Abstract

Laser ablation and modification using bursts of picosecond pulses and a tightly focused laser beam are used to manufacture structures in the bulk silicon. We demonstrate precise control of the surface crystallinity as well as the structure depth and topography of the processed areas, achieving homogeneous surface properties. The control is achieved with a combination of a well-defined pulse energy, systematic pulse positioning on the material, and the number of pulses in a burst. A custom designed fiber laser source is used to generate bursts of 1, 5, 10, and 20 pulses at a pulse repetition rate of 40 MHz and burst repetition rate of 83.3 kHz allowing for a fast and stable processing of silicon. We show a controlled transition through different laser-matter interaction regimes, from no observable changes of the silicon at low pulse energies, through amorphization below the ablation threshold energy, to the ablation with either complete, partial or nonexistent amorphization. Single micrometer-sized areas of desired shape and crystallinity were defined on the silicon surface with submicron precision, offering a promising tool for applications in the field of optics.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Incubation during laser ablation with bursts of femtosecond pulses with picosecond delays

Caterina Gaudiuso, Giuseppe Giannuzzi, Annalisa Volpe, Pietro Mario Lugarà, Isabelle Choquet, and Antonio Ancona
Opt. Express 26(4) 3801-3813 (2018)

Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses

Amir H. Nejadmalayeri, Peter R. Herman, Jonas Burghoff, Matthias Will, Stefan Nolte, and Andreas Tünnermann
Opt. Lett. 30(9) 964-966 (2005)

Optimal proportional relation between laser power and pulse number for the fabrication of surface-microstructured silicon

Yan Peng, Ya Wen, DongSheng Zhang, ShiDa Luo, Lin Chen, and YiMing Zhu
Appl. Opt. 50(24) 4765-4768 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3, 189–192 (1995).
  2. H. Wada and T. Kamijoh, “Thermal Conductivity of Amorphous Silicon,” Jpn. J. Appl. Phys. 35, L648 (1996).
  3. R. Hull, Properties of Crystalline Silicon (INSPEC, the Institution of Electrical Engineers, 1999).
  4. K. Venkatakrishnan, N. Sudani, and B. Tan, “A high-repetition-rate femtosecond laser for thin silicon wafer dicing,” J. Micromech. Microeng. 18, 075032 (2008).
  5. G. Nava, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Scaling of black silicon processing time by high repetition rate femtosecond lasers,” Opt. Mater. Express 3, 612–623 (2013).
  6. Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
    [PubMed]
  7. R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).
  8. D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
    [PubMed]
  9. A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
    [PubMed]
  10. R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19(11), 10728–10734 (2011).
    [PubMed]
  11. D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21(9), 11048–11056 (2013).
    [PubMed]
  12. Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses,” Appl. Phys. Lett. 110, 211602 (2017).
  13. T. Sameshima and S. Usui, “Mechanism of pulsed laser-induced amorphization of silicon films,” Appl. Phys. Lett. 59, 2724–2726 (1991).
  14. R. Yen, J. M. Liu, H. Kurz, and N. Bloembergen, “Space-time resolved reflectivity measurements of picosecond laser-pulse induced phase transitions in (111) silicon surface layers,” Appl. Phys., A Mater. Sci. Process. 27, 153–160 (1982).
  15. Y. I. Nissim, J. Sapriel, and J. L. Oudar, “Microprobe Raman analysis of picosecond laser annealed implanted silicon,” Appl. Phys. Lett. 42, 504–506 (1983).
  16. J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
  17. T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys. 103, 053104 (2008).
  18. M. S. Rogers, C. P. Grigoropoulos, A. M. Minor, and S. S. Mao, “Absence of amorphous phase in high power femtosecond laser-ablated silicon,” Appl. Phys. Lett. 94, 011111 (2009).
  19. C. Yang, X. Mei, and W. Wang, “Comparative experimental study of laser-induced transitions in crystalline silicon by femtosecond, picosecond, and millisecond laser ablation,” Radiat. Eff. Defects Solids 169, 194–203 (2014).
  20. L. L. Taylor, J. Qiao, and J. Qiao, “Optimization of femtosecond laser processing of silicon via numerical modeling,” Opt. Mater. Express 6, 2745–2758 (2016).
  21. G. Raciukaitis, M. Brikas, V. Kazlauskiene, and J. Miskinis, “Doping of silicon by carbon during laser ablation process,” J. Phys. Conf. Ser. 59, 150 (2007).
  22. J. Petelin, B. Podobnik, and R. Petkovšek, “Burst shaping in a fiber-amplifier chain seeded by a gain-switched laser diode,” Appl. Opt. 54(15), 4629–4634 (2015).
    [PubMed]
  23. J. Mur, B. Podobnik, and I. Poberaj, “Laser beam steering approaches for microstructuring of copper layers,” Opt. Laser Technol. 88, 140–146 (2017).
  24. M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).
  25. J. Mur, J. Petelin, N. Osterman, and R. Petkovšek, “High precision laser direct microstructuring system based on bursts of picosecond pulses,” J. Phys. Appl. Phys. 50, 325104 (2017).
  26. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
    [PubMed]
  27. C. Gaudiuso, H. Kämmer, F. Dreisow, A. Ancona, A. Tünnermann, and S. Nolte, “Ablation of silicon with bursts of femtosecond laser pulses,” in Proc. SPIE 9740 (2016), Vol. 9740, pp. 974017–974017–8.
  28. B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface Structuring with Ultra-short Laser Pulses: Basics, Limitations and Needs for High Throughput,” Phys. Procedia 56, 1047–1058 (2014).
  29. P. A. Temple and C. E. Hathaway, “Multiphonon Raman Spectrum of Silicon,” Phys. Rev. B 7, 3685–3697 (1973).
  30. J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinczuk, “Raman Spectra of Amorphous Si and Related Tetrahedrally Bonded Semiconductors,” Phys. Rev. Lett. 26, 642–646 (1971).
  31. D. T. Pierce and W. E. Spicer, “Electronic Structure of Amorphous Si from Photoemission and Optical Studies,” Phys. Rev. B 5, 3017–3029 (1972).
  32. M. J. Süess, R. A. Minamisawa, R. Geiger, K. K. Bourdelle, H. Sigg, and R. Spolenak, “Power-Dependent Raman Analysis of Highly Strained Si Nanobridges,” Nano Lett. 14(3), 1249–1254 (2014).
    [PubMed]
  33. M. M. Khayyat, G. K. Banini, D. G. Hasko, and M. M. Chaudhri, “Raman microscopy investigations of structural phase transformations in crystalline and amorphous silicon due to indentation with a Vickers diamond at room temperature and at 77 K,” J. Phys. Appl. Phys. 36, 1300 (2003).
  34. Y. G. Gogotsi, A. Kailer, and K. G. Nickel, “Phase transformations in materials studied by micro-Raman spectroscopy of indentations,” Mater. Res. Innov. 1, 3–9 (1997).
  35. S. Nakashima and H. Harima, “Raman Investigation of SiC Polytypes,” Phys. Status Solidi, A Appl. Res. 162, 39–64 (1997).
  36. A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5, 67583–67609 (2015).
  37. P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser‐induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).

