commun. Mag. 54(11), 106–112 (2016).
[Crossref]

M. T. Niaz, F. Imdad, S. Kim, and H. S. Kim, “Deployment methods of visible light communication lights for energy efficient buildings,” Opt. Eng. 55(10), 106113 (2016).
[Crossref]

J. Wang, Y. Xu, X. Ling, R. Zhang, Z. Ding, and C. Zhao, “PAPR analysis for OFDM visible light communication,” Opt. Express 24(24), 27457–27474(2016).
[Crossref] [PubMed]

2015 (3)

X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver,” Opt. Express 23(17), 22034–22042 (2015).
[Crossref] [PubMed]

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

J. Ding, Z. Xu, and L. Hanzo, “Accuracy of the point-source model of a multi-led array in high-speed visible light communication channel characterization,” IEEE Photon. J. 7(4), 1–14 (2015).

2013 (2)

A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications,” IEEE Photonic. Tech. L. 25(2), 171–174 (2013).
[Crossref]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mbs downlink and 225-Mbs uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

2012 (4)

L. Tao, J. Yu, Y. Fang, J. Zhang, Y. Shao, and N. Chi, “Analysis of noise spread in optical DFT-S OFDM systems,” J. Lightwave Technol. 30(20), 3219–3225 (2012).
[Crossref]

L. Tao, J. Yu, Q. Yang, M. Luo, Z. He, Y. Shao, and N. Chi, “Spectrally efficient localized carrier distribution scheme for multiple-user DFT-S OFDM ROF-PON wireless access systems,” Opt. Express 20(28), 29665–29672 (2012).
[Crossref]

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation,” IEEE Photonic. Tech. L.,  24(19), 1730–1732 (2012).
[Crossref]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

2011 (1)

K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Photonic. Tech. L. 15(2), 217–219 (2011).

2010 (2)

L. Yang and J. Armstrong, “Oversampling to reduce the effect of timing jitter on high speed OFDM systems,” IEEE Commun. Lett. 14(3), 196–198 (2010).
[Crossref]

J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).

2009 (2)

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[Crossref]

T. Komine, J. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Armstrong, J.

L. Yang and J. Armstrong, “Oversampling to reduce the effect of timing jitter on high speed OFDM systems,” IEEE Commun. Lett. 14(3), 196–198 (2010).
[Crossref]

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[Crossref]

Arulandu, K.

X. Deng, J. M. P. G. Linnartz, K. Arulandu, G. Zhou, and Y. Wu, “Effect of buck driver ripple on BER performance in visible light communication using LED,” in Proc. IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 1368–1373.

Azhar, A. H.

A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications,” IEEE Photonic. Tech. L. 25(2), 171–174 (2013).
[Crossref]

Bai, B.

B. Bai, Z. Xu, and Y. Fan, “Joint LED dimming and high capacity visible light communication by overlapping PPM,” in Proc. Annual Wireless and Optical Communications Conference (2010), pp. 1–5.

Bakaul, M.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

Bala, E.

A. Sahin, R. Yang, E. Bala, M. C. Beluri, and R. L. Olesen, “Flexible DFT-S-OFDM: Solutions and Challenges,” IEEE Commun. Mag. 54(11), 106–112 (2016).
[Crossref]

Bamiedakis, N.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Barry, J. R.

K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Photonic. Tech. L. 15(2), 217–219 (2011).

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Baykas, T.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

Beluri, M. C.

A. Sahin, R. Yang, E. Bala, M. C. Beluri, and R. L. Olesen, “Flexible DFT-S-OFDM: Solutions and Challenges,” IEEE Commun. Mag. 54(11), 106–112 (2016).
[Crossref]

Burton, A.

A. Burton, H. Le Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proc. International Conference on Communications and Electronics (2012), pp. 48–53.

Chen, C. W.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation,” IEEE Photonic. Tech. L.,  24(19), 1730–1732 (2012).
[Crossref]

Chen, H.

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

Chen, X.

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

Chi, N.

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

Dawson, M.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Deng, X.

X. Deng, J. M. P. G. Linnartz, K. Arulandu, G. Zhou, and Y. Wu, “Effect of buck driver ripple on BER performance in visible light communication using LED,” in Proc. IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 1368–1373.

Ding, J.

