Abstract

We experimentally achieve common-signal-induced synchronization in two photonic integrated circuits with short external cavities driven by a constant-amplitude random-phase light. The degree of synchronization can be controlled by changing the optical feedback phase of the two photonic integrated circuits. The change in the optical feedback phase leads to a significant redistribution of the spectral energy of optical and RF spectra, which is a unique characteristic of PICs with the short external cavity. The matching of the RF and optical spectra is necessary to achieve synchronization between the two PICs, and stable synchronization can be obtained over an hour in the presence of optical feedback. We succeed in generating information-theoretic secure keys and achieving the final key generation rate of 184 kb/s using the PICs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers

Hayato Koizumi, Shinichiro Morikatsu, Hiroki Aida, Takahiro Nozawa, Izumi Kakesu, Atsushi Uchida, Kazuyuki Yoshimura, Jun Muramatsu, and Peter Davis
Opt. Express 21(15) 17869-17893 (2013)

Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation

Rie Takahashi, Yasuhiro Akizawa, Atsushi Uchida, Takahisa Harayama, Ken Tsuzuki, Satoshi Sunada, Kenichi Arai, Kazuyuki Yoshimura, and Peter Davis
Opt. Express 22(10) 11727-11740 (2014)

Compact reservoir computing with a photonic integrated circuit

Kosuke Takano, Chihiro Sugano, Masanobu Inubushi, Kazuyuki Yoshimura, Satoshi Sunada, Kazutaka Kanno, and Atsushi Uchida
Opt. Express 26(22) 29424-29439 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Uchida, P. Davis, and S. Itaya, “Generation of information theoretic secure keys using a chaotic semiconductor laser,” Appl. Phys. Lett. 83(15), 3213–3215 (2003).
  2. J. Scheuer and A. Yariv, “Giant fiber lasers: A new paradigm for secure key distribution,” Phys. Rev. Lett. 97(14), 140502 (2006).
    [PubMed]
  3. E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
    [PubMed]
  4. R. Vicente, C. R. Mirasso, and I. Fischer, “Simultaneous bidirectional message transmission in a chaos-based communication scheme,” Opt. Lett. 32(4), 403–405 (2007).
    [PubMed]
  5. A. Zadok, J. Scheuer, J. Sendowski, and A. Yariv, “Secure key generation using an ultra-long fiber laser: transient analysis and experiment,” Opt. Express 16(21), 16680–16690 (2008).
    [PubMed]
  6. D. Bar-Lev and J. Scheuer, “Enhanced key-establishing rates and efficiencies in fiber laser key distribution systems,” Phys. Lett. A 373(46), 4287–4296 (2009).
  7. I. Kanter, M. Butkovski, Y. Peleg, M. Zigzag, Y. Aviad, I. Reidler, M. Rosenbluh, and W. Kinzel, “Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography,” Opt. Express 18(17), 18292–18302 (2010).
    [PubMed]
  8. K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
    [PubMed]
  9. H. Koizumi, S. Morikatsu, H. Aida, T. Nozawa, I. Kakesu, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers,” Opt. Express 21(15), 17869–17893 (2013).
    [PubMed]
  10. C. Xue, N. Jiang, K. Qiu, and Y. Lv, “Key distribution based on synchronization in bandwidth-enhanced random bit generators with dynamic post-processing,” Opt. Express 23(11), 14510–14519 (2015).
    [PubMed]
  11. X. Porte, M. C. Soriano, D. Brunner, and I. Fischer, “Bidirectional private key exchange using delay-coupled semiconductor lasers,” Opt. Lett. 41(12), 2871–2874 (2016).
    [PubMed]
  12. A. Uchida, Optical Communication with Chaotic Lasers, Applications of Nonlinear Dynamics and Synchronization (Wiley-VCH, Weinheim, 2012).
  13. U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).
  14. J. Muramatsu, K. Yoshimura, K. Arai, and P. Davis, “Secret key capacity for optimally correlated sources under sampling attack,” IEEE Trans. Inf. Theory 52(11), 5140–5151 (2006).
  15. J. Muramatsu, K. Yoshimura, and P. Davis, “Information theoretic security based on bounded observability,” Lect. Notes Comput. Sci. 5973, 128–139 (2010).
  16. J. Muramatsu, K. Yoshimura, P. Davis, A. Uchida, and T. Harayama, “Secret-key distribution based on bounded observability,” Proc. IEEE 103(10), 1762–1780 (2015).
  17. T. Yamamoto, I. Oowada, H. Yip, A. Uchida, S. Yoshimori, K. Yoshimura, J. Muramatsu, S. I. Goto, and P. Davis, “Common-chaotic-signal induced synchronization in semiconductor lasers,” Opt. Express 15(7), 3974–3980 (2007).
    [PubMed]
  18. I. Oowada, H. Ariizumi, M. Li, S. Yoshimori, A. Uchida, K. Yoshimura, and P. Davis, “Synchronization by injection of common chaotic signal in semiconductor lasers with optical feedback,” Opt. Express 17(12), 10025–10034 (2009).
    [PubMed]
  19. H. Aida, M. Arahata, H. Okumura, H. Koizumi, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Experiment on synchronization of semiconductor lasers by common injection of constant-amplitude random-phase light,” Opt. Express 20(11), 11813–11829 (2012).
    [PubMed]
  20. T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
    [PubMed]
  21. A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
    [PubMed]
  22. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
    [PubMed]
  23. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
    [PubMed]
  24. T. Harayama, S. Sunada, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Fast nondeterministic random-bit generation using on-chip chaos lasers,” Phys. Rev. A 83(3), 031803 (2011).
  25. S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express 19(7), 5713–5724 (2011).
    [PubMed]
  26. S. Sunada, T. Harayama, K. Arai, K. Yoshimura, K. Tsuzuki, A. Uchida, and P. Davis, “Random optical pulse generation with bistable semiconductor ring lasers,” Opt. Express 19(8), 7439–7450 (2011).
    [PubMed]
  27. R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22(10), 11727–11740 (2014).
    [PubMed]
  28. S. Shinohara, K. Arai, P. Davis, S. Sunada, and T. Harayama, “Chaotic laser based physical random bit streaming system with a computer application interface,” Opt. Express 25(6), 6461–6474 (2017).
    [PubMed]
  29. K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
    [PubMed]
  30. A. Karsaklian Dal Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, T. Harayama, and M. Inubushi, “Random number generation from intermittent optical chaos,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1801208 (2017).
  31. J.-G. Wu, L.-J. Zhao, Z.-M. Wu, D. Lu, X. Tang, Z.-Q. Zhong, and G.-Q. Xia, “Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip,” Opt. Express 21(20), 23358–23364 (2013).
    [PubMed]
  32. J. P. Toomey, D. M. Kane, C. McMahon, A. Argyris, and D. Syvridis, “Integrated semiconductor laser with optical feedback: Transition from short to long cavity regime,” Opt. Express 23(14), 18754–18762 (2015).
    [PubMed]
  33. J. P. Toomey, A. Argyris, C. McMahon, D. Syvridis, and D. M. Kane, “Time-scale independent permutation entropy of a photonic integrated device,” J. Lightwave Technol. 35(1), 88–95 (2017).
  34. A. Karsaklian Dal Bosco, K. Kanno, A. Uchida, M. Sciamanna, T. Harayama, and K. Yoshimura, “Cycles of self-pulsations in a photonic integrated circuit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(6), 062905 (2015).
    [PubMed]
  35. A. Karsaklian Dal Bosco, Y. Akizawa, K. Kanno, A. Uchida, T. Harayama, and K. Yoshimura, “Photonic integrated circuits unveil crisis-induced intermittency,” Opt. Express 24(19), 22198–22209 (2016).
    [PubMed]
  36. A. Karsaklian Dal Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9(2), 6600512 (2017).
  37. R. Vicente, T. Pérez, and C. R. Mirasso, “Open- versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).
  38. M. Peil, T. Heil, I. Fischer, and W. Elsässer, “Synchronization of chaotic semiconductor laser systems: A vectorial coupling-dependent scenario,” Phys. Rev. Lett. 88(17), 174101 (2002).
    [PubMed]
  39. T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1162–1170 (2002).
  40. A. Uchida, N. Shibasaki, S. Nogawa, and S. Yoshimori, “Transient characteristics of chaos synchronization in a semiconductor laser subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056201 (2004).
    [PubMed]
  41. C. H. Bennett, G. Brassard, C. Crepeau, and U. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).
  42. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, and L. E. Bassham III, National Institute of Standards and Technology, Special Publication 800–22, Revision 1a (2010).