2017 (3)

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses,” Appl. Phys. Lett. 110, 211602 (2017).

J. Mur, J. Petelin, N. Osterman, and R. Petkovšek, “High precision laser direct microstructuring system based on bursts of picosecond pulses,” J. Phys. Appl. Phys. 50, 325104 (2017).

J. Mur, B. Podobnik, and I. Poberaj, “Laser beam steering approaches for microstructuring of copper layers,” Opt. Laser Technol. 88, 140–146 (2017).

2016 (4)

M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

L. L. Taylor, J. Qiao, and J. Qiao, “Optimization of femtosecond laser processing of silicon via numerical modeling,” Opt. Mater. Express 6, 2745–2758 (2016).

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[PubMed]

2015 (4)

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[PubMed]

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

J. Petelin, B. Podobnik, and R. Petkovšek, “Burst shaping in a fiber-amplifier chain seeded by a gain-switched laser diode,” Appl. Opt. 54(15), 4629–4634 (2015).
[PubMed]

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5, 67583–67609 (2015).

2014 (3)

M. J. Süess, R. A. Minamisawa, R. Geiger, K. K. Bourdelle, H. Sigg, and R. Spolenak, “Power-Dependent Raman Analysis of Highly Strained Si Nanobridges,” Nano Lett. 14(3), 1249–1254 (2014).
[PubMed]

C. Yang, X. Mei, and W. Wang, “Comparative experimental study of laser-induced transitions in crystalline silicon by femtosecond, picosecond, and millisecond laser ablation,” Radiat. Eff. Defects Solids 169, 194–203 (2014).

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface Structuring with Ultra-short Laser Pulses: Basics, Limitations and Needs for High Throughput,” Phys. Procedia 56, 1047–1058 (2014).

2013 (2)

2011 (1)

2009 (2)

M. S. Rogers, C. P. Grigoropoulos, A. M. Minor, and S. S. Mao, “Absence of amorphous phase in high power femtosecond laser-ablated silicon,” Appl. Phys. Lett. 94, 011111 (2009).

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
[PubMed]

2008 (2)

K. Venkatakrishnan, N. Sudani, and B. Tan, “A high-repetition-rate femtosecond laser for thin silicon wafer dicing,” J. Micromech. Microeng. 18, 075032 (2008).

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys. 103, 053104 (2008).