J. Ding, Z. Xu, and L. Hanzo, “Accuracy of the point-source model of a multi-led array in high-speed visible light communication channel characterization,” IEEE Photon. J. 7(4), 1–14 (2015).

Ding, Z.

Fan, Y.

B. Bai, Z. Xu, and Y. Fan, “Joint LED dimming and high capacity visible light communication by overlapping PPM,” in Proc. Annual Wireless and Optical Communications Conference (2010), pp. 1–5.

Fang, Y.

Ferreira, R. X.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Gao, Z.

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

Ghassemlooy, Z.

A. Burton, H. Le Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proc. International Conference on Communications and Electronics (2012), pp. 48–53.

Gu, E.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Guo, H.

M. Shi, C. Wang, H. Guo, Y. Wang, X. Li, and N. Chi, “A high-speed visible light communication system based on DFT-S OFDM,” in Proc. IEEE International Conference on Communication Systems (IEEE, 2016), pp. 1–5.

Guo, J.

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

Haas, H.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Haigh, P. A.

A. Burton, H. Le Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proc. International Conference on Communications and Electronics (2012), pp. 48–53.

Hanzo, L.

J. Ding, Z. Xu, and L. Hanzo, “Accuracy of the point-source model of a multi-led array in high-speed visible light communication channel characterization,” IEEE Photon. J. 7(4), 1–14 (2015).

Haruyama, S.

T. Komine, J. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

He, X.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

He, Z.

Ho, C. H.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation,” IEEE Photonic. Tech. L.,  24(19), 1730–1732 (2012).
[Crossref]

Huang, H. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation,” IEEE Photonic. Tech. L.,  24(19), 1730–1732 (2012).
[Crossref]

Huang, X.

Imdad, F.

M. T. Niaz, F. Imdad, S. Kim, and H. S. Kim, “Deployment methods of visible light communication lights for energy efficient buildings,” Opt. Eng. 55(10), 106113 (2016).
[Crossref]

Islim, M. S.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Kelly, A.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

Kim, H. S.

M. T. Niaz, F. Imdad, S. Kim, and H. S. Kim, “Deployment methods of visible light communication lights for energy efficient buildings,” Opt. Eng. 55(10), 106113 (2016).
[Crossref]

Kim, S.

M. T. Niaz, F. Imdad, S. Kim, and H. S. Kim, “Deployment methods of visible light communication lights for energy efficient buildings,” Opt. Eng. 55(10), 106113 (2016).
[Crossref]

Komine, T.

T. Komine, J. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Kottke, C.

Krongold, B. S.

S. William, Y. Tang, and B. S. Krongold, “DFT-spread OFDM for optical communications,” in Proc. IEEE International Conferenceon Optical Internet (IEEE, 2010), pp. 1–3.

Langer, K. D.

Lee, J.

T. Komine, J. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

Lee, K.

K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Photonic. Tech. L. 15(2), 217–219 (2011).

Li, H.

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

Li, X.

M. Shi, C. Wang, H. Guo, Y. Wang, X. Li, and N. Chi, “A high-speed visible light communication system based on DFT-S OFDM,” in Proc. IEEE International Conference on Communication Systems (IEEE, 2016), pp. 1–5.

Lin, C. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation,” IEEE Photonic. Tech. L.,  24(19), 1730–1732 (2012).
[Crossref]

Ling, X.

Linnartz, J. M. P. G.

X. Deng, J. M. P. G. Linnartz, K. Arulandu, G. Zhou, and Y. Wu, “Effect of buck driver ripple on BER performance in visible light communication using LED,” in Proc. IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 1368–1373.

Luo, M.

Marcos Alonso, J.

Y. Wang, J. Marcos Alonso, and X. Ruan, “A review of LED drivers and related technologies,” IEEE Trans. Ind. Electron. 64(7), 5754–5765 (2017).
[Crossref]

Minh, H. Le

A. Burton, H. Le Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proc. International Conference on Communications and Electronics (2012), pp. 48–53.

Miramirkhani, F.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

Nakagawa, M.

T. Komine, J. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Narmanlioglu, O.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

Nerreter, S.

Niaz, M. T.

M. T. Niaz, F. Imdad, S. Kim, and H. S. Kim, “Deployment methods of visible light communication lights for energy efficient buildings,” Opt. Eng. 55(10), 106113 (2016).
[Crossref]

O’Brien, D.

