Abstract

We demonstrate an optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol. The thermal response mechanism is mainly based on the thermal expansion effect induce by toluene, where the ethanol is used for refractive index adjustment to determine the initial refection band position of cholesteric film. The ethanol-toluene mixture was used to adjust the color tunability with the temperature in relation with the habits of people (blue as cold, green as safe and red as hot). A broad temperature range of 86 °C and highly sensitivity of 1.79 nm/ °C are achieved in proposed thermal sensor, where the reflective color red-shifts from blue to red when environmental temperature increases from −6 °C to 80 °C. This battery-free thermal sensor possesses features including simple fabrication, low-cost, and broad temperature sensing range, showing potential application in scientific research and industry.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full-color reflective display based on narrow bandwidth templated cholesteric liquid crystal film

Yong Li, Dan Luo, and Zeng Hui Peng
Opt. Mater. Express 7(1) 16-24 (2017)

Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples

Jia-De Lin, Chung-Liang Chu, Hsin-Yu Lin, Borwen You, Chi-Ting Horng, Shuan-Yu Huang, Ting-Shan Mo, Chia-Yi Huang, and Chia-Rong Lee
Opt. Mater. Express 5(6) 1419-1430 (2015)

High-performance dichroic dye-doped flexible cholesteric polymer film optical filter for laser protection application

Yong Li, Yanjun Liu, Fei Wang, Dan Luo, and Xiaowei Sun
Opt. Express 26(18) 23000-23007 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
    [PubMed]
  2. F. L. Dickert, A. Haunschild, and P. Hofmann, “Cholesteric liquid crystals for solvent vapour detection - Elimination of cross sensitivity by band shape analysis and pattern recognition,” J. Anal. Chem. 350(10), 577–581 (1994).
  3. Y. Han, K. Pacheco, C. W. M. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Optical monitoring of gases with cholesteric liquid crystals,” J. Am. Chem. Soc. 132(9), 2961–2967 (2010).
    [PubMed]
  4. A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Irreversible visual sensing of humidity using a cholesteric liquid crystal,” Chem. Commun. (Camb.) 48(38), 4579–4581 (2012).
    [PubMed]
  5. Y. Kim, Mo. Wada, and N. Tamaoki, “Dicholesteryl icosanedioate as a glass-forming cholesteric liquid crystal: properties, additive effects and application in color recording,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(10), 1921–1926 (2014).
  6. A. Matranga, S. Baig, J. Boland, C. Newton, T. Taphouse, G. Wells, and S. Kitson, “Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers,” Adv. Mater. 25(4), 520–523 (2013).
    [PubMed]
  7. K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).
  8. G. Petriashvili, K. Japaridze, L. Devadze, C. Zurabishvili, N. Sepashvili, N. Ponjavidze, M. P. De Santo, M. A. Matranga, R. Hamdi, F. Ciuchi, and R. Barberi, “Paper like cholesteric interferential mirror,” Opt. Express 21(18), 20821–20830 (2013).
    [PubMed]
  9. W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
    [PubMed]
  10. P. V. Shibaev, K. Schaumburg, and V. Plaksin, “Responsive chiral hydrogen-bonded polymer composites,” Chem. Mater. 14(3), 959–961 (2002).
  11. P. V. Shibaev, J. Madsen, and A. Z. Genack, “Lasing and narrowing of spontaneous emission from responsive cholesteric films,” Chem. Mater. 16(8), 1397–1399 (2004).
  12. C.-K. Chang, C. M. W. Bastiaansen, D. J. Broer, and H.-L. Kuo, “Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks,” Adv. Funct. Mater. 22(13), 2855–2859 (2012).
  13. V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33(21), 1875–1881 (2012).
    [PubMed]
  14. N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks,” J. Am. Chem. Soc. 134(18), 7608–7611 (2012).
    [PubMed]
  15. J. E. Stumpel, C. Wouters, N. Herzer, J. Ziegler, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “An optical sensor for volatile amines based on an inkjet-printed, hydrogen-bonded, cholesteric liquid crystalline film,” Adv. Opt. Mater. 2(5), 459 (2014).
  16. O. T. Picot, M. Dai, E. Billoti, D. J. Broer, T. Peijs, and C. W. M. Bastiaansen, “A real time optical strain sensor based on a cholesteric liquid crystal network,” RSC Advances 3, 18794 (2013).
  17. G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18, 273–474 (1922).
  18. J. T. Crissey, J. L. Fergason, and J. M. Bettenhausen, “Cutaneous thermography with liquid crystals,” J. Invest. Dermatol. 45(5), 329–333 (1965).
    [PubMed]
  19. J. L. Fergason, “Liquid crystals in nondestructive testing,” Appl. Opt. 7(9), 1729–1737 (1968).
    [PubMed]
  20. M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
    [PubMed]
  21. D. J. D. Davies, A. R. Vaccaro, S. M. Morris, N. Herzer, A. P. H. J. Schenning, and C. W. M. Bastiaansen, “A printable optical time-temperature integrator based on shape memory in a chiral nematic polymer network,” Adv. Funct. Mater. 23, 2723–2727 (2013).
  22. S. T. Kim and H. Finkelmann, “Cholesteric liquid single-crystal elastomers (LSCE) obrained by the anisotropic deswelling method,” Macromol. Rapid Commun. 22(6), 429–433 (2001).
  23. S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
    [PubMed]
  24. H. Nagai and K. Urayama, “Thermal response of cholesteric liquid crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022501 (2015).
    [PubMed]
  25. Y. Li and D. Luo, “Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen,” Opt. Mater. Express 6(2), 691–696 (2016).
  26. Y. Li, D. Luo, and Z. H. Peng, “Full-color reflective display based on narrow bandwidth templated cholesteric liquid crystal film,” Opt. Mater. Express 7(1), 16–24 (2017).
  27. Y. H. Qin, General Physics Course: Thermology (Higher Education Press, 2011), Chap. 1.
  28. G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
    [PubMed]
  29. J. C. Owens, “Optical refractive index of air: dependence on pressure, temperature and composition,” Appl. Opt. 6(1), 51–59 (1967).
    [PubMed]
  30. W. Heller, “Remarks on: refractive index mixture rule,” J. Phys. Chem. 69(2), 1123–1129 (1965).
  31. G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induce deformations,” Soft Matter 7(6), 2841–2847 (2011).