2017 (6)

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

S. Shinohara, K. Arai, P. Davis, S. Sunada, and T. Harayama, “Chaotic laser based physical random bit streaming system with a computer application interface,” Opt. Express 25(6), 6461–6474 (2017).
[PubMed]

K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
[PubMed]

A. Karsaklian Dal Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, T. Harayama, and M. Inubushi, “Random number generation from intermittent optical chaos,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1801208 (2017).

J. P. Toomey, A. Argyris, C. McMahon, D. Syvridis, and D. M. Kane, “Time-scale independent permutation entropy of a photonic integrated device,” J. Lightwave Technol. 35(1), 88–95 (2017).

A. Karsaklian Dal Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9(2), 6600512 (2017).

2016 (2)

2015 (4)

C. Xue, N. Jiang, K. Qiu, and Y. Lv, “Key distribution based on synchronization in bandwidth-enhanced random bit generators with dynamic post-processing,” Opt. Express 23(11), 14510–14519 (2015).
[PubMed]

J. Muramatsu, K. Yoshimura, P. Davis, A. Uchida, and T. Harayama, “Secret-key distribution based on bounded observability,” Proc. IEEE 103(10), 1762–1780 (2015).

A. Karsaklian Dal Bosco, K. Kanno, A. Uchida, M. Sciamanna, T. Harayama, and K. Yoshimura, “Cycles of self-pulsations in a photonic integrated circuit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(6), 062905 (2015).
[PubMed]

J. P. Toomey, D. M. Kane, C. McMahon, A. Argyris, and D. Syvridis, “Integrated semiconductor laser with optical feedback: Transition from short to long cavity regime,” Opt. Express 23(14), 18754–18762 (2015).
[PubMed]

2014 (1)

2013 (2)

2012 (2)

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[PubMed]

H. Aida, M. Arahata, H. Okumura, H. Koizumi, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Experiment on synchronization of semiconductor lasers by common injection of constant-amplitude random-phase light,” Opt. Express 20(11), 11813–11829 (2012).
[PubMed]

2011 (3)

2010 (4)

2009 (2)

D. Bar-Lev and J. Scheuer, “Enhanced key-establishing rates and efficiencies in fiber laser key distribution systems,” Phys. Lett. A 373(46), 4287–4296 (2009).

I. Oowada, H. Ariizumi, M. Li, S. Yoshimori, A. Uchida, K. Yoshimura, and P. Davis, “Synchronization by injection of common chaotic signal in semiconductor lasers with optical feedback,” Opt. Express 17(12), 10025–10034 (2009).
[PubMed]

2008 (2)

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[PubMed]

A. Zadok, J. Scheuer, J. Sendowski, and A. Yariv, “Secure key generation using an ultra-long fiber laser: transient analysis and experiment,” Opt. Express 16(21), 16680–16690 (2008).
[PubMed]

2007 (2)

2006 (3)

J. Muramatsu, K. Yoshimura, K. Arai, and P. Davis, “Secret key capacity for optimally correlated sources under sampling attack,” IEEE Trans. Inf. Theory 52(11), 5140–5151 (2006).