A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications,” IEEE Photonic. Tech. L. 25(2), 171–174 (2013).
[Crossref]

Olesen, R. L.

A. Sahin, R. Yang, E. Bala, M. C. Beluri, and R. L. Olesen, “Flexible DFT-S-OFDM: Solutions and Challenges,” IEEE Commun. Mag. 54(11), 106–112 (2016).
[Crossref]

Panayirci, E.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

Park, H.

K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Photonic. Tech. L. 15(2), 217–219 (2011).

Parthiban, R.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

Penty, R.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Proakis, J.

J. Proakis, Digital Communications (McGraw-Hill, 2001) 4th ed.

Rajbhandari, S.

A. Burton, H. Le Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proc. International Conference on Communications and Electronics (2012), pp. 48–53.

Ruan, X.

Y. Wang, J. Marcos Alonso, and X. Ruan, “A review of LED drivers and related technologies,” IEEE Trans. Ind. Electron. 64(7), 5754–5765 (2017).
[Crossref]

Sahin, A.

A. Sahin, R. Yang, E. Bala, M. C. Beluri, and R. L. Olesen, “Flexible DFT-S-OFDM: Solutions and Challenges,” IEEE Commun. Mag. 54(11), 106–112 (2016).
[Crossref]

Shang, H.

Shao, Y.

Shi, J.

Shi, M.

M. Shi, C. Wang, H. Guo, Y. Wang, X. Li, and N. Chi, “A high-speed visible light communication system based on DFT-S OFDM,” in Proc. IEEE International Conference on Communication Systems (IEEE, 2016), pp. 1–5.

Tang, Y.

S. William, Y. Tang, and B. S. Krongold, “DFT-spread OFDM for optical communications,” in Proc. IEEE International Conferenceon Optical Internet (IEEE, 2010), pp. 1–3.

Tao, L.

Tran, T. A.

A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications,” IEEE Photonic. Tech. L. 25(2), 171–174 (2013).
[Crossref]

Uysal, M.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

Videv, S.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Viola, S.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Vucic, J.

Walewski, J. W.

Wang, C.

M. Shi, C. Wang, H. Guo, Y. Wang, X. Li, and N. Chi, “A high-speed visible light communication system based on DFT-S OFDM,” in Proc. IEEE International Conference on Communication Systems (IEEE, 2016), pp. 1–5.

Wang, J.

Wang, Y.

Wang, Z.

Watson, S.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Wei, C. C.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation,” IEEE Photonic. Tech. L.,  24(19), 1730–1732 (2012).
[Crossref]

White, I.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

William, S.

S. William, Y. Tang, and B. S. Krongold, “DFT-spread OFDM for optical communications,” in Proc. IEEE International Conferenceon Optical Internet (IEEE, 2010), pp. 1–3.

Wu, F. M.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation,” IEEE Photonic. Tech. L.,  24(19), 1730–1732 (2012).
[Crossref]

Wu, Y.

X. Deng, J. M. P. G. Linnartz, K. Arulandu, G. Zhou, and Y. Wu, “Effect of buck driver ripple on BER performance in visible light communication using LED,” in Proc. IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 1368–1373.

Xie, E.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Xu, Y.

Xu, Z.

J. Ding, Z. Xu, and L. Hanzo, “Accuracy of the point-source model of a multi-led array in high-speed visible light communication channel characterization,” IEEE Photon. J. 7(4), 1–14 (2015).

B. Bai, Z. Xu, and Y. Fan, “Joint LED dimming and high capacity visible light communication by overlapping PPM,” in Proc. Annual Wireless and Optical Communications Conference (2010), pp. 1–5.

Yang, L.

L. Yang and J. Armstrong, “Oversampling to reduce the effect of timing jitter on high speed OFDM systems,” IEEE Commun. Lett. 14(3), 196–198 (2010).
[Crossref]

Yang, Q.

Yang, R.

A. Sahin, R. Yang, E. Bala, M. C. Beluri, and R. L. Olesen, “Flexible DFT-S-OFDM: Solutions and Challenges,” IEEE Commun. Mag. 54(11), 106–112 (2016).
[Crossref]

Yu, J.

Zafar, F.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

Zhang, J.

Zhang, R.