2017 (2)

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Y. Li, D. Luo, and Z. H. Peng, “Full-color reflective display based on narrow bandwidth templated cholesteric liquid crystal film,” Opt. Mater. Express 7(1), 16–24 (2017).

2016 (1)

2015 (2)

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[PubMed]

H. Nagai and K. Urayama, “Thermal response of cholesteric liquid crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022501 (2015).
[PubMed]

2014 (4)

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[PubMed]

Y. Kim, Mo. Wada, and N. Tamaoki, “Dicholesteryl icosanedioate as a glass-forming cholesteric liquid crystal: properties, additive effects and application in color recording,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(10), 1921–1926 (2014).

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).

J. E. Stumpel, C. Wouters, N. Herzer, J. Ziegler, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “An optical sensor for volatile amines based on an inkjet-printed, hydrogen-bonded, cholesteric liquid crystalline film,” Adv. Opt. Mater. 2(5), 459 (2014).

2013 (4)

O. T. Picot, M. Dai, E. Billoti, D. J. Broer, T. Peijs, and C. W. M. Bastiaansen, “A real time optical strain sensor based on a cholesteric liquid crystal network,” RSC Advances 3, 18794 (2013).

A. Matranga, S. Baig, J. Boland, C. Newton, T. Taphouse, G. Wells, and S. Kitson, “Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers,” Adv. Mater. 25(4), 520–523 (2013).
[PubMed]

D. J. D. Davies, A. R. Vaccaro, S. M. Morris, N. Herzer, A. P. H. J. Schenning, and C. W. M. Bastiaansen, “A printable optical time-temperature integrator based on shape memory in a chiral nematic polymer network,” Adv. Funct. Mater. 23, 2723–2727 (2013).

G. Petriashvili, K. Japaridze, L. Devadze, C. Zurabishvili, N. Sepashvili, N. Ponjavidze, M. P. De Santo, M. A. Matranga, R. Hamdi, F. Ciuchi, and R. Barberi, “Paper like cholesteric interferential mirror,” Opt. Express 21(18), 20821–20830 (2013).
[PubMed]

2012 (5)

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[PubMed]

A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Irreversible visual sensing of humidity using a cholesteric liquid crystal,” Chem. Commun. (Camb.) 48(38), 4579–4581 (2012).
[PubMed]

C.-K. Chang, C. M. W. Bastiaansen, D. J. Broer, and H.-L. Kuo, “Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks,” Adv. Funct. Mater. 22(13), 2855–2859 (2012).