2007 (1)

G. Raciukaitis, M. Brikas, V. Kazlauskiene, and J. Miskinis, “Doping of silicon by carbon during laser ablation process,” J. Phys. Conf. Ser. 59, 150 (2007).

2004 (1)

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).

2003 (1)

M. M. Khayyat, G. K. Banini, D. G. Hasko, and M. M. Chaudhri, “Raman microscopy investigations of structural phase transformations in crystalline and amorphous silicon due to indentation with a Vickers diamond at room temperature and at 77 K,” J. Phys. Appl. Phys. 36, 1300 (2003).

1997 (2)

Y. G. Gogotsi, A. Kailer, and K. G. Nickel, “Phase transformations in materials studied by micro-Raman spectroscopy of indentations,” Mater. Res. Innov. 1, 3–9 (1997).

S. Nakashima and H. Harima, “Raman Investigation of SiC Polytypes,” Phys. Status Solidi, A Appl. Res. 162, 39–64 (1997).

1996 (1)

H. Wada and T. Kamijoh, “Thermal Conductivity of Amorphous Silicon,” Jpn. J. Appl. Phys. 35, L648 (1996).

1995 (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3, 189–192 (1995).

1991 (1)

T. Sameshima and S. Usui, “Mechanism of pulsed laser-induced amorphization of silicon films,” Appl. Phys. Lett. 59, 2724–2726 (1991).

1983 (1)

Y. I. Nissim, J. Sapriel, and J. L. Oudar, “Microprobe Raman analysis of picosecond laser annealed implanted silicon,” Appl. Phys. Lett. 42, 504–506 (1983).

1982 (1)

R. Yen, J. M. Liu, H. Kurz, and N. Bloembergen, “Space-time resolved reflectivity measurements of picosecond laser-pulse induced phase transitions in (111) silicon surface layers,” Appl. Phys., A Mater. Sci. Process. 27, 153–160 (1982).

1979 (1)

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser‐induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).

1973 (1)

P. A. Temple and C. E. Hathaway, “Multiphonon Raman Spectrum of Silicon,” Phys. Rev. B 7, 3685–3697 (1973).

1972 (1)

D. T. Pierce and W. E. Spicer, “Electronic Structure of Amorphous Si from Photoemission and Optical Studies,” Phys. Rev. B 5, 3017–3029 (1972).

1971 (1)

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinczuk, “Raman Spectra of Amorphous Si and Related Tetrahedrally Bonded Semiconductors,” Phys. Rev. Lett. 26, 642–646 (1971).

Akçaalan, Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Asik, M. D.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Bachman, D.

Ballif, C.

M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).

Banini, G. K.

M. M. Khayyat, G. K. Banini, D. G. Hasko, and M. M. Chaudhri, “Raman microscopy investigations of structural phase transformations in crystalline and amorphous silicon due to indentation with a Vickers diamond at room temperature and at 77 K,” J. Phys. Appl. Phys. 36, 1300 (2003).

Beresna, M.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Bian, H.

Bloembergen, N.

R. Yen, J. M. Liu, H. Kurz, and N. Bloembergen, “Space-time resolved reflectivity measurements of picosecond laser-pulse induced phase transitions in (111) silicon surface layers,” Appl. Phys., A Mater. Sci. Process. 27, 153–160 (1982).

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser‐induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).

Bonse, J.

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).

Botton, G. A.

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys. 103, 053104 (2008).

Bourdelle, K. K.

M. J. Süess, R. A. Minamisawa, R. Geiger, K. K. Bourdelle, H. Sigg, and R. Spolenak, “Power-Dependent Raman Analysis of Highly Strained Si Nanobridges,” Nano Lett. 14(3), 1249–1254 (2014).
[PubMed]

Brikas, M.

G. Raciukaitis, M. Brikas, V. Kazlauskiene, and J. Miskinis, “Doping of silicon by carbon during laser ablation process,” J. Phys. Conf. Ser. 59, 150 (2007).

Brodsky, M. H.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinczuk, “Raman Spectra of Amorphous Si and Related Tetrahedrally Bonded Semiconductors,” Phys. Rev. Lett. 26, 642–646 (1971).

Brzezinka, K.-W.

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).

Çetin, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Chaudhri, M. M.

M. M. Khayyat, G. K. Banini, D. G. Hasko, and M. M. Chaudhri, “Raman microscopy investigations of structural phase transformations in crystalline and amorphous silicon due to indentation with a Vickers diamond at room temperature and at 77 K,” J. Phys. Appl. Phys. 36, 1300 (2003).

Chen, F.

Chen, Z.

Crawford, T. H. R.

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys. 103, 053104 (2008).

Crowder, B. L.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinczuk, “Raman Spectra of Amorphous Si and Related Tetrahedrally Bonded Semiconductors,” Phys. Rev. Lett. 26, 642–646 (1971).

Deng, Z.