Zhao, C.

Zhou, G.

X. Deng, J. M. P. G. Linnartz, K. Arulandu, G. Zhou, and Y. Wu, “Effect of buck driver ripple on BER performance in visible light communication using LED,” in Proc. IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 1368–1373.

IEEE Commun. Lett. (1)

L. Yang and J. Armstrong, “Oversampling to reduce the effect of timing jitter on high speed OFDM systems,” IEEE Commun. Lett. 14(3), 196–198 (2010).
[Crossref]

IEEE Commun. Mag. (3)

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

A. Sahin, R. Yang, E. Bala, M. C. Beluri, and R. L. Olesen, “Flexible DFT-S-OFDM: Solutions and Challenges,” IEEE Commun. Mag. 54(11), 106–112 (2016).
[Crossref]

IEEE Photon. J. (2)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

J. Ding, Z. Xu, and L. Hanzo, “Accuracy of the point-source model of a multi-led array in high-speed visible light communication channel characterization,” IEEE Photon. J. 7(4), 1–14 (2015).

IEEE Photonic. Tech. L. (3)

K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Photonic. Tech. L. 15(2), 217–219 (2011).

A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications,” IEEE Photonic. Tech. L. 25(2), 171–174 (2013).
[Crossref]

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation,” IEEE Photonic. Tech. L.,  24(19), 1730–1732 (2012).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

IEEE Trans. Ind. Electron. (1)

Y. Wang, J. Marcos Alonso, and X. Ruan, “A review of LED drivers and related technologies,” IEEE Trans. Ind. Electron. 64(7), 5754–5765 (2017).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

T. Komine, J. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

IEEE Wirel. Commun. (1)

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

J. Lightwave Technol. (3)

Opt. Eng. (1)

M. T. Niaz, F. Imdad, S. Kim, and H. S. Kim, “Deployment methods of visible light communication lights for energy efficient buildings,” Opt. Eng. 55(10), 106113 (2016).
[Crossref]

Opt. Express (4)

Photonics Research (1)

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. Penty, I. White, A. Kelly, E. Gu, H. Haas, and M. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Research 5(2), A35–A43 (2017).
[Crossref]

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Other (6)

J. Proakis, Digital Communications (McGraw-Hill, 2001) 4th ed.

A. Burton, H. Le Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proc. International Conference on Communications and Electronics (2012), pp. 48–53.

B. Bai, Z. Xu, and Y. Fan, “Joint LED dimming and high capacity visible light communication by overlapping PPM,” in Proc. Annual Wireless and Optical Communications Conference (2010), pp. 1–5.

S. William, Y. Tang, and B. S. Krongold, “DFT-spread OFDM for optical communications,” in Proc. IEEE International Conferenceon Optical Internet (IEEE, 2010), pp. 1–3.

X. Deng, J. M. P. G. Linnartz, K. Arulandu, G. Zhou, and Y. Wu, “Effect of buck driver ripple on BER performance in visible light communication using LED,” in Proc. IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 1368–1373.

M. Shi, C. Wang, H. Guo, Y. Wang, X. Li, and N. Chi, “A high-speed visible light communication system based on DFT-S OFDM,” in Proc. IEEE International Conference on Communication Systems (IEEE, 2016), pp. 1–5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Low-frequency interferences from APD bias boosters.
Fig. 2
Fig. 2 DFT-Spread OFDM scheme with spectrum shifting.
Fig. 3
Fig. 3 One of the pilot’s waveform after synchronization in the receiver.
Fig. 4
Fig. 4 (a) The feasible interval of DFT-S-OFDM parameters. (b) Strong coherent region (in bule) in three patterns.
Fig. 5
Fig. 5 (a) BER performance versus interfered power ratio. (b) Area proportion of the strong coherence region. (c) Distribution of the maximum latency points from LOS paths. (d) The strongest interfered power ratio distribution.
Fig. 6
Fig. 6 Impulse response on diverse positions wiht the optimized lighting layout.
Fig. 7
Fig. 7 (a) and (b) Snapshot of one corner of the ceiling transmitters. (c) Synchronization approaches’ implementation in RTL.
Fig. 8
Fig. 8 (a) PAPR. (b) BER distribution. (c) Product of 2|Tm| Fp1 with Tm fixed at 10ns.
Fig. 9
Fig. 9 (a) Distribution of the feasible minimum of Fp1 (shown in logarithmic Hz based on 10). (b) Distribution of the lowest strong interfered frequency.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