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33(21), 1875–1881 (2012).
[PubMed]

N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks,” J. Am. Chem. Soc. 134(18), 7608–7611 (2012).
[PubMed]

2011 (2)

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[PubMed]

G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induce deformations,” Soft Matter 7(6), 2841–2847 (2011).

2010 (1)

Y. Han, K. Pacheco, C. W. M. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Optical monitoring of gases with cholesteric liquid crystals,” J. Am. Chem. Soc. 132(9), 2961–2967 (2010).
[PubMed]

2004 (1)

P. V. Shibaev, J. Madsen, and A. Z. Genack, “Lasing and narrowing of spontaneous emission from responsive cholesteric films,” Chem. Mater. 16(8), 1397–1399 (2004).

2002 (1)

P. V. Shibaev, K. Schaumburg, and V. Plaksin, “Responsive chiral hydrogen-bonded polymer composites,” Chem. Mater. 14(3), 959–961 (2002).

2001 (1)

S. T. Kim and H. Finkelmann, “Cholesteric liquid single-crystal elastomers (LSCE) obrained by the anisotropic deswelling method,” Macromol. Rapid Commun. 22(6), 429–433 (2001).

1994 (1)

F. L. Dickert, A. Haunschild, and P. Hofmann, “Cholesteric liquid crystals for solvent vapour detection - Elimination of cross sensitivity by band shape analysis and pattern recognition,” J. Anal. Chem. 350(10), 577–581 (1994).

1968 (1)

1967 (1)

1965 (2)

W. Heller, “Remarks on: refractive index mixture rule,” J. Phys. Chem. 69(2), 1123–1129 (1965).

J. T. Crissey, J. L. Fergason, and J. M. Bettenhausen, “Cutaneous thermography with liquid crystals,” J. Invest. Dermatol. 45(5), 329–333 (1965).
[PubMed]

1922 (1)

G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18, 273–474 (1922).

Agez, G.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[PubMed]

G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induce deformations,” Soft Matter 7(6), 2841–2847 (2011).

Baig, S.

A. Matranga, S. Baig, J. Boland, C. Newton, T. Taphouse, G. Wells, and S. Kitson, “Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers,” Adv. Mater. 25(4), 520–523 (2013).
[PubMed]

Barberi, R.

Bastiaansen, C. M. W.

C.-K. Chang, C. M. W. Bastiaansen, D. J. Broer, and H.-L. Kuo, “Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks,” Adv. Funct. Mater. 22(13), 2855–2859 (2012).

A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Irreversible visual sensing of humidity using a cholesteric liquid crystal,” Chem. Commun. (Camb.) 48(38), 4579–4581 (2012).
[PubMed]

Bastiaansen, C. W. M.

J. E. Stumpel, C. Wouters, N. Herzer, J. Ziegler, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “An optical sensor for volatile amines based on an inkjet-printed, hydrogen-bonded, cholesteric liquid crystalline film,” Adv. Opt. Mater. 2(5), 459 (2014).

O. T. Picot, M. Dai, E. Billoti, D. J. Broer, T. Peijs, and C. W. M. Bastiaansen, “A real time optical strain sensor based on a cholesteric liquid crystal network,” RSC Advances 3, 18794 (2013).

D. J. D. Davies, A. R. Vaccaro, S. M. Morris, N. Herzer, A. P. H. J. Schenning, and C. W. M. Bastiaansen, “A printable optical time-temperature integrator based on shape memory in a chiral nematic polymer network,” Adv. Funct. Mater. 23, 2723–2727 (2013).

N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks,” J. Am. Chem. Soc. 134(18), 7608–7611 (2012).
[PubMed]

Y. Han, K. Pacheco, C. W. M. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Optical monitoring of gases with cholesteric liquid crystals,” J. Am. Chem. Soc. 132(9), 2961–2967 (2010).
[PubMed]

Bettenhausen, J. M.

J. T. Crissey, J. L. Fergason, and J. M. Bettenhausen, “Cutaneous thermography with liquid crystals,” J. Invest. Dermatol. 45(5), 329–333 (1965).
[PubMed]

Billoti, E.