Despeisse, M.

M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).

Drevinskas, R.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Elahi, P.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Fedosejevs, R.

Fejfar, A.

M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).

Feldesh, R.

Florian, C.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses,” Appl. Phys. Lett. 110, 211602 (2017).

Fuentes-Edfuf, Y.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses,” Appl. Phys. Lett. 110, 211602 (2017).

Garcia-Lechuga, M.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses,” Appl. Phys. Lett. 110, 211602 (2017).

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[PubMed]

Garcia-Leis, A.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses,” Appl. Phys. Lett. 110, 211602 (2017).

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[PubMed]

Gecevicius, M.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Geiger, R.

M. J. Süess, R. A. Minamisawa, R. Geiger, K. K. Bourdelle, H. Sigg, and R. Spolenak, “Power-Dependent Raman Analysis of Highly Strained Si Nanobridges,” Nano Lett. 14(3), 1249–1254 (2014).
[PubMed]

Geissbühler, J.

M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).

Gogotsi, Y. G.

Y. G. Gogotsi, A. Kailer, and K. G. Nickel, “Phase transformations in materials studied by micro-Raman spectroscopy of indentations,” Mater. Res. Innov. 1, 3–9 (1997).

Green, M. A.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3, 189–192 (1995).

Grigoropoulos, C. P.

M. S. Rogers, C. P. Grigoropoulos, A. M. Minor, and S. S. Mao, “Absence of amorphous phase in high power femtosecond laser-ablated silicon,” Appl. Phys. Lett. 94, 011111 (2009).

Gwilliam, R.

Harima, H.

S. Nakashima and H. Harima, “Raman Investigation of SiC Polytypes,” Phys. Status Solidi, A Appl. Res. 162, 39–64 (1997).

Hasko, D. G.

M. M. Khayyat, G. K. Banini, D. G. Hasko, and M. M. Chaudhri, “Raman microscopy investigations of structural phase transformations in crystalline and amorphous silicon due to indentation with a Vickers diamond at room temperature and at 77 K,” J. Phys. Appl. Phys. 36, 1300 (2003).

Hathaway, C. E.

P. A. Temple and C. E. Hathaway, “Multiphonon Raman Spectrum of Silicon,” Phys. Rev. B 7, 3685–3697 (1973).

Haugen, H. K.

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys. 103, 053104 (2008).

Henley, S. J.

Hennig, G.

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface Structuring with Ultra-short Laser Pulses: Basics, Limitations and Needs for High Throughput,” Phys. Procedia 56, 1047–1058 (2014).

Hernandez-Rueda, J.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[PubMed]

Hodgson, R. T.

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser‐induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).

Holzwarth, R.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Hoogland, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Hou, X.

Hu, Y.

Ilday, F. Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface Structuring with Ultra-short Laser Pulses: Basics, Limitations and Needs for High Throughput,” Phys. Procedia 56, 1047–1058 (2014).

Jones, R.

Kailer, A.

Y. G. Gogotsi, A. Kailer, and K. G. Nickel, “Phase transformations in materials studied by micro-Raman spectroscopy of indentations,” Mater. Res. Innov. 1, 3–9 (1997).

Kalaycioglu, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Kamijoh, T.

H. Wada and T. Kamijoh, “Thermal Conductivity of Amorphous Silicon,” Jpn. J. Appl. Phys. 35, L648 (1996).

Kazanskii, A. G.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Kazansky, P. G.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Kazlauskiene, V.

G. Raciukaitis, M. Brikas, V. Kazlauskiene, and J. Miskinis, “Doping of silicon by carbon during laser ablation process,” J. Phys. Conf. Ser. 59, 150 (2007).

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3, 189–192 (1995).

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Kesim, D. K.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Khayyat, M. M.

M. M. Khayyat, G. K. Banini, D. G. Hasko, and M. M. Chaudhri, “Raman microscopy investigations of structural phase transformations in crystalline and amorphous silicon due to indentation with a Vickers diamond at room temperature and at 77 K,” J. Phys. Appl. Phys. 36, 1300 (2003).

Khenkin, M.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Kiani, A.

Konkov, O. I.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Kurz, H.

R. Yen, J. M. Liu, H. Kurz, and N. Bloembergen, “Space-time resolved reflectivity measurements of picosecond laser-pulse induced phase transitions in (111) silicon surface layers,” Appl. Phys., A Mater. Sci. Process. 27, 153–160 (1982).

Ledinský, M.

M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).

Liu, J. M.

R. Yen, J. M. Liu, H. Kurz, and N. Bloembergen, “Space-time resolved reflectivity measurements of picosecond laser-pulse induced phase transitions in (111) silicon surface layers,” Appl. Phys., A Mater. Sci. Process. 27, 153–160 (1982).

Liu, P. L.

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser‐induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).