h Ω ( t ; S , R ) = i = 0 I 1 k = 0 K 1 h i ( k ) ( t ; S i , R )
r s ( m ) = k = 0 K 1 { p k [ x k ( ( m τ k ) ) M R M ( m ) ] h l ( m ) } + n r ( m )
R s ( g ) = 1 M m = 0 M 1 r s ( m ) exp ( j 2 π M m g ) = k = 0 K 1 p k H l ( g ) X k   ( g ) exp ( j 2 π M g τ k )
R ^ ( f ) = k = 0 K 1 p k X k ( f ) exp [ j 2 π M f τ k j φ ^ ( f ) ] = k = 0 K 1 p k X k ( f ) exp [ j φ ( f ) j φ ^ ( f ) ]
φ ( f ) φ ^ ( f ) = { σ k ( f ) , | φ ( min { f p } ) | π σ k ( f ) + 2 π f M ( τ k τ ^ f ) 2 π f M η k max { T P } , | φ ( min { f p } ) | > π
R ^ ( f ) ) = k = 0 K 1 p k X k ( f ) exp [ j 2 π N f N M ( η k max { T P } ) ] , η k +
r ^ ( n ) = k = 0 K 1 p k x [ [ n N M η k max { T P } ] ] N R N ( n ) , η k +
r ^ k ( n ) = p k x ( ( n δ k ) ) N R N ( n )
δ k = N M ( τ k τ ^ f ) = N M η max { T P } , η + , k > 0
S N R = p 0 / ( σ n r + i Δ p i )
B E R 4 log 2 M Q ( 1 1 M Q ) Q ( 3 M Q 1 S N R )
E V N = 1 N R P M n = 1 N R | r ^ ( n ) x ( n ) | 2 = 1 N R P M n = 1 N R | i Δ p i x [ [ n δ i ] ] N R N ( n ) | 2
B E R 2 2 / L Q log 2 L Q Q ( 3 log 2 L Q L Q   2 1 1 E V M 2 log 2 M Q )
φ ( min { f p } ) = | 2 π M τ k min { f p } | < π
| max { τ k } | min { f p } < M / 2
| τ max | f p 1 < M / 2
| T m | F p 1 < 1 / 2
P [ S 0 , S 1 , R ] = h ( 0 ) ( t ; S 0 , R ) d t h ( 0 ) ( t ; S 1 , R ) d t r t h   2 0
P [ S 0 , S 1 , R ] = P [ R ( x , y ) ] = cos m θ 0 cos φ 0 d 2 ( S 1 , R ) cos m θ 1 cos φ 1 d 2 ( S 0 , R ) r t h   2 = ( d ( S 1 , R ) d ( S 0 , R ) ) 4 r t h   2 0
C 0 : ( x + a ) 2 + ( y + a 1 + r t h 1 r t h ) 2 4 r t h a 2 ( 1 r ) 2 + h 2 = 0 , R ( x , y ) Δ
A s c ( a ) = w 2 / 2 s ( z + a ) s ( w + a )
s ( x ) = 2 a x 1 r x 2 2 + x 2 E 2 x 2 + E 2 2 arcsin x 2 , z = a r 1 r + E 2 2 a 2 ( 1 r ) 2 , E = 4 r a 2 ( 1 r ) 2 h 2
2 A a c ( a ) / w 2 A t h
L [ R ( x , y ) ] = [ d ( S 3 , R ) d ( S 0 , R ) ] / c
L y = 1 c ( y + a d ( S 3 , R ) y a d ( S 0 , R ) ) > 0 , L x = 1 c ( x a d ( S 3 , R ) x + a d ( S 0 , R ) ) < 0
max L [ R ( x , y ) ] = L [ R ( w , w ) ] = ( 2 ( a + w ) 2 + h 2 2 ( a w ) 2 + h 2 ) / c
max L [ R ( x , y ) ] a = 2 c ( a + w 2 ( a + w ) 2 + h 2 a w 2 ( a w ) 2 + h 2 ) > 0
a o = min 0 < a < w { a | A sc ( a ) w 2 A t h / 2 }

Metrics