O. T. Picot, M. Dai, E. Billoti, D. J. Broer, T. Peijs, and C. W. M. Bastiaansen, “A real time optical strain sensor based on a cholesteric liquid crystal network,” RSC Advances 3, 18794 (2013).

Bitar, R.

G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induce deformations,” Soft Matter 7(6), 2841–2847 (2011).

Bobrovsky, A.

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33(21), 1875–1881 (2012).
[PubMed]

Boland, J.

A. Matranga, S. Baig, J. Boland, C. Newton, T. Taphouse, G. Wells, and S. Kitson, “Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers,” Adv. Mater. 25(4), 520–523 (2013).
[PubMed]

Broer, D. J.

J. E. Stumpel, C. Wouters, N. Herzer, J. Ziegler, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “An optical sensor for volatile amines based on an inkjet-printed, hydrogen-bonded, cholesteric liquid crystalline film,” Adv. Opt. Mater. 2(5), 459 (2014).

O. T. Picot, M. Dai, E. Billoti, D. J. Broer, T. Peijs, and C. W. M. Bastiaansen, “A real time optical strain sensor based on a cholesteric liquid crystal network,” RSC Advances 3, 18794 (2013).

N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks,” J. Am. Chem. Soc. 134(18), 7608–7611 (2012).
[PubMed]

A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Irreversible visual sensing of humidity using a cholesteric liquid crystal,” Chem. Commun. (Camb.) 48(38), 4579–4581 (2012).
[PubMed]

C.-K. Chang, C. M. W. Bastiaansen, D. J. Broer, and H.-L. Kuo, “Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks,” Adv. Funct. Mater. 22(13), 2855–2859 (2012).

Y. Han, K. Pacheco, C. W. M. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Optical monitoring of gases with cholesteric liquid crystals,” J. Am. Chem. Soc. 132(9), 2961–2967 (2010).
[PubMed]

Bunning, T. J.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[PubMed]

Cao, K.

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Chang, C.-K.

C.-K. Chang, C. M. W. Bastiaansen, D. J. Broer, and H.-L. Kuo, “Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks,” Adv. Funct. Mater. 22(13), 2855–2859 (2012).

Ciuchi, F.

Crissey, J. T.

J. T. Crissey, J. L. Fergason, and J. M. Bettenhausen, “Cutaneous thermography with liquid crystals,” J. Invest. Dermatol. 45(5), 329–333 (1965).
[PubMed]

Dai, M.

O. T. Picot, M. Dai, E. Billoti, D. J. Broer, T. Peijs, and C. W. M. Bastiaansen, “A real time optical strain sensor based on a cholesteric liquid crystal network,” RSC Advances 3, 18794 (2013).

Davies, D. J. D.

D. J. D. Davies, A. R. Vaccaro, S. M. Morris, N. Herzer, A. P. H. J. Schenning, and C. W. M. Bastiaansen, “A printable optical time-temperature integrator based on shape memory in a chiral nematic polymer network,” Adv. Funct. Mater. 23, 2723–2727 (2013).

N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks,” J. Am. Chem. Soc. 134(18), 7608–7611 (2012).
[PubMed]

De Santo, M. P.

Devadze, L.

Dickert, F. L.

F. L. Dickert, A. Haunschild, and P. Hofmann, “Cholesteric liquid crystals for solvent vapour detection - Elimination of cross sensitivity by band shape analysis and pattern recognition,” J. Anal. Chem. 350(10), 577–581 (1994).

Fergason, J. L.

J. L. Fergason, “Liquid crystals in nondestructive testing,” Appl. Opt. 7(9), 1729–1737 (1968).
[PubMed]

J. T. Crissey, J. L. Fergason, and J. M. Bettenhausen, “Cutaneous thermography with liquid crystals,” J. Invest. Dermatol. 45(5), 329–333 (1965).
[PubMed]

Finkelmann, H.

S. T. Kim and H. Finkelmann, “Cholesteric liquid single-crystal elastomers (LSCE) obrained by the anisotropic deswelling method,” Macromol. Rapid Commun. 22(6), 429–433 (2001).

Friedel, G.

G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18, 273–474 (1922).

Genack, A. Z.

P. V. Shibaev, J. Madsen, and A. Z. Genack, “Lasing and narrowing of spontaneous emission from responsive cholesteric films,” Chem. Mater. 16(8), 1397–1399 (2004).

Guneysu, H.