J. Scheuer and A. Yariv, “Giant fiber lasers: A new paradigm for secure key distribution,” Phys. Rev. Lett. 97(14), 140502 (2006).
[PubMed]

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[PubMed]

2004 (1)

A. Uchida, N. Shibasaki, S. Nogawa, and S. Yoshimori, “Transient characteristics of chaos synchronization in a semiconductor laser subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056201 (2004).
[PubMed]

2003 (1)

A. Uchida, P. Davis, and S. Itaya, “Generation of information theoretic secure keys using a chaotic semiconductor laser,” Appl. Phys. Lett. 83(15), 3213–3215 (2003).

2002 (3)

R. Vicente, T. Pérez, and C. R. Mirasso, “Open- versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).

M. Peil, T. Heil, I. Fischer, and W. Elsässer, “Synchronization of chaotic semiconductor laser systems: A vectorial coupling-dependent scenario,” Phys. Rev. Lett. 88(17), 174101 (2002).
[PubMed]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1162–1170 (2002).

1995 (1)

C. H. Bennett, G. Brassard, C. Crepeau, and U. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).

1993 (1)

U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).

Aida, H.

Akizawa, Y.

Arahata, M.

Arai, K.

Argyris, A.

Ariizumi, H.

Aviad, Y.

Bar-Lev, D.

D. Bar-Lev and J. Scheuer, “Enhanced key-establishing rates and efficiencies in fiber laser key distribution systems,” Phys. Lett. A 373(46), 4287–4296 (2009).

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, and U. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).

Bogris, A.

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, and U. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).

Brunner, D.

Butkovski, M.

Chlouverakis, K. E.

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[PubMed]

Colet, P.

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1162–1170 (2002).

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, and U. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).

Davis, P.

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

S. Shinohara, K. Arai, P. Davis, S. Sunada, and T. Harayama, “Chaotic laser based physical random bit streaming system with a computer application interface,” Opt. Express 25(6), 6461–6474 (2017).
[PubMed]

J. Muramatsu, K. Yoshimura, P. Davis, A. Uchida, and T. Harayama, “Secret-key distribution based on bounded observability,” Proc. IEEE 103(10), 1762–1780 (2015).

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22(10), 11727–11740 (2014).
[PubMed]

H. Koizumi, S. Morikatsu, H. Aida, T. Nozawa, I. Kakesu, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers,” Opt. Express 21(15), 17869–17893 (2013).
[PubMed]

H. Aida, M. Arahata, H. Okumura, H. Koizumi, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Experiment on synchronization of semiconductor lasers by common injection of constant-amplitude random-phase light,” Opt. Express 20(11), 11813–11829 (2012).
[PubMed]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[PubMed]

T. Harayama, S. Sunada, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Fast nondeterministic random-bit generation using on-chip chaos lasers,” Phys. Rev. A 83(3), 031803 (2011).

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express 19(7), 5713–5724 (2011).
[PubMed]

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, K. Tsuzuki, A. Uchida, and P. Davis, “Random optical pulse generation with bistable semiconductor ring lasers,” Opt. Express 19(8), 7439–7450 (2011).
[PubMed]

J. Muramatsu, K. Yoshimura, and P. Davis, “Information theoretic security based on bounded observability,” Lect. Notes Comput. Sci. 5973, 128–139 (2010).

I. Oowada, H. Ariizumi, M. Li, S. Yoshimori, A. Uchida, K. Yoshimura, and P. Davis, “Synchronization by injection of common chaotic signal in semiconductor lasers with optical feedback,” Opt. Express 17(12), 10025–10034 (2009).
[PubMed]

T. Yamamoto, I. Oowada, H. Yip, A. Uchida, S. Yoshimori, K. Yoshimura, J. Muramatsu, S. I. Goto, and P. Davis, “Common-chaotic-signal induced synchronization in semiconductor lasers,” Opt. Express 15(7), 3974–3980 (2007).
[PubMed]

J. Muramatsu, K. Yoshimura, K. Arai, and P. Davis, “Secret key capacity for optimally correlated sources under sampling attack,” IEEE Trans. Inf. Theory 52(11), 5140–5151 (2006).

A. Uchida, P. Davis, and S. Itaya, “Generation of information theoretic secure keys using a chaotic semiconductor laser,” Appl. Phys. Lett. 83(15), 3213–3215 (2003).

Deligiannidis, S.

Elsäßer, W.

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1162–1170 (2002).

Elsässer, W.

M. Peil, T. Heil, I. Fischer, and W. Elsässer, “Synchronization of chaotic semiconductor laser systems: A vectorial coupling-dependent scenario,” Phys. Rev. Lett. 88(17), 174101 (2002).
[PubMed]

Fischer, I.

X. Porte, M. C. Soriano, D. Brunner, and I. Fischer, “Bidirectional private key exchange using delay-coupled semiconductor lasers,” Opt. Lett. 41(12), 2871–2874 (2016).
[PubMed]

R. Vicente, C. R. Mirasso, and I. Fischer, “Simultaneous bidirectional message transmission in a chaos-based communication scheme,” Opt. Lett. 32(4), 403–405 (2007).
[PubMed]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1162–1170 (2002).

