X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han, G. S. Agarwal, and W. Zhang, “Electromagnetically induced absorption in a three-resonator metasurface system,” Sci. Rep. 5, 10737 (2015).

[PubMed]

W. Albrecht, T.-S. Deng, B. Goris, M. A. van Huis, S. Bals, and A. van Blaaderen, “Single particle deformation and analysis of silica-coated gold nanorods before and after femtosecond laser pulse excitation,” Nano Lett. 16(3), 1818–1825 (2016).

[PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).

[PubMed]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).

W. Albrecht, T.-S. Deng, B. Goris, M. A. van Huis, S. Bals, and A. van Blaaderen, “Single particle deformation and analysis of silica-coated gold nanorods before and after femtosecond laser pulse excitation,” Nano Lett. 16(3), 1818–1825 (2016).

[PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).

[PubMed]

G. Vincent, S. Collin, N. Bardou, J. L. Pelouard, and R. Haïdar, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, and R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).

[PubMed]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).

S. Link, C. Burda, M. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103(9), 1165–1170 (1999).

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).

[PubMed]

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).

[PubMed]

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).

[PubMed]

T. Zhang, X. Yin, L. Chen, and X. Li, “Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler,” Opt. Lett. 41(2), 356–359 (2016).

[PubMed]

K. Wen, Y. Hu, L. Chen, J. Zhou, M. He, L. Lei, and Z. Meng, “Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure,” IEEE Photonics J. 8(5), 1–8 (2016).

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5, 11195 (2015).

[PubMed]

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013).

[PubMed]

Z. He, H. Li, S. Zhan, B. Li, Z. Chen, and H. Xu, “Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator,” Sci. Rep. 5, 15837 (2015).

[PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).

[PubMed]

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, and R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).

[PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).

[PubMed]

G. Vincent, S. Collin, N. Bardou, J. L. Pelouard, and R. Haïdar, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).

H. J. Xu, W. B. Lu, W. Zhu, Z. G. Dong, and T. J. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).

W. Albrecht, T.-S. Deng, B. Goris, M. A. van Huis, S. Bals, and A. van Blaaderen, “Single particle deformation and analysis of silica-coated gold nanorods before and after femtosecond laser pulse excitation,” Nano Lett. 16(3), 1818–1825 (2016).

[PubMed]

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).

[PubMed]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).

H. J. Xu, W. B. Lu, W. Zhu, Z. G. Dong, and T. J. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).

S. Link, C. Burda, M. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103(9), 1165–1170 (1999).

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).

[PubMed]

I. T. Lin, C. Fan, and J. M. Liu, “Propagating and localized graphene surface plasmon polaritons on a grating structure,” IEEE J. Sel. Top. Quantum Electron. 23(1), 144–147 (2017).

J. He, P. Ding, J. Wang, C. Fan, and E. Liang, “Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption,” Opt. Express 23(5), 6083–6091 (2015).

[PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).

[PubMed]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).

[PubMed]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).

[PubMed]

C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).

[PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).

[PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).

[PubMed]

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).

[PubMed]

R. Taubert, M. Hentschel, J. Kästel, and H. W. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2012), QW1B. 1.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).

[PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).

[PubMed]

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).

[PubMed]

W. Albrecht, T.-S. Deng, B. Goris, M. A. van Huis, S. Bals, and A. van Blaaderen, “Single particle deformation and analysis of silica-coated gold nanorods before and after femtosecond laser pulse excitation,” Nano Lett. 16(3), 1818–1825 (2016).

[PubMed]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, and R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).

[PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).

[PubMed]

G. Vincent, S. Collin, N. Bardou, J. L. Pelouard, and R. Haïdar, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).

X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han, G. S. Agarwal, and W. Zhang, “Electromagnetically induced absorption in a three-resonator metasurface system,” Sci. Rep. 5, 10737 (2015).

[PubMed]

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators,” J. Lightwave Technol. 33(14), 3083–3090 (2015).

X. Han, T. Wang, X. Li, S. Xiao, and Y. Zhu, “Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate,” Opt. Express 23(25), 31945–31955 (2015).

[PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).

[PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).

[PubMed]

K. Wen, Y. Hu, L. Chen, J. Zhou, M. He, L. Lei, and Z. Meng, “Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure,” IEEE Photonics J. 8(5), 1–8 (2016).

Z. He, H. Li, S. Zhan, B. Li, Z. Chen, and H. Xu, “Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator,” Sci. Rep. 5, 15837 (2015).

[PubMed]

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).

R. Taubert, M. Hentschel, J. Kästel, and H. W. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2012), QW1B. 1.

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, and R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).

[PubMed]

Y. Liang, W. Peng, R. Hu, and L. Xie, “Extraordinary optical properties in the subwavelength metallodielectric free-standing grating,” Opt. Express 22(16), 19484–19494 (2014).