Loiacono, R.

Mao, S. S.

M. S. Rogers, C. P. Grigoropoulos, A. M. Minor, and S. S. Mao, “Absence of amorphous phase in high power femtosecond laser-ablated silicon,” Appl. Phys. Lett. 94, 011111 (2009).

Mashanovich, G. Z.

Matulaitiené, I.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Mei, X.

C. Yang, X. Mei, and W. Wang, “Comparative experimental study of laser-induced transitions in crystalline silicon by femtosecond, picosecond, and millisecond laser ablation,” Radiat. Eff. Defects Solids 169, 194–203 (2014).

Meixner, A. J.

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).

Meng, X.

Minamisawa, R. A.

M. J. Süess, R. A. Minamisawa, R. Geiger, K. K. Bourdelle, H. Sigg, and R. Spolenak, “Power-Dependent Raman Analysis of Highly Strained Si Nanobridges,” Nano Lett. 14(3), 1249–1254 (2014).
[PubMed]

Minor, A. M.

M. S. Rogers, C. P. Grigoropoulos, A. M. Minor, and S. S. Mao, “Absence of amorphous phase in high power femtosecond laser-ablated silicon,” Appl. Phys. Lett. 94, 011111 (2009).

Miskinis, J.

G. Raciukaitis, M. Brikas, V. Kazlauskiene, and J. Miskinis, “Doping of silicon by carbon during laser ablation process,” J. Phys. Conf. Ser. 59, 150 (2007).

Mur, J.

J. Mur, B. Podobnik, and I. Poberaj, “Laser beam steering approaches for microstructuring of copper layers,” Opt. Laser Technol. 88, 140–146 (2017).

J. Mur, J. Petelin, N. Osterman, and R. Petkovšek, “High precision laser direct microstructuring system based on bursts of picosecond pulses,” J. Phys. Appl. Phys. 50, 325104 (2017).

Nakashima, S.

S. Nakashima and H. Harima, “Raman Investigation of SiC Polytypes,” Phys. Status Solidi, A Appl. Res. 162, 39–64 (1997).

Nathan, M. I.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinczuk, “Raman Spectra of Amorphous Si and Related Tetrahedrally Bonded Semiconductors,” Phys. Rev. Lett. 26, 642–646 (1971).

Nava, G.

Neuenschwander, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface Structuring with Ultra-short Laser Pulses: Basics, Limitations and Needs for High Throughput,” Phys. Procedia 56, 1047–1058 (2014).

Niaura, G.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Nickel, K. G.

Y. G. Gogotsi, A. Kailer, and K. G. Nickel, “Phase transformations in materials studied by micro-Raman spectroscopy of indentations,” Mater. Res. Innov. 1, 3–9 (1997).

Nissim, Y. I.

Y. I. Nissim, J. Sapriel, and J. L. Oudar, “Microprobe Raman analysis of picosecond laser annealed implanted silicon,” Appl. Phys. Lett. 42, 504–506 (1983).

Öktem, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Osellame, R.

Osterman, N.

J. Mur, J. Petelin, N. Osterman, and R. Petkovšek, “High precision laser direct microstructuring system based on bursts of picosecond pulses,” J. Phys. Appl. Phys. 50, 325104 (2017).

Oudar, J. L.

Y. I. Nissim, J. Sapriel, and J. L. Oudar, “Microprobe Raman analysis of picosecond laser annealed implanted silicon,” Appl. Phys. Lett. 42, 504–506 (1983).

Paviet-Salomon, B.

M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).

Petelin, J.

J. Mur, J. Petelin, N. Osterman, and R. Petkovšek, “High precision laser direct microstructuring system based on bursts of picosecond pulses,” J. Phys. Appl. Phys. 50, 325104 (2017).

J. Petelin, B. Podobnik, and R. Petkovšek, “Burst shaping in a fiber-amplifier chain seeded by a gain-switched laser diode,” Appl. Opt. 54(15), 4629–4634 (2015).
[PubMed]

Petkovšek, R.

J. Mur, J. Petelin, N. Osterman, and R. Petkovšek, “High precision laser direct microstructuring system based on bursts of picosecond pulses,” J. Phys. Appl. Phys. 50, 325104 (2017).

J. Petelin, B. Podobnik, and R. Petkovšek, “Burst shaping in a fiber-amplifier chain seeded by a gain-switched laser diode,” Appl. Opt. 54(15), 4629–4634 (2015).
[PubMed]

Pierce, D. T.

D. T. Pierce and W. E. Spicer, “Electronic Structure of Amorphous Si from Photoemission and Optical Studies,” Phys. Rev. B 5, 3017–3029 (1972).

Pinczuk, A.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinczuk, “Raman Spectra of Amorphous Si and Related Tetrahedrally Bonded Semiconductors,” Phys. Rev. Lett. 26, 642–646 (1971).