M. Peil, T. Heil, I. Fischer, and W. Elsässer, “Synchronization of chaotic semiconductor laser systems: A vectorial coupling-dependent scenario,” Phys. Rev. Lett. 88(17), 174101 (2002).
[PubMed]

Goto, S. I.

Grivas, E.

Gross, N.

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[PubMed]

Hamacher, M.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
[PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[PubMed]

Harayama, T.

A. Karsaklian Dal Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, T. Harayama, and M. Inubushi, “Random number generation from intermittent optical chaos,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1801208 (2017).

A. Karsaklian Dal Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9(2), 6600512 (2017).

S. Shinohara, K. Arai, P. Davis, S. Sunada, and T. Harayama, “Chaotic laser based physical random bit streaming system with a computer application interface,” Opt. Express 25(6), 6461–6474 (2017).
[PubMed]

K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
[PubMed]

A. Karsaklian Dal Bosco, Y. Akizawa, K. Kanno, A. Uchida, T. Harayama, and K. Yoshimura, “Photonic integrated circuits unveil crisis-induced intermittency,” Opt. Express 24(19), 22198–22209 (2016).
[PubMed]

A. Karsaklian Dal Bosco, K. Kanno, A. Uchida, M. Sciamanna, T. Harayama, and K. Yoshimura, “Cycles of self-pulsations in a photonic integrated circuit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(6), 062905 (2015).
[PubMed]

J. Muramatsu, K. Yoshimura, P. Davis, A. Uchida, and T. Harayama, “Secret-key distribution based on bounded observability,” Proc. IEEE 103(10), 1762–1780 (2015).

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22(10), 11727–11740 (2014).
[PubMed]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[PubMed]

T. Harayama, S. Sunada, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Fast nondeterministic random-bit generation using on-chip chaos lasers,” Phys. Rev. A 83(3), 031803 (2011).

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express 19(7), 5713–5724 (2011).
[PubMed]

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, K. Tsuzuki, A. Uchida, and P. Davis, “Random optical pulse generation with bistable semiconductor ring lasers,” Opt. Express 19(8), 7439–7450 (2011).
[PubMed]

Heil, T.

M. Peil, T. Heil, I. Fischer, and W. Elsässer, “Synchronization of chaotic semiconductor laser systems: A vectorial coupling-dependent scenario,” Phys. Rev. Lett. 88(17), 174101 (2002).
[PubMed]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1162–1170 (2002).

Inubushi, M.

A. Karsaklian Dal Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9(2), 6600512 (2017).

A. Karsaklian Dal Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, T. Harayama, and M. Inubushi, “Random number generation from intermittent optical chaos,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1801208 (2017).

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
[PubMed]

Itaya, S.

A. Uchida, P. Davis, and S. Itaya, “Generation of information theoretic secure keys using a chaotic semiconductor laser,” Appl. Phys. Lett. 83(15), 3213–3215 (2003).

Ito, T.

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

Iwakawa, K.

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
[PubMed]

Jiang, N.

Kakesu, I.

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

H. Koizumi, S. Morikatsu, H. Aida, T. Nozawa, I. Kakesu, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers,” Opt. Express 21(15), 17869–17893 (2013).
[PubMed]

Kane, D. M.

Kanno, K.

A. Karsaklian Dal Bosco, Y. Akizawa, K. Kanno, A. Uchida, T. Harayama, and K. Yoshimura, “Photonic integrated circuits unveil crisis-induced intermittency,” Opt. Express 24(19), 22198–22209 (2016).
[PubMed]

A. Karsaklian Dal Bosco, K. Kanno, A. Uchida, M. Sciamanna, T. Harayama, and K. Yoshimura, “Cycles of self-pulsations in a photonic integrated circuit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(6), 062905 (2015).
[PubMed]

Kanter, I.

I. Kanter, M. Butkovski, Y. Peleg, M. Zigzag, Y. Aviad, I. Reidler, M. Rosenbluh, and W. Kinzel, “Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography,” Opt. Express 18(17), 18292–18302 (2010).
[PubMed]

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[PubMed]

Karsaklian Dal Bosco, A.

A. Karsaklian Dal Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9(2), 6600512 (2017).

A. Karsaklian Dal Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, T. Harayama, and M. Inubushi, “Random number generation from intermittent optical chaos,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1801208 (2017).

A. Karsaklian Dal Bosco, Y. Akizawa, K. Kanno, A. Uchida, T. Harayama, and K. Yoshimura, “Photonic integrated circuits unveil crisis-induced intermittency,” Opt. Express 24(19), 22198–22209 (2016).
[PubMed]

A. Karsaklian Dal Bosco, K. Kanno, A. Uchida, M. Sciamanna, T. Harayama, and K. Yoshimura, “Cycles of self-pulsations in a photonic integrated circuit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(6), 062905 (2015).
[PubMed]

Khaykovich, L.

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[PubMed]

Kinzel, W.

I. Kanter, M. Butkovski, Y. Peleg, M. Zigzag, Y. Aviad, I. Reidler, M. Rosenbluh, and W. Kinzel, “Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography,” Opt. Express 18(17), 18292–18302 (2010).
[PubMed]

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[PubMed]

Klein, E.

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[PubMed]

Koizumi, H.

Kopelowitz, E.

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[PubMed]

Koshiba, T.

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

Li, M.

Lu, D.

Lv, Y.

Maurer, U.

C. H. Bennett, G. Brassard, C. Crepeau, and U. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).

Maurer, U. M.

U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).

McMahon, C.

Mirasso, C. R.

R. Vicente, C. R. Mirasso, and I. Fischer, “Simultaneous bidirectional message transmission in a chaos-based communication scheme,” Opt. Lett. 32(4), 403–405 (2007).
[PubMed]

R. Vicente, T. Pérez, and C. R. Mirasso, “Open- versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1162–1170 (2002).