N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks,” J. Am. Chem. Soc. 134(18), 7608–7611 (2012).
[PubMed]

Hamdi, R.

Han, Y.

A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Irreversible visual sensing of humidity using a cholesteric liquid crystal,” Chem. Commun. (Camb.) 48(38), 4579–4581 (2012).
[PubMed]

Y. Han, K. Pacheco, C. W. M. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Optical monitoring of gases with cholesteric liquid crystals,” J. Am. Chem. Soc. 132(9), 2961–2967 (2010).
[PubMed]

Haunschild, A.

F. L. Dickert, A. Haunschild, and P. Hofmann, “Cholesteric liquid crystals for solvent vapour detection - Elimination of cross sensitivity by band shape analysis and pattern recognition,” J. Anal. Chem. 350(10), 577–581 (1994).

Heller, W.

W. Heller, “Remarks on: refractive index mixture rule,” J. Phys. Chem. 69(2), 1123–1129 (1965).

Herzer, N.

J. E. Stumpel, C. Wouters, N. Herzer, J. Ziegler, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “An optical sensor for volatile amines based on an inkjet-printed, hydrogen-bonded, cholesteric liquid crystalline film,” Adv. Opt. Mater. 2(5), 459 (2014).

D. J. D. Davies, A. R. Vaccaro, S. M. Morris, N. Herzer, A. P. H. J. Schenning, and C. W. M. Bastiaansen, “A printable optical time-temperature integrator based on shape memory in a chiral nematic polymer network,” Adv. Funct. Mater. 23, 2723–2727 (2013).

N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks,” J. Am. Chem. Soc. 134(18), 7608–7611 (2012).
[PubMed]

Hofmann, P.

F. L. Dickert, A. Haunschild, and P. Hofmann, “Cholesteric liquid crystals for solvent vapour detection - Elimination of cross sensitivity by band shape analysis and pattern recognition,” J. Anal. Chem. 350(10), 577–581 (1994).

Hurtubise, J. M.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[PubMed]

Japaridze, K.

Kim, B.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[PubMed]

Kim, S. H.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[PubMed]

Kim, S. K.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[PubMed]

Kim, S. T.

S. T. Kim and H. Finkelmann, “Cholesteric liquid single-crystal elastomers (LSCE) obrained by the anisotropic deswelling method,” Macromol. Rapid Commun. 22(6), 429–433 (2001).

Kim, Y.

Y. Kim, Mo. Wada, and N. Tamaoki, “Dicholesteryl icosanedioate as a glass-forming cholesteric liquid crystal: properties, additive effects and application in color recording,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(10), 1921–1926 (2014).

Kim, Y. H.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[PubMed]

Kitson, S.

A. Matranga, S. Baig, J. Boland, C. Newton, T. Taphouse, G. Wells, and S. Kitson, “Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers,” Adv. Mater. 25(4), 520–523 (2013).
[PubMed]

Kuo, H.-L.

C.-K. Chang, C. M. W. Bastiaansen, D. J. Broer, and H.-L. Kuo, “Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks,” Adv. Funct. Mater. 22(13), 2855–2859 (2012).

Le Zhou, J.

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Lee, K. M.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).

Lee, S. S.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[PubMed]

Li, H.

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Li, Y.

Li, Z.

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Liang, X.

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Luo, D.

Madsen, J.

P. V. Shibaev, J. Madsen, and A. Z. Genack, “Lasing and narrowing of spontaneous emission from responsive cholesteric films,” Chem. Mater. 16(8), 1397–1399 (2004).

Matranga, A.

A. Matranga, S. Baig, J. Boland, C. Newton, T. Taphouse, G. Wells, and S. Kitson, “Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers,” Adv. Mater. 25(4), 520–523 (2013).
[PubMed]

Matranga, M. A.

McConney, M. E.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[PubMed]

Mitov, M.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[PubMed]

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[PubMed]

G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induce deformations,” Soft Matter 7(6), 2841–2847 (2011).

Morris, S. M.

D. J. D. Davies, A. R. Vaccaro, S. M. Morris, N. Herzer, A. P. H. J. Schenning, and C. W. M. Bastiaansen, “A printable optical time-temperature integrator based on shape memory in a chiral nematic polymer network,” Adv. Funct. Mater. 23, 2723–2727 (2013).

Nagai, H.