Poberaj, I.

J. Mur, B. Podobnik, and I. Poberaj, “Laser beam steering approaches for microstructuring of copper layers,” Opt. Laser Technol. 88, 140–146 (2017).

Podobnik, B.

J. Mur, B. Podobnik, and I. Poberaj, “Laser beam steering approaches for microstructuring of copper layers,” Opt. Laser Technol. 88, 140–146 (2017).

J. Petelin, B. Podobnik, and R. Petkovšek, “Burst shaping in a fiber-amplifier chain seeded by a gain-switched laser diode,” Appl. Opt. 54(15), 4629–4634 (2015).
[PubMed]

Puerto, D.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses,” Appl. Phys. Lett. 110, 211602 (2017).

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[PubMed]

Qiao, J.

Raciukaitis, G.

G. Raciukaitis, M. Brikas, V. Kazlauskiene, and J. Miskinis, “Doping of silicon by carbon during laser ablation process,” J. Phys. Conf. Ser. 59, 150 (2007).

Ramponi, R.

Reed, G. T.

Rogers, M. S.

M. S. Rogers, C. P. Grigoropoulos, A. M. Minor, and S. S. Mao, “Absence of amorphous phase in high power femtosecond laser-ablated silicon,” Appl. Phys. Lett. 94, 011111 (2009).

Sameshima, T.

T. Sameshima and S. Usui, “Mechanism of pulsed laser-induced amorphization of silicon films,” Appl. Phys. Lett. 59, 2724–2726 (1991).

Sanchez-Cortes, S.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses,” Appl. Phys. Lett. 110, 211602 (2017).

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[PubMed]

Sapriel, J.

Y. I. Nissim, J. Sapriel, and J. L. Oudar, “Microprobe Raman analysis of picosecond laser annealed implanted silicon,” Appl. Phys. Lett. 42, 504–506 (1983).

Schmid, M.

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface Structuring with Ultra-short Laser Pulses: Basics, Limitations and Needs for High Throughput,” Phys. Procedia 56, 1047–1058 (2014).

Shan, C.

Siegel, J.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses,” Appl. Phys. Lett. 110, 211602 (2017).

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[PubMed]

Sigg, H.

M. J. Süess, R. A. Minamisawa, R. Geiger, K. K. Bourdelle, H. Sigg, and R. Spolenak, “Power-Dependent Raman Analysis of Highly Strained Si Nanobridges,” Nano Lett. 14(3), 1249–1254 (2014).
[PubMed]

Singh, P.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5, 67583–67609 (2015).

Smith, J. E.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinczuk, “Raman Spectra of Amorphous Si and Related Tetrahedrally Bonded Semiconductors,” Phys. Rev. Lett. 26, 642–646 (1971).

Solis, J.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses,” Appl. Phys. Lett. 110, 211602 (2017).

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[PubMed]

Spicer, W. E.

D. T. Pierce and W. E. Spicer, “Electronic Structure of Amorphous Si from Photoemission and Optical Studies,” Phys. Rev. B 5, 3017–3029 (1972).

Spolenak, R.

M. J. Süess, R. A. Minamisawa, R. Geiger, K. K. Bourdelle, H. Sigg, and R. Spolenak, “Power-Dependent Raman Analysis of Highly Strained Si Nanobridges,” Nano Lett. 14(3), 1249–1254 (2014).
[PubMed]

Sudani, N.

K. Venkatakrishnan, N. Sudani, and B. Tan, “A high-repetition-rate femtosecond laser for thin silicon wafer dicing,” J. Micromech. Microeng. 18, 075032 (2008).

Süess, M. J.

M. J. Süess, R. A. Minamisawa, R. Geiger, K. K. Bourdelle, H. Sigg, and R. Spolenak, “Power-Dependent Raman Analysis of Highly Strained Si Nanobridges,” Nano Lett. 14(3), 1249–1254 (2014).
[PubMed]

Svirko, Y. P.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Tan, B.

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
[PubMed]

K. Venkatakrishnan, N. Sudani, and B. Tan, “A high-repetition-rate femtosecond laser for thin silicon wafer dicing,” J. Micromech. Microeng. 18, 075032 (2008).

Taylor, L. L.

Temple, P. A.

P. A. Temple and C. E. Hathaway, “Multiphonon Raman Spectrum of Silicon,” Phys. Rev. B 7, 3685–3697 (1973).

Terukov, E. I.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Tomasi, A.

M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).

Tsui, Y. Y.

Usui, S.

T. Sameshima and S. Usui, “Mechanism of pulsed laser-induced amorphization of silicon films,” Appl. Phys. Lett. 59, 2724–2726 (1991).

Van, V.

Venkatakrishnan, K.