Morikatsu, S.

H. Koizumi, S. Morikatsu, H. Aida, T. Nozawa, I. Kakesu, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers,” Opt. Express 21(15), 17869–17893 (2013).
[PubMed]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[PubMed]

Mulet, J.

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1162–1170 (2002).

Muramatsu, J.

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

J. Muramatsu, K. Yoshimura, P. Davis, A. Uchida, and T. Harayama, “Secret-key distribution based on bounded observability,” Proc. IEEE 103(10), 1762–1780 (2015).

H. Koizumi, S. Morikatsu, H. Aida, T. Nozawa, I. Kakesu, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers,” Opt. Express 21(15), 17869–17893 (2013).
[PubMed]

H. Aida, M. Arahata, H. Okumura, H. Koizumi, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Experiment on synchronization of semiconductor lasers by common injection of constant-amplitude random-phase light,” Opt. Express 20(11), 11813–11829 (2012).
[PubMed]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[PubMed]

J. Muramatsu, K. Yoshimura, and P. Davis, “Information theoretic security based on bounded observability,” Lect. Notes Comput. Sci. 5973, 128–139 (2010).

T. Yamamoto, I. Oowada, H. Yip, A. Uchida, S. Yoshimori, K. Yoshimura, J. Muramatsu, S. I. Goto, and P. Davis, “Common-chaotic-signal induced synchronization in semiconductor lasers,” Opt. Express 15(7), 3974–3980 (2007).
[PubMed]

J. Muramatsu, K. Yoshimura, K. Arai, and P. Davis, “Secret key capacity for optimally correlated sources under sampling attack,” IEEE Trans. Inf. Theory 52(11), 5140–5151 (2006).

Nogawa, S.

A. Uchida, N. Shibasaki, S. Nogawa, and S. Yoshimori, “Transient characteristics of chaos synchronization in a semiconductor laser subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056201 (2004).
[PubMed]

Nozawa, T.

Ohara, S.

A. Karsaklian Dal Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9(2), 6600512 (2017).

A. Karsaklian Dal Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, T. Harayama, and M. Inubushi, “Random number generation from intermittent optical chaos,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1801208 (2017).

Okumura, H.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[PubMed]

H. Aida, M. Arahata, H. Okumura, H. Koizumi, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Experiment on synchronization of semiconductor lasers by common injection of constant-amplitude random-phase light,” Opt. Express 20(11), 11813–11829 (2012).
[PubMed]

Oowada, I.

Peil, M.

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1162–1170 (2002).

M. Peil, T. Heil, I. Fischer, and W. Elsässer, “Synchronization of chaotic semiconductor laser systems: A vectorial coupling-dependent scenario,” Phys. Rev. Lett. 88(17), 174101 (2002).
[PubMed]

Peleg, Y.

Pérez, T.

R. Vicente, T. Pérez, and C. R. Mirasso, “Open- versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).

Pikasis, E.

Porte, X.

Qiu, K.

Reidler, I.

Rosenbluh, M.

I. Kanter, M. Butkovski, Y. Peleg, M. Zigzag, Y. Aviad, I. Reidler, M. Rosenbluh, and W. Kinzel, “Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography,” Opt. Express 18(17), 18292–18302 (2010).
[PubMed]

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[PubMed]

Sato, N.

A. Karsaklian Dal Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, T. Harayama, and M. Inubushi, “Random number generation from intermittent optical chaos,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1801208 (2017).

A. Karsaklian Dal Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9(2), 6600512 (2017).

Scheuer, J.

D. Bar-Lev and J. Scheuer, “Enhanced key-establishing rates and efficiencies in fiber laser key distribution systems,” Phys. Lett. A 373(46), 4287–4296 (2009).

A. Zadok, J. Scheuer, J. Sendowski, and A. Yariv, “Secure key generation using an ultra-long fiber laser: transient analysis and experiment,” Opt. Express 16(21), 16680–16690 (2008).
[PubMed]

J. Scheuer and A. Yariv, “Giant fiber lasers: A new paradigm for secure key distribution,” Phys. Rev. Lett. 97(14), 140502 (2006).
[PubMed]

Sciamanna, M.

A. Karsaklian Dal Bosco, K. Kanno, A. Uchida, M. Sciamanna, T. Harayama, and K. Yoshimura, “Cycles of self-pulsations in a photonic integrated circuit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(6), 062905 (2015).
[PubMed]

Sendowski, J.

Shibasaki, N.

A. Uchida, N. Shibasaki, S. Nogawa, and S. Yoshimori, “Transient characteristics of chaos synchronization in a semiconductor laser subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056201 (2004).
[PubMed]

Shinohara, S.

Soriano, M. C.

Sunada, S.

Suzuki, N.

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

Syvridis, D.

Takahashi, R.

Tang, X.

Terashima, Y.

K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
[PubMed]

A. Karsaklian Dal Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, T. Harayama, and M. Inubushi, “Random number generation from intermittent optical chaos,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1801208 (2017).

Toomey, J. P.

Tsuzuki, K.

Uchida, A.

A. Karsaklian Dal Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9(2), 6600512 (2017).

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

A. Karsaklian Dal Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, T. Harayama, and M. Inubushi, “Random number generation from intermittent optical chaos,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1801208 (2017).