H. Nagai and K. Urayama, “Thermal response of cholesteric liquid crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022501 (2015).
[PubMed]

Natarajan, L. V.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[PubMed]

Newton, C.

A. Matranga, S. Baig, J. Boland, C. Newton, T. Taphouse, G. Wells, and S. Kitson, “Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers,” Adv. Mater. 25(4), 520–523 (2013).
[PubMed]

Owens, J. C.

Pacheco, K.

Y. Han, K. Pacheco, C. W. M. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Optical monitoring of gases with cholesteric liquid crystals,” J. Am. Chem. Soc. 132(9), 2961–2967 (2010).
[PubMed]

Peijs, T.

O. T. Picot, M. Dai, E. Billoti, D. J. Broer, T. Peijs, and C. W. M. Bastiaansen, “A real time optical strain sensor based on a cholesteric liquid crystal network,” RSC Advances 3, 18794 (2013).

Peng, Z. H.

Petriashvili, G.

Picot, O. T.

O. T. Picot, M. Dai, E. Billoti, D. J. Broer, T. Peijs, and C. W. M. Bastiaansen, “A real time optical strain sensor based on a cholesteric liquid crystal network,” RSC Advances 3, 18794 (2013).

Plaksin, V.

P. V. Shibaev, K. Schaumburg, and V. Plaksin, “Responsive chiral hydrogen-bonded polymer composites,” Chem. Mater. 14(3), 959–961 (2002).

Ponjavidze, N.

Relaix, S.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[PubMed]

Ryabchun, A.

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33(21), 1875–1881 (2012).
[PubMed]

Saha, A.

A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Irreversible visual sensing of humidity using a cholesteric liquid crystal,” Chem. Commun. (Camb.) 48(38), 4579–4581 (2012).
[PubMed]

Schaumburg, K.

P. V. Shibaev, K. Schaumburg, and V. Plaksin, “Responsive chiral hydrogen-bonded polymer composites,” Chem. Mater. 14(3), 959–961 (2002).

Schenning, A. P. H. J.

J. E. Stumpel, C. Wouters, N. Herzer, J. Ziegler, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “An optical sensor for volatile amines based on an inkjet-printed, hydrogen-bonded, cholesteric liquid crystalline film,” Adv. Opt. Mater. 2(5), 459 (2014).

D. J. D. Davies, A. R. Vaccaro, S. M. Morris, N. Herzer, A. P. H. J. Schenning, and C. W. M. Bastiaansen, “A printable optical time-temperature integrator based on shape memory in a chiral nematic polymer network,” Adv. Funct. Mater. 23, 2723–2727 (2013).

N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks,” J. Am. Chem. Soc. 134(18), 7608–7611 (2012).
[PubMed]

Sepashvili, N.

Shibaev, P. V.

P. V. Shibaev, J. Madsen, and A. Z. Genack, “Lasing and narrowing of spontaneous emission from responsive cholesteric films,” Chem. Mater. 16(8), 1397–1399 (2004).

P. V. Shibaev, K. Schaumburg, and V. Plaksin, “Responsive chiral hydrogen-bonded polymer composites,” Chem. Mater. 14(3), 959–961 (2002).

Shibaev, V.

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33(21), 1875–1881 (2012).
[PubMed]

Sijbesma, R. P.

A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Irreversible visual sensing of humidity using a cholesteric liquid crystal,” Chem. Commun. (Camb.) 48(38), 4579–4581 (2012).
[PubMed]

Y. Han, K. Pacheco, C. W. M. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Optical monitoring of gases with cholesteric liquid crystals,” J. Am. Chem. Soc. 132(9), 2961–2967 (2010).
[PubMed]

Stroganov, V.

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33(21), 1875–1881 (2012).
[PubMed]

Stumpel, J. E.

J. E. Stumpel, C. Wouters, N. Herzer, J. Ziegler, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “An optical sensor for volatile amines based on an inkjet-printed, hydrogen-bonded, cholesteric liquid crystalline film,” Adv. Opt. Mater. 2(5), 459 (2014).

Tamaoki, N.

Y. Kim, Mo. Wada, and N. Tamaoki, “Dicholesteryl icosanedioate as a glass-forming cholesteric liquid crystal: properties, additive effects and application in color recording,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(10), 1921–1926 (2014).

Tanaka, Y.