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
[PubMed]

K. Venkatakrishnan, N. Sudani, and B. Tan, “A high-repetition-rate femtosecond laser for thin silicon wafer dicing,” J. Micromech. Microeng. 18, 075032 (2008).

Vetushka, A.

M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).

Vishnubhatla, K. C.

Wada, H.

H. Wada and T. Kamijoh, “Thermal Conductivity of Amorphous Silicon,” Jpn. J. Appl. Phys. 35, L648 (1996).

Wang, W.

C. Yang, X. Mei, and W. Wang, “Comparative experimental study of laser-induced transitions in crystalline silicon by femtosecond, picosecond, and millisecond laser ablation,” Radiat. Eff. Defects Solids 169, 194–203 (2014).

Wolf, S. D.

M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).

Yadav, A. K.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5, 67583–67609 (2015).

Yamanaka, J.

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys. 103, 053104 (2008).

Yang, C.

C. Yang, X. Mei, and W. Wang, “Comparative experimental study of laser-induced transitions in crystalline silicon by femtosecond, picosecond, and millisecond laser ablation,” Radiat. Eff. Defects Solids 169, 194–203 (2014).

Yang, Q.

Yavas, S.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Yen, R.

R. Yen, J. M. Liu, H. Kurz, and N. Bloembergen, “Space-time resolved reflectivity measurements of picosecond laser-pulse induced phase transitions in (111) silicon surface layers,” Appl. Phys., A Mater. Sci. Process. 27, 153–160 (1982).

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser‐induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).

Yong, J.

Appl. Opt. (1)

Appl. Phys. Lett. (6)

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser‐induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiené, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106, 171106 (2015).

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses,” Appl. Phys. Lett. 110, 211602 (2017).

T. Sameshima and S. Usui, “Mechanism of pulsed laser-induced amorphization of silicon films,” Appl. Phys. Lett. 59, 2724–2726 (1991).

Y. I. Nissim, J. Sapriel, and J. L. Oudar, “Microprobe Raman analysis of picosecond laser annealed implanted silicon,” Appl. Phys. Lett. 42, 504–506 (1983).

M. S. Rogers, C. P. Grigoropoulos, A. M. Minor, and S. S. Mao, “Absence of amorphous phase in high power femtosecond laser-ablated silicon,” Appl. Phys. Lett. 94, 011111 (2009).

Appl. Phys., A Mater. Sci. Process. (1)

R. Yen, J. M. Liu, H. Kurz, and N. Bloembergen, “Space-time resolved reflectivity measurements of picosecond laser-pulse induced phase transitions in (111) silicon surface layers,” Appl. Phys., A Mater. Sci. Process. 27, 153–160 (1982).

Appl. Surf. Sci. (1)

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).

J. Appl. Phys. (1)

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys. 103, 053104 (2008).

J. Micromech. Microeng. (1)

K. Venkatakrishnan, N. Sudani, and B. Tan, “A high-repetition-rate femtosecond laser for thin silicon wafer dicing,” J. Micromech. Microeng. 18, 075032 (2008).

J. Phys. Appl. Phys. (2)

J. Mur, J. Petelin, N. Osterman, and R. Petkovšek, “High precision laser direct microstructuring system based on bursts of picosecond pulses,” J. Phys. Appl. Phys. 50, 325104 (2017).

M. M. Khayyat, G. K. Banini, D. G. Hasko, and M. M. Chaudhri, “Raman microscopy investigations of structural phase transformations in crystalline and amorphous silicon due to indentation with a Vickers diamond at room temperature and at 77 K,” J. Phys. Appl. Phys. 36, 1300 (2003).

J. Phys. Conf. Ser. (1)

G. Raciukaitis, M. Brikas, V. Kazlauskiene, and J. Miskinis, “Doping of silicon by carbon during laser ablation process,” J. Phys. Conf. Ser. 59, 150 (2007).

Jpn. J. Appl. Phys. (1)

H. Wada and T. Kamijoh, “Thermal Conductivity of Amorphous Silicon,” Jpn. J. Appl. Phys. 35, L648 (1996).

Mater. Res. Innov. (1)

Y. G. Gogotsi, A. Kailer, and K. G. Nickel, “Phase transformations in materials studied by micro-Raman spectroscopy of indentations,” Mater. Res. Innov. 1, 3–9 (1997).

Nano Lett. (1)

M. J. Süess, R. A. Minamisawa, R. Geiger, K. K. Bourdelle, H. Sigg, and R. Spolenak, “Power-Dependent Raman Analysis of Highly Strained Si Nanobridges,” Nano Lett. 14(3), 1249–1254 (2014).
[PubMed]

Nanotechnology (1)

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[PubMed]

Nature (1)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[PubMed]

Opt. Express (3)

Opt. Laser Technol. (1)

J. Mur, B. Podobnik, and I. Poberaj, “Laser beam steering approaches for microstructuring of copper layers,” Opt. Laser Technol. 88, 140–146 (2017).