[PubMed]

Y. Liang, W. Peng, R. Hu, and M. Lu, “Symmetry-reduced double layer metallic grating structure for dual-wavelength spectral filtering,” Opt. Express 22(10), 11633–11645 (2014).

[PubMed]

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).

[PubMed]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).

K. Wen, Y. Hu, L. Chen, J. Zhou, M. He, L. Lei, and Z. Meng, “Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure,” IEEE Photonics J. 8(5), 1–8 (2016).

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).

[PubMed]

R. Taubert, M. Hentschel, J. Kästel, and H. W. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2012), QW1B. 1.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).

[PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).

[PubMed]

K. Wen, Y. Hu, L. Chen, J. Zhou, M. He, L. Lei, and Z. Meng, “Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure,” IEEE Photonics J. 8(5), 1–8 (2016).

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).

Z. He, H. Li, S. Zhan, B. Li, Z. Chen, and H. Xu, “Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator,” Sci. Rep. 5, 15837 (2015).

[PubMed]

Z. He, H. Li, S. Zhan, B. Li, Z. Chen, and H. Xu, “Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator,” Sci. Rep. 5, 15837 (2015).

[PubMed]

H.-J. Li, L.-L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).

T. Zhang, X. Yin, L. Chen, and X. Li, “Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler,” Opt. Lett. 41(2), 356–359 (2016).

[PubMed]

X. Han, T. Wang, X. Li, S. Xiao, and Y. Zhu, “Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate,” Opt. Express 23(25), 31945–31955 (2015).

[PubMed]

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators,” J. Lightwave Technol. 33(14), 3083–3090 (2015).

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5, 11195 (2015).

[PubMed]

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013).

[PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).

[PubMed]

Y. Liang, W. Peng, M. Lu, and S. Chu, “Narrow-band wavelength tunable filter based on asymmetric double layer metallic grating,” Opt. Express 23(11), 14434–14445 (2015).

[PubMed]

Y. Liang, W. Peng, R. Hu, and M. Lu, “Symmetry-reduced double layer metallic grating structure for dual-wavelength spectral filtering,” Opt. Express 22(10), 11633–11645 (2014).

[PubMed]

Y. Liang, W. Peng, R. Hu, and L. Xie, “Extraordinary optical properties in the subwavelength metallodielectric free-standing grating,” Opt. Express 22(16), 19484–19494 (2014).

[PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).

[PubMed]

I. T. Lin, C. Fan, and J. M. Liu, “Propagating and localized graphene surface plasmon polaritons on a grating structure,” IEEE J. Sel. Top. Quantum Electron. 23(1), 144–147 (2017).

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116(4), 44004 (2017).

S. Link, C. Burda, M. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103(9), 1165–1170 (1999).

I. T. Lin, C. Fan, and J. M. Liu, “Propagating and localized graphene surface plasmon polaritons on a grating structure,” IEEE J. Sel. Top. Quantum Electron. 23(1), 144–147 (2017).

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).

[PubMed]

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).

Y. Liang, W. Peng, M. Lu, and S. Chu, “Narrow-band wavelength tunable filter based on asymmetric double layer metallic grating,” Opt. Express 23(11), 14434–14445 (2015).

[PubMed]

Y. Liang, W. Peng, R. Hu, and M. Lu, “Symmetry-reduced double layer metallic grating structure for dual-wavelength spectral filtering,” Opt. Express 22(10), 11633–11645 (2014).

[PubMed]

H. J. Xu, W. B. Lu, W. Zhu, Z. G. Dong, and T. J. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).

[PubMed]

K. Wen, Y. Hu, L. Chen, J. Zhou, M. He, L. Lei, and Z. Meng, “Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure,” IEEE Photonics J. 8(5), 1–8 (2016).

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).

[PubMed]

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).

[PubMed]

S. Link, C. Burda, M. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103(9), 1165–1170 (1999).

S. Link, C. Burda, M. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103(9), 1165–1170 (1999).

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).

[PubMed]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).

[PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, and R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).

[PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).

[PubMed]

G. Vincent, S. Collin, N. Bardou, J. L. Pelouard, and R. Haïdar, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, and R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).

[PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).

[PubMed]

Y. Liang, W. Peng, M. Lu, and S. Chu, “Narrow-band wavelength tunable filter based on asymmetric double layer metallic grating,” Opt. Express 23(11), 14434–14445 (2015).

[PubMed]

Y. Liang, W. Peng, R. Hu, and M. Lu, “Symmetry-reduced double layer metallic grating structure for dual-wavelength spectral filtering,” Opt. Express 22(10), 11633–11645 (2014).