A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Irreversible visual sensing of humidity using a cholesteric liquid crystal,” Chem. Commun. (Camb.) 48(38), 4579–4581 (2012).
[PubMed]

Taphouse, T.

A. Matranga, S. Baig, J. Boland, C. Newton, T. Taphouse, G. Wells, and S. Kitson, “Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers,” Adv. Mater. 25(4), 520–523 (2013).
[PubMed]

Tondiglia, V. P.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[PubMed]

Urayama, K.

H. Nagai and K. Urayama, “Thermal response of cholesteric liquid crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022501 (2015).
[PubMed]

Vaccaro, A. R.

D. J. D. Davies, A. R. Vaccaro, S. M. Morris, N. Herzer, A. P. H. J. Schenning, and C. W. M. Bastiaansen, “A printable optical time-temperature integrator based on shape memory in a chiral nematic polymer network,” Adv. Funct. Mater. 23, 2723–2727 (2013).

N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks,” J. Am. Chem. Soc. 134(18), 7608–7611 (2012).
[PubMed]

Wada, Mo.

Y. Kim, Mo. Wada, and N. Tamaoki, “Dicholesteryl icosanedioate as a glass-forming cholesteric liquid crystal: properties, additive effects and application in color recording,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(10), 1921–1926 (2014).

Wells, G.

A. Matranga, S. Baig, J. Boland, C. Newton, T. Taphouse, G. Wells, and S. Kitson, “Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers,” Adv. Mater. 25(4), 520–523 (2013).
[PubMed]

White, T. J.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[PubMed]

Won, J. C.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[PubMed]

Wouters, C.

J. E. Stumpel, C. Wouters, N. Herzer, J. Ziegler, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “An optical sensor for volatile amines based on an inkjet-printed, hydrogen-bonded, cholesteric liquid crystalline film,” Adv. Opt. Mater. 2(5), 459 (2014).

Xiao, L.

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Yang,

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Yang, H.

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Yildirim, D.

N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks,” J. Am. Chem. Soc. 134(18), 7608–7611 (2012).
[PubMed]

Yu, F.

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Zhang, L.

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Zhang, W.

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Ziegler, J.

J. E. Stumpel, C. Wouters, N. Herzer, J. Ziegler, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “An optical sensor for volatile amines based on an inkjet-printed, hydrogen-bonded, cholesteric liquid crystalline film,” Adv. Opt. Mater. 2(5), 459 (2014).

Zurabishvili, C.

ACS Photonics (1)

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).

Adv. Funct. Mater. (2)

C.-K. Chang, C. M. W. Bastiaansen, D. J. Broer, and H.-L. Kuo, “Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks,” Adv. Funct. Mater. 22(13), 2855–2859 (2012).

D. J. D. Davies, A. R. Vaccaro, S. M. Morris, N. Herzer, A. P. H. J. Schenning, and C. W. M. Bastiaansen, “A printable optical time-temperature integrator based on shape memory in a chiral nematic polymer network,” Adv. Funct. Mater. 23, 2723–2727 (2013).

Adv. Mater. (4)

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[PubMed]

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[PubMed]

A. Matranga, S. Baig, J. Boland, C. Newton, T. Taphouse, G. Wells, and S. Kitson, “Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers,” Adv. Mater. 25(4), 520–523 (2013).
[PubMed]

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[PubMed]

Adv. Opt. Mater. (1)

J. E. Stumpel, C. Wouters, N. Herzer, J. Ziegler, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “An optical sensor for volatile amines based on an inkjet-printed, hydrogen-bonded, cholesteric liquid crystalline film,” Adv. Opt. Mater. 2(5), 459 (2014).

Ann. Phys. (1)

G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18, 273–474 (1922).

Appl. Opt. (2)

Chem. Commun. (Camb.) (1)

A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Irreversible visual sensing of humidity using a cholesteric liquid crystal,” Chem. Commun. (Camb.) 48(38), 4579–4581 (2012).
[PubMed]

Chem. Mater. (2)

P. V. Shibaev, K. Schaumburg, and V. Plaksin, “Responsive chiral hydrogen-bonded polymer composites,” Chem. Mater. 14(3), 959–961 (2002).

P. V. Shibaev, J. Madsen, and A. Z. Genack, “Lasing and narrowing of spontaneous emission from responsive cholesteric films,” Chem. Mater. 16(8), 1397–1399 (2004).