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Procedia (1)

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface Structuring with Ultra-short Laser Pulses: Basics, Limitations and Needs for High Throughput,” Phys. Procedia 56, 1047–1058 (2014).

Phys. Rev. B (2)

P. A. Temple and C. E. Hathaway, “Multiphonon Raman Spectrum of Silicon,” Phys. Rev. B 7, 3685–3697 (1973).

D. T. Pierce and W. E. Spicer, “Electronic Structure of Amorphous Si from Photoemission and Optical Studies,” Phys. Rev. B 5, 3017–3029 (1972).

Phys. Rev. Lett. (1)

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinczuk, “Raman Spectra of Amorphous Si and Related Tetrahedrally Bonded Semiconductors,” Phys. Rev. Lett. 26, 642–646 (1971).

Phys. Status Solidi, A Appl. Res. (1)

S. Nakashima and H. Harima, “Raman Investigation of SiC Polytypes,” Phys. Status Solidi, A Appl. Res. 162, 39–64 (1997).

Prog. Photovolt. Res. Appl. (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3, 189–192 (1995).

Radiat. Eff. Defects Solids (1)

C. Yang, X. Mei, and W. Wang, “Comparative experimental study of laser-induced transitions in crystalline silicon by femtosecond, picosecond, and millisecond laser ablation,” Radiat. Eff. Defects Solids 169, 194–203 (2014).

RSC Advances (1)

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5, 67583–67609 (2015).

Sci. Rep. (1)

M. Ledinský, B. Paviet-Salomon, A. Vetushka, J. Geissbühler, A. Tomasi, M. Despeisse, S. D. Wolf, C. Ballif, and A. Fejfar, “Profilometry of thin films on rough substrates by Raman spectroscopy,” Sci. Rep. 6, 37859 (2016).

Other (2)

C. Gaudiuso, H. Kämmer, F. Dreisow, A. Ancona, A. Tünnermann, and S. Nolte, “Ablation of silicon with bursts of femtosecond laser pulses,” in Proc. SPIE 9740 (2016), Vol. 9740, pp. 974017–974017–8.

R. Hull, Properties of Crystalline Silicon (INSPEC, the Institution of Electrical Engineers, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the experiment. On the CAD structure design white areas are to be processed with different laser parameters. The SEM image of the processed sample shows six separate laser processed areas. The scale bar equals to 200 µm.
Fig. 2
Fig. 2 The highest laser pulse energies resulted in large quantities of ablated material. The total energy is a product of the pulse energy and the total number of pulses and is approximately the same for structures shown above (between 1.03 J and 1.08 J). The number of pulses in a burst varies, resulting in different surface topography. PPB and structure depth were: a) 1 PPB (around 17 μm), b) 5 PPB (around 26 μm), c) 10 PPB (around 25 μm), and d) 20 PPB (around 23 μm). Scale bars are equal to 10 μm. Graphs show the structure depth dependency on the total energy delivered per structure for different PPB regimes and the ablation efficiency as a function of pulse energy. Maximum used pulse energy declines with the increasing number of PPB but the corresponding burst energies get higher.
Fig. 3
Fig. 3 MRS results – a) spectra of different types of silicon are shown with typical peaks marked using the symbols shown in brackets: A) c-Si, B) α-Si (■), C) α-Si + c-Si, D) Si-IV + Si-XII (▼), E) strained c-Si (⚫). b-e) Representations of spatial distribution of the amorphous (black) and crystalline (white) silicon surface after laser processing, resulting in b) crystalline surface, c) more than 98% crystalline surface, d) more than 98% amorphous surface, and e) amorphous surface. Each mapping corresponds to a 10x10 µm2 silicon surface and consists of the analyzed data from 2500 points. The laser parameters used for each separate mapping are marked on the phase diagrams in Fig. 4. f) EDS mapping, green color represents oxygen, blue carbon, and red silicon. The scale bar equals to 10 µm. g) EDS spectrum, showing only the presence of signature O, C, and Si peaks.
Fig. 4
Fig. 4 Phase diagrams of silicon crystallinity after pulsed laser processing, plotted in the parameter spaces of the number of pulses in a burst (PPB) versus pulse energy and total energy per structure. The data points corresponding to the representations of the silicon surface type spatial distributions shown in Figs. 3(b)–(e) are marked with the matching labels.
Fig. 5
Fig. 5 Optical images of precisely defined amorphous regions in the form of lines (horizontal, vertical, spiral) and lettering, on an otherwise crystalline silicon surface. Scale bars are equal to 5 µm. The graph shows reflected light intensity values across the horizontal α-Si lines averaged along the whole line length.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d α 1 2 k α ln( I 521 (c-Si) I 521 (α-Si+c-Si) )

Metrics