Abstract

We present a refractometer with main- and vernier-scale to measure the refractive index (RI) of liquids with high precision by using the fine spectrum structure of a tilted fiber Bragg grating (TFBG). The absolute RI values are determined by the accurate wavelength of cut-off mode resonances. The main- and vernier-scale are calibrated by measuring large groups of fine spectra at different cut-off mode resonances in a small RI range, and the use of vernier-scale certainly reduces the RI measurement uncertainty resulted from the discrete cladding mode resonances. The performance of the TFBG-based vernier refractometer is experimentally verified by exploring the temperature dependence of RI of anhydrous ethanol in a near infrared region, showing an enhanced accuracy to the order of 10−4, high repeatability and temperature self-calibration capability.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser

Ruize Wang, Jinhai Si, Tao Chen, Lihe Yan, Houjun Cao, Xuantung Pham, and Xun Hou
Opt. Express 25(20) 23684-23689 (2017)

Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating

Wenjun Zhou, David J. Mandia, Seán T. Barry, and Jacques Albert
Opt. Lett. 40(8) 1713-1716 (2015)

Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber

Zhongyue Cai, Fu Liu, Tuan Guo, Bai-Ou Guan, Gang-Ding Peng, and Jacques Albert
Opt. Express 23(16) 20971-20976 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
  2. W. Chen, J. E. Saunders, J. A. Barnes, S. S. H. Yam, and H.-P. Loock, “Monitoring of vapor uptake by refractive index and thickness measurements in thin films,” Opt. Lett. 38(3), 365–367 (2013).
    [PubMed]
  3. J. E. Saunders, H. Chen, C. Brauer, M. Clayton, W. Chen, J. A. Barnes, and H.-P. Loock, “Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry,” Soft Matter 11(45), 8746–8757 (2015).
    [PubMed]
  4. C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
    [PubMed]
  5. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Low thermal sensitivity grating devices based on Ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24(12), 5087–5094 (2006).
  6. Z. Yan, Z. Sun, K. Zhou, B. Luo, J. Li, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Numerical and experimental analysis of sensitivity-enhanced RI sensor based on Ex-TFG in thin cladding fiber,” J. Lightwave Technol. 33(14), 3023–3027 (2015).
  7. B. Jiang, X. Lu, X. Gan, M. Qi, Y. Wang, L. Han, D. Mao, W. Zhang, Z. Ren, and J. Zhao, “Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region,” Opt. Lett. 40(17), 3994–3997 (2015).
    [PubMed]
  8. W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
    [PubMed]
  9. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [PubMed]
  10. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
  11. C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 188768 (2013).
  12. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
  13. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
  14. B. Jiang, J. Zhao, C. Qin, W. Jiang, A. Rauf, F. Fan, and Z. Huang, “Method for measuring liquid phase diffusion based on tilted fiber Bragg grating,” Opt. Lett. 36(21), 4308–4310 (2011).
    [PubMed]
  15. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [PubMed]
  16. T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).
  17. B. Jiang, J. Zhao, Z. Huang, A. Rauf, and C. Qin, “Real-time monitoring the change process of liquid concentration using tilted fiber Bragg grating,” Opt. Express 20(14), 15347–15352 (2012).
    [PubMed]
  18. W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett. 40(8), 1713–1716 (2015).
    [PubMed]
  19. W. Zhou, Y. Zhou, and J. Albert, “A true fiber optic refractometer,” Laser Photonics Rev. 11(1), 1600157 (2017).
  20. T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron. 55, 452–458 (2014).
    [PubMed]
  21. B. Jiang, X. Lu, D. Mao, W. Zhang, and J. Zhao, “In-Situ monitoring method for solution volatilization using tilted fiber Bragg grating,” IEEE Sens. J. 15(5), 3000–3003 (2015).
  22. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
  23. M. N. Polyanskiy, “Refractive index database (Fused silica),” https://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson .
  24. W. Qian, C.-L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
    [PubMed]
  25. J. E. Saunders, C. Sanders, H. Chen, and H.-P. Loock, “Refractive indices of common solvents and solutions at 1550 nm,” Appl. Opt. 55(4), 947–953 (2016).
    [PubMed]

2017 (1)

W. Zhou, Y. Zhou, and J. Albert, “A true fiber optic refractometer,” Laser Photonics Rev. 11(1), 1600157 (2017).

2016 (2)

J. E. Saunders, C. Sanders, H. Chen, and H.-P. Loock, “Refractive indices of common solvents and solutions at 1550 nm,” Appl. Opt. 55(4), 947–953 (2016).
[PubMed]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[PubMed]

2015 (6)

Z. Yan, Z. Sun, K. Zhou, B. Luo, J. Li, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Numerical and experimental analysis of sensitivity-enhanced RI sensor based on Ex-TFG in thin cladding fiber,” J. Lightwave Technol. 33(14), 3023–3027 (2015).

B. Jiang, X. Lu, X. Gan, M. Qi, Y. Wang, L. Han, D. Mao, W. Zhang, Z. Ren, and J. Zhao, “Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region,” Opt. Lett. 40(17), 3994–3997 (2015).
[PubMed]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[PubMed]

J. E. Saunders, H. Chen, C. Brauer, M. Clayton, W. Chen, J. A. Barnes, and H.-P. Loock, “Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry,” Soft Matter 11(45), 8746–8757 (2015).
[PubMed]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett. 40(8), 1713–1716 (2015).
[PubMed]

B. Jiang, X. Lu, D. Mao, W. Zhang, and J. Zhao, “In-Situ monitoring method for solution volatilization using tilted fiber Bragg grating,” IEEE Sens. J. 15(5), 3000–3003 (2015).