[PubMed]

Y. Liang, W. Peng, R. Hu, and L. Xie, “Extraordinary optical properties in the subwavelength metallodielectric free-standing grating,” Opt. Express 22(16), 19484–19494 (2014).

[PubMed]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).

[PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).

[PubMed]

X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han, G. S. Agarwal, and W. Zhang, “Electromagnetically induced absorption in a three-resonator metasurface system,” Sci. Rep. 5, 10737 (2015).

[PubMed]

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, and R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).

[PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).

[PubMed]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).

[PubMed]

X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han, G. S. Agarwal, and W. Zhang, “Electromagnetically induced absorption in a three-resonator metasurface system,” Sci. Rep. 5, 10737 (2015).

[PubMed]

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).

[PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).

[PubMed]

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).

R. Taubert, M. Hentschel, J. Kästel, and H. W. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2012), QW1B. 1.

X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han, G. S. Agarwal, and W. Zhang, “Electromagnetically induced absorption in a three-resonator metasurface system,” Sci. Rep. 5, 10737 (2015).

[PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).

[PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).

[PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).

[PubMed]

W. Albrecht, T.-S. Deng, B. Goris, M. A. van Huis, S. Bals, and A. van Blaaderen, “Single particle deformation and analysis of silica-coated gold nanorods before and after femtosecond laser pulse excitation,” Nano Lett. 16(3), 1818–1825 (2016).

[PubMed]

W. Albrecht, T.-S. Deng, B. Goris, M. A. van Huis, S. Bals, and A. van Blaaderen, “Single particle deformation and analysis of silica-coated gold nanorods before and after femtosecond laser pulse excitation,” Nano Lett. 16(3), 1818–1825 (2016).

[PubMed]

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, and R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).

[PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).

[PubMed]

G. Vincent, S. Collin, N. Bardou, J. L. Pelouard, and R. Haïdar, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5, 11195 (2015).

[PubMed]

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116(4), 44004 (2017).

H.-J. Li, L.-L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).

[PubMed]

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators,” J. Lightwave Technol. 33(14), 3083–3090 (2015).

X. Han, T. Wang, X. Li, S. Xiao, and Y. Zhu, “Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate,” Opt. Express 23(25), 31945–31955 (2015).

[PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).

[PubMed]

K. Wen, Y. Hu, L. Chen, J. Zhou, M. He, L. Lei, and Z. Meng, “Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure,” IEEE Photonics J. 8(5), 1–8 (2016).

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116(4), 44004 (2017).

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).

[PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).

[PubMed]

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116(4), 44004 (2017).

Z. He, H. Li, S. Zhan, B. Li, Z. Chen, and H. Xu, “Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator,” Sci. Rep. 5, 15837 (2015).

[PubMed]

H. J. Xu, W. B. Lu, W. Zhu, Z. G. Dong, and T. J. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).

X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han, G. S. Agarwal, and W. Zhang, “Electromagnetically induced absorption in a three-resonator metasurface system,” Sci. Rep. 5, 10737 (2015).

[PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).

[PubMed]

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).

[PubMed]

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).

[PubMed]

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).

[PubMed]

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116(4), 44004 (2017).

H.-J. Li, L.-L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).

Z. He, H. Li, S. Zhan, B. Li, Z. Chen, and H. Xu, “Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator,” Sci. Rep. 5, 15837 (2015).

[PubMed]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).

[PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).

[PubMed]

T. Zhang, X. Yin, L. Chen, and X. Li, “Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler,” Opt. Lett. 41(2), 356–359 (2016).

[PubMed]

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5, 11195 (2015).

[PubMed]

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013).

[PubMed]

X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han, G. S. Agarwal, and W. Zhang, “Electromagnetically induced absorption in a three-resonator metasurface system,” Sci. Rep. 5, 10737 (2015).

[PubMed]

X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han, G. S. Agarwal, and W. Zhang, “Electromagnetically induced absorption in a three-resonator metasurface system,” Sci. Rep. 5, 10737 (2015).

[PubMed]

G. Xing, H. Guo, X. Zhang, T. C. Sum, and C. H. A. Huan, “The Physics of ultrafast saturable absorption in graphene,” Opt. Express 18(5), 4564–4573 (2010).

[PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).

[PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).

[PubMed]

K. Wen, Y. Hu, L. Chen, J. Zhou, M. He, L. Lei, and Z. Meng, “Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure,” IEEE Photonics J. 8(5), 1–8 (2016).

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).

[PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).

[PubMed]

H. J. Xu, W. B. Lu, W. Zhu, Z. G. Dong, and T. J. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).

X. Han, T. Wang, X. Li, S. Xiao, and Y. Zhu, “Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate,” Opt. Express 23(25), 31945–31955 (2015).

[PubMed]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).

[PubMed]