K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
[PubMed]

A. Karsaklian Dal Bosco, Y. Akizawa, K. Kanno, A. Uchida, T. Harayama, and K. Yoshimura, “Photonic integrated circuits unveil crisis-induced intermittency,” Opt. Express 24(19), 22198–22209 (2016).
[PubMed]

A. Karsaklian Dal Bosco, K. Kanno, A. Uchida, M. Sciamanna, T. Harayama, and K. Yoshimura, “Cycles of self-pulsations in a photonic integrated circuit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(6), 062905 (2015).
[PubMed]

J. Muramatsu, K. Yoshimura, P. Davis, A. Uchida, and T. Harayama, “Secret-key distribution based on bounded observability,” Proc. IEEE 103(10), 1762–1780 (2015).

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22(10), 11727–11740 (2014).
[PubMed]

H. Koizumi, S. Morikatsu, H. Aida, T. Nozawa, I. Kakesu, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers,” Opt. Express 21(15), 17869–17893 (2013).
[PubMed]

H. Aida, M. Arahata, H. Okumura, H. Koizumi, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Experiment on synchronization of semiconductor lasers by common injection of constant-amplitude random-phase light,” Opt. Express 20(11), 11813–11829 (2012).
[PubMed]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[PubMed]

T. Harayama, S. Sunada, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Fast nondeterministic random-bit generation using on-chip chaos lasers,” Phys. Rev. A 83(3), 031803 (2011).

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express 19(7), 5713–5724 (2011).
[PubMed]

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, K. Tsuzuki, A. Uchida, and P. Davis, “Random optical pulse generation with bistable semiconductor ring lasers,” Opt. Express 19(8), 7439–7450 (2011).
[PubMed]

I. Oowada, H. Ariizumi, M. Li, S. Yoshimori, A. Uchida, K. Yoshimura, and P. Davis, “Synchronization by injection of common chaotic signal in semiconductor lasers with optical feedback,” Opt. Express 17(12), 10025–10034 (2009).
[PubMed]

T. Yamamoto, I. Oowada, H. Yip, A. Uchida, S. Yoshimori, K. Yoshimura, J. Muramatsu, S. I. Goto, and P. Davis, “Common-chaotic-signal induced synchronization in semiconductor lasers,” Opt. Express 15(7), 3974–3980 (2007).
[PubMed]

A. Uchida, N. Shibasaki, S. Nogawa, and S. Yoshimori, “Transient characteristics of chaos synchronization in a semiconductor laser subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056201 (2004).
[PubMed]

A. Uchida, P. Davis, and S. Itaya, “Generation of information theoretic secure keys using a chaotic semiconductor laser,” Appl. Phys. Lett. 83(15), 3213–3215 (2003).

Ugajin, K.

Vicente, R.

R. Vicente, C. R. Mirasso, and I. Fischer, “Simultaneous bidirectional message transmission in a chaos-based communication scheme,” Opt. Lett. 32(4), 403–405 (2007).
[PubMed]

R. Vicente, T. Pérez, and C. R. Mirasso, “Open- versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).

Wu, J.-G.

Wu, Z.-M.

Xia, G.-Q.

Xue, C.

Yamamoto, T.

Yariv, A.

A. Zadok, J. Scheuer, J. Sendowski, and A. Yariv, “Secure key generation using an ultra-long fiber laser: transient analysis and experiment,” Opt. Express 16(21), 16680–16690 (2008).
[PubMed]

J. Scheuer and A. Yariv, “Giant fiber lasers: A new paradigm for secure key distribution,” Phys. Rev. Lett. 97(14), 140502 (2006).
[PubMed]

Yip, H.

Yoshimori, S.

Yoshimura, K.

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
[PubMed]

A. Karsaklian Dal Bosco, Y. Akizawa, K. Kanno, A. Uchida, T. Harayama, and K. Yoshimura, “Photonic integrated circuits unveil crisis-induced intermittency,” Opt. Express 24(19), 22198–22209 (2016).
[PubMed]

A. Karsaklian Dal Bosco, K. Kanno, A. Uchida, M. Sciamanna, T. Harayama, and K. Yoshimura, “Cycles of self-pulsations in a photonic integrated circuit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(6), 062905 (2015).
[PubMed]

J. Muramatsu, K. Yoshimura, P. Davis, A. Uchida, and T. Harayama, “Secret-key distribution based on bounded observability,” Proc. IEEE 103(10), 1762–1780 (2015).

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22(10), 11727–11740 (2014).
[PubMed]

H. Koizumi, S. Morikatsu, H. Aida, T. Nozawa, I. Kakesu, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers,” Opt. Express 21(15), 17869–17893 (2013).
[PubMed]

H. Aida, M. Arahata, H. Okumura, H. Koizumi, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Experiment on synchronization of semiconductor lasers by common injection of constant-amplitude random-phase light,” Opt. Express 20(11), 11813–11829 (2012).
[PubMed]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[PubMed]

T. Harayama, S. Sunada, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Fast nondeterministic random-bit generation using on-chip chaos lasers,” Phys. Rev. A 83(3), 031803 (2011).

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express 19(7), 5713–5724 (2011).
[PubMed]

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, K. Tsuzuki, A. Uchida, and P. Davis, “Random optical pulse generation with bistable semiconductor ring lasers,” Opt. Express 19(8), 7439–7450 (2011).
[PubMed]

J. Muramatsu, K. Yoshimura, and P. Davis, “Information theoretic security based on bounded observability,” Lect. Notes Comput. Sci. 5973, 128–139 (2010).

I. Oowada, H. Ariizumi, M. Li, S. Yoshimori, A. Uchida, K. Yoshimura, and P. Davis, “Synchronization by injection of common chaotic signal in semiconductor lasers with optical feedback,” Opt. Express 17(12), 10025–10034 (2009).
[PubMed]

T. Yamamoto, I. Oowada, H. Yip, A. Uchida, S. Yoshimori, K. Yoshimura, J. Muramatsu, S. I. Goto, and P. Davis, “Common-chaotic-signal induced synchronization in semiconductor lasers,” Opt. Express 15(7), 3974–3980 (2007).
[PubMed]

J. Muramatsu, K. Yoshimura, K. Arai, and P. Davis, “Secret key capacity for optimally correlated sources under sampling attack,” IEEE Trans. Inf. Theory 52(11), 5140–5151 (2006).