J. Am. Chem. Soc. (2)

Y. Han, K. Pacheco, C. W. M. Bastiaansen, D. J. Broer, and R. P. Sijbesma, “Optical monitoring of gases with cholesteric liquid crystals,” J. Am. Chem. Soc. 132(9), 2961–2967 (2010).
[PubMed]

N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, “Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks,” J. Am. Chem. Soc. 134(18), 7608–7611 (2012).
[PubMed]

J. Anal. Chem. (1)

F. L. Dickert, A. Haunschild, and P. Hofmann, “Cholesteric liquid crystals for solvent vapour detection - Elimination of cross sensitivity by band shape analysis and pattern recognition,” J. Anal. Chem. 350(10), 577–581 (1994).

J. Invest. Dermatol. (1)

J. T. Crissey, J. L. Fergason, and J. M. Bettenhausen, “Cutaneous thermography with liquid crystals,” J. Invest. Dermatol. 45(5), 329–333 (1965).
[PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Kim, Mo. Wada, and N. Tamaoki, “Dicholesteryl icosanedioate as a glass-forming cholesteric liquid crystal: properties, additive effects and application in color recording,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(10), 1921–1926 (2014).

J. Phys. Chem. (1)

W. Heller, “Remarks on: refractive index mixture rule,” J. Phys. Chem. 69(2), 1123–1129 (1965).

Macromol. Rapid Commun. (2)

S. T. Kim and H. Finkelmann, “Cholesteric liquid single-crystal elastomers (LSCE) obrained by the anisotropic deswelling method,” Macromol. Rapid Commun. 22(6), 429–433 (2001).

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33(21), 1875–1881 (2012).
[PubMed]

Opt. Express (1)

Opt. Mater. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[PubMed]

H. Nagai and K. Urayama, “Thermal response of cholesteric liquid crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022501 (2015).
[PubMed]

RSC Advances (1)

O. T. Picot, M. Dai, E. Billoti, D. J. Broer, T. Peijs, and C. W. M. Bastiaansen, “A real time optical strain sensor based on a cholesteric liquid crystal network,” RSC Advances 3, 18794 (2013).

Sci. Rep. (1)

W. Zhang, L. Zhang, X. Liang, J. Le Zhou, L. Xiao, F. Yu, H. Li, K. Cao, Z. Li, Yang, and H. Yang, “Unconventional high-performance laser protection system based on dichroic dye-doped cholesteric liquid crystals,” Sci. Rep. 7, 42955 (2017).
[PubMed]

Soft Matter (1)

G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induce deformations,” Soft Matter 7(6), 2841–2847 (2011).

Other (1)

Y. H. Qin, General Physics Course: Thermology (Higher Education Press, 2011), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of fabrication process of cholesteric liquid crystal template. (a) Mixing of LC, chiral dopant, RM, and photoinitiator; (b) Filling the mixture into a LC cell with anti-parallel rubbing; (c) The sample was exposed under UV light; (c) Soaking CLC and unpolymerized monomers out by immersing the sample in toluene.
Fig. 2
Fig. 2 Surface images of cholesteric template refilled with toluene observed under POM at (a) 25 °C and (b) 40 °C, where the surface area in x-y plane was measured to be S25 = 29296.85 μm2 and S40 = 28948.21 μm2, respectively. Cross section images of cholesteric template refilled with toluene observed under optical microscopy at (c) 25 °C and (d) 40 °C, where the thickness along z-axis was measured to be H25 = 40.75 μm and H40 = 44.32 μm, respectively. The photo images of film refilled with (e) ethanol and (f) air at room temperature of 25 °C, respectively.
Fig. 3
Fig. 3 (a) The normalized reflectance of cholesteric films refilled with different mixture with 50%, 40%, 30%, 20%, 10%, and 0% concentration of ethanol. (b) The central wavelength of film as a function of the concentration of ethanol within toluene. (c) The reflectance spectrum of the cholesteric template film as a function of temperature from −6 °C to 80 °C. Insets show the images of the sample taken on polarizing optical microscope. (d) The center wavelength of the bandgap and the ∆λ/λ0 as a function of temperature. The hysteresis effect is demonstrated by red square and green triangle corresponding to heating and cooling process, respectively.
Fig. 4
Fig. 4 Photographs of the sample at temperature of (a)-6 °C, (b) 30 °C, (c) 48 °C and (d) 80 °C.

Metrics