Zadok, A.

Zhao, L.-J.

Zhong, Z.-Q.

Zigzag, M.

Appl. Phys. Lett. (1)

A. Uchida, P. Davis, and S. Itaya, “Generation of information theoretic secure keys using a chaotic semiconductor laser,” Appl. Phys. Lett. 83(15), 3213–3215 (2003).

IEEE J. Quantum Electron. (2)

R. Vicente, T. Pérez, and C. R. Mirasso, “Open- versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1162–1170 (2002).

IEEE J. Sel. Top. Quantum Electron. (1)

A. Karsaklian Dal Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, T. Harayama, and M. Inubushi, “Random number generation from intermittent optical chaos,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1801208 (2017).

IEEE Photonics J. (1)

A. Karsaklian Dal Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9(2), 6600512 (2017).

IEEE Trans. Inf. Theory (3)

C. H. Bennett, G. Brassard, C. Crepeau, and U. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).

U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).

J. Muramatsu, K. Yoshimura, K. Arai, and P. Davis, “Secret key capacity for optimally correlated sources under sampling attack,” IEEE Trans. Inf. Theory 52(11), 5140–5151 (2006).

J. Lightwave Technol. (1)

Lect. Notes Comput. Sci. (1)

J. Muramatsu, K. Yoshimura, and P. Davis, “Information theoretic security based on bounded observability,” Lect. Notes Comput. Sci. 5973, 128–139 (2010).

Opt. Express (17)

H. Koizumi, S. Morikatsu, H. Aida, T. Nozawa, I. Kakesu, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers,” Opt. Express 21(15), 17869–17893 (2013).
[PubMed]

C. Xue, N. Jiang, K. Qiu, and Y. Lv, “Key distribution based on synchronization in bandwidth-enhanced random bit generators with dynamic post-processing,” Opt. Express 23(11), 14510–14519 (2015).
[PubMed]

A. Zadok, J. Scheuer, J. Sendowski, and A. Yariv, “Secure key generation using an ultra-long fiber laser: transient analysis and experiment,” Opt. Express 16(21), 16680–16690 (2008).
[PubMed]

I. Kanter, M. Butkovski, Y. Peleg, M. Zigzag, Y. Aviad, I. Reidler, M. Rosenbluh, and W. Kinzel, “Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography,” Opt. Express 18(17), 18292–18302 (2010).
[PubMed]

A. Karsaklian Dal Bosco, Y. Akizawa, K. Kanno, A. Uchida, T. Harayama, and K. Yoshimura, “Photonic integrated circuits unveil crisis-induced intermittency,” Opt. Express 24(19), 22198–22209 (2016).
[PubMed]

J.-G. Wu, L.-J. Zhao, Z.-M. Wu, D. Lu, X. Tang, Z.-Q. Zhong, and G.-Q. Xia, “Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip,” Opt. Express 21(20), 23358–23364 (2013).
[PubMed]

J. P. Toomey, D. M. Kane, C. McMahon, A. Argyris, and D. Syvridis, “Integrated semiconductor laser with optical feedback: Transition from short to long cavity regime,” Opt. Express 23(14), 18754–18762 (2015).
[PubMed]

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
[PubMed]

A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
[PubMed]

T. Yamamoto, I. Oowada, H. Yip, A. Uchida, S. Yoshimori, K. Yoshimura, J. Muramatsu, S. I. Goto, and P. Davis, “Common-chaotic-signal induced synchronization in semiconductor lasers,” Opt. Express 15(7), 3974–3980 (2007).
[PubMed]

I. Oowada, H. Ariizumi, M. Li, S. Yoshimori, A. Uchida, K. Yoshimura, and P. Davis, “Synchronization by injection of common chaotic signal in semiconductor lasers with optical feedback,” Opt. Express 17(12), 10025–10034 (2009).
[PubMed]

H. Aida, M. Arahata, H. Okumura, H. Koizumi, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Experiment on synchronization of semiconductor lasers by common injection of constant-amplitude random-phase light,” Opt. Express 20(11), 11813–11829 (2012).
[PubMed]

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express 19(7), 5713–5724 (2011).
[PubMed]

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, K. Tsuzuki, A. Uchida, and P. Davis, “Random optical pulse generation with bistable semiconductor ring lasers,” Opt. Express 19(8), 7439–7450 (2011).
[PubMed]

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22(10), 11727–11740 (2014).
[PubMed]

S. Shinohara, K. Arai, P. Davis, S. Sunada, and T. Harayama, “Chaotic laser based physical random bit streaming system with a computer application interface,” Opt. Express 25(6), 6461–6474 (2017).
[PubMed]

K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
[PubMed]

Opt. Lett. (2)

Phys. Lett. A (1)

D. Bar-Lev and J. Scheuer, “Enhanced key-establishing rates and efficiencies in fiber laser key distribution systems,” Phys. Lett. A 373(46), 4287–4296 (2009).

Phys. Rev. A (1)

T. Harayama, S. Sunada, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Fast nondeterministic random-bit generation using on-chip chaos lasers,” Phys. Rev. A 83(3), 031803 (2011).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

A. Karsaklian Dal Bosco, K. Kanno, A. Uchida, M. Sciamanna, T. Harayama, and K. Yoshimura, “Cycles of self-pulsations in a photonic integrated circuit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(6), 062905 (2015).
[PubMed]

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[PubMed]

A. Uchida, N. Shibasaki, S. Nogawa, and S. Yoshimori, “Transient characteristics of chaos synchronization in a semiconductor laser subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056201 (2004).
[PubMed]

Phys. Rev. Lett. (4)

M. Peil, T. Heil, I. Fischer, and W. Elsässer, “Synchronization of chaotic semiconductor laser systems: A vectorial coupling-dependent scenario,” Phys. Rev. Lett. 88(17), 174101 (2002).
[PubMed]

J. Scheuer and A. Yariv, “Giant fiber lasers: A new paradigm for secure key distribution,” Phys. Rev. Lett. 97(14), 140502 (2006).
[PubMed]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[PubMed]

Proc. IEEE (1)

J. Muramatsu, K. Yoshimura, P. Davis, A. Uchida, and T. Harayama, “Secret-key distribution based on bounded observability,” Proc. IEEE 103(10), 1762–1780 (2015).

Sci. Rep. (1)

T. Ito, H. Koizumi, N. Suzuki, I. Kakesu, K. Iwakawa, A. Uchida, T. Koshiba, J. Muramatsu, K. Yoshimura, M. Inubushi, and P. Davis, “Physical implementation of oblivious transfer using optical correlated randomness,” Sci. Rep. 7(1), 8444 (2017).
[PubMed]

Other (2)

A. Uchida, Optical Communication with Chaotic Lasers, Applications of Nonlinear Dynamics and Synchronization (Wiley-VCH, Weinheim, 2012).

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, and L. E. Bassham III, National Institute of Standards and Technology, Special Publication 800–22, Revision 1a (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic illustration of the photonic integrated circuit (PIC) under investigation. The PIC consists of a distributed-feedback (DFB) semiconductor laser, a semiconductor optical amplifier (SOA), a phase modulator (PM), a passive waveguide, and an external mirror. The external cavity length is 8.6 mm. AR, anti-reflection coating; HR, high-reflection coating.
Fig. 2
Fig. 2 Experimental setup for common-signal-induced synchronization and secure key distribution with two PICs. Amp, electronic amplifier; ATT, optical attenuator; FC, fiber coupler; ISO, optical isolator; LD, semiconductor laser diode; PD, photodetector; PIC, photonic integrated circuit; PM, phase modulator; SLD, super-luminescent diode.
Fig. 3
Fig. 3 (a), (c) Temporal waveforms and (b), (d) the corresponding cross-correlation plots in the open-loop configuration. (a), (b) Response 1 (PIC 1) and Response 2 (PIC 2), (c), (d) Drive and Response 1.
Fig. 4
Fig. 4 (a), (c) Optical spectra and (b), (d) RF spectra for Drive, Response 1, and Response 2 in the open-loop configuration. (a), (b) Without drive injection and (c), (d) with drive injection. The injection strengths are 148 and 233 μW for the Response 1 and 2, respectively.
Fig. 5
Fig. 5 Cross correlation values (with error bars) between the outputs of the Response 1 and 2 as a function of (a) injection strength and (b) initial optical wavelength detuning. The injection strength is normalized by the maximum value of the injection strength obtained in the experiment. The maximum injection strengths are 167 and 299 μW for the Response 1 and 2, respectively.
Fig. 6
Fig. 6 (a), (c) Temporal waveforms and (b), (d) the corresponding correlation plots in the closed-loop configuration. The voltages of the phase modulators (PMs) are set to (a), (b) VPM1 = 0.0 V and VPM2 = 0.0 V, and (c), (d) VPM1 = 1.176 V and VPM2 = 0.0 V. VPM1,2 denote the voltages applied to the PMs of the Response 1 and 2, respectively.
Fig. 7
Fig. 7 (a), (c) Optical spectra and (b), (d) RF spectra of the Drive, Response 1 and Response 2 in the closed-loop configuration. The voltages of the phase modulators (PMs) are set to (a), (b) VPM1 = 0.0 V and VPM2 = 0.0 V, and (c), (d) VPM1 = 1.176 V and VPM2 = 0.0 V. Figure 7 corresponds to Fig. 6.
Fig. 8
Fig. 8 Cross-correlation values (with error bars) of the outputs of the two Responses as a function of the voltage of the PM for Response 1. The voltage of the PM for Response 2 is fixed at 0.0 V. The injection strengths are 49.9 and 58.8 μW for the Response 1 and 2, respectively.
Fig. 9
Fig. 9 Stability of cross-correlation values for (a) PICs and (b) semiconductor lasers with fiber-based external cavity [9]. The external cavity lengths are (a) 8.6 × 10−3 m and (b) 3.68 m.
Fig. 10
Fig. 10 (a) Short-term cross correlation between the outputs of the two PICs and the voltages of the phase modulators (PM) for the PICs when the feedback phases of the two PICs are changed randomly and independently. (b) Enlarged view of (a).
Fig. 11
Fig. 11 (a) Final key generation rate Rfinal as a function of the two threshold coefficients C- and C+ for robust sampling. The black curve indicates a set of threshold coefficients ensuring a probability of occurrence for the bit ‘0’ to be 0.500 ± 0.005. (b) Final key generation rate Rfinal along with the black curve shown in (a).

Tables (1)

Tables Icon

Table 1 Summary of the level of performance of secure key distribution for the experiments with PICs and fiber-based optical system [9].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C= ( I 1 ( t ) I ¯ 1 )( I 2 ( t ) I ¯ 2 ) σ 1 σ 2
I th,u =m+ C + σ
I th,l =m C σ
R final = R gen 1 M [ ( 1 M E M )( 1 I E )h( R fail ) ]

Metrics