2014 (1)

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron. 55, 452–458 (2014).
[PubMed]

2013 (3)

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 188768 (2013).

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).

W. Chen, J. E. Saunders, J. A. Barnes, S. S. H. Yam, and H.-P. Loock, “Monitoring of vapor uptake by refractive index and thickness measurements in thin films,” Opt. Lett. 38(3), 365–367 (2013).
[PubMed]

2012 (2)

2011 (3)

2008 (1)

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).

2007 (1)

2006 (1)

2005 (1)

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).

1965 (1)

Albert, J.

W. Zhou, Y. Zhou, and J. Albert, “A true fiber optic refractometer,” Laser Photonics Rev. 11(1), 1600157 (2017).

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[PubMed]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett. 40(8), 1713–1716 (2015).
[PubMed]

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron. 55, 452–458 (2014).
[PubMed]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[PubMed]

Barnes, J. A.

J. E. Saunders, H. Chen, C. Brauer, M. Clayton, W. Chen, J. A. Barnes, and H.-P. Loock, “Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry,” Soft Matter 11(45), 8746–8757 (2015).
[PubMed]

W. Chen, J. E. Saunders, J. A. Barnes, S. S. H. Yam, and H.-P. Loock, “Monitoring of vapor uptake by refractive index and thickness measurements in thin films,” Opt. Lett. 38(3), 365–367 (2013).
[PubMed]

Barry, S. T.

Bennion, I.

Brauer, C.

J. E. Saunders, H. Chen, C. Brauer, M. Clayton, W. Chen, J. A. Barnes, and H.-P. Loock, “Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry,” Soft Matter 11(45), 8746–8757 (2015).
[PubMed]

Campopiano, S.

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).

Cao, Y.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[PubMed]

Caucheteur, C.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[PubMed]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).

Chan, C. F.

Chen, C.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[PubMed]

Chen, H.

J. E. Saunders, C. Sanders, H. Chen, and H.-P. Loock, “Refractive indices of common solvents and solutions at 1550 nm,” Appl. Opt. 55(4), 947–953 (2016).
[PubMed]

J. E. Saunders, H. Chen, C. Brauer, M. Clayton, W. Chen, J. A. Barnes, and H.-P. Loock, “Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry,” Soft Matter 11(45), 8746–8757 (2015).
[PubMed]

Chen, N.-K.

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron. 55, 452–458 (2014).
[PubMed]

Chen, W.

J. E. Saunders, H. Chen, C. Brauer, M. Clayton, W. Chen, J. A. Barnes, and H.-P. Loock, “Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry,” Soft Matter 11(45), 8746–8757 (2015).
[PubMed]

W. Chen, J. E. Saunders, J. A. Barnes, S. S. H. Yam, and H.-P. Loock, “Monitoring of vapor uptake by refractive index and thickness measurements in thin films,” Opt. Lett. 38(3), 365–367 (2013).
[PubMed]

Chen, X.

Clayton, M.

J. E. Saunders, H. Chen, C. Brauer, M. Clayton, W. Chen, J. A. Barnes, and H.-P. Loock, “Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry,” Soft Matter 11(45), 8746–8757 (2015).
[PubMed]

Cusano, A.

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).

Cutolo, A.

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).

Dong, X.

Fan, F.

Farrell, G.

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).

Gan, X.

Giessen, H.

Giordano, M.

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).

Gissibl, T.

Guan, B.-O.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[PubMed]

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron. 55, 452–458 (2014).
[PubMed]

Guan, C.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 188768 (2013).

Guo, J.

Guo, T.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[PubMed]

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron. 55, 452–458 (2014).
[PubMed]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).

Han, L.

He, S.

Ho, H. L.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[PubMed]

Huang, Z.

Iadicicco, A.

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).

Jafari, A.

Jiang, B.

Jiang, W.

Jin, S.

Jin, W.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[PubMed]

Kedenburg, S.

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).

Laronche, A.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[PubMed]

Li, J.

Li, S.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 188768 (2013).

Liu, F.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[PubMed]

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron. 55, 452–458 (2014).
[PubMed]

Liu, Y.

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron. 55, 452–458 (2014).
[PubMed]

Loock, H.-P.

Lu, X.

B. Jiang, X. Lu, X. Gan, M. Qi, Y. Wang, L. Han, D. Mao, W. Zhang, Z. Ren, and J. Zhao, “Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region,” Opt. Lett. 40(17), 3994–3997 (2015).
[PubMed]

B. Jiang, X. Lu, D. Mao, W. Zhang, and J. Zhao, “In-Situ monitoring method for solution volatilization using tilted fiber Bragg grating,” IEEE Sens. J. 15(5), 3000–3003 (2015).

Luo, B.

Malitson, I. H.

Mandia, D. J.

Mao, D.

B. Jiang, X. Lu, X. Gan, M. Qi, Y. Wang, L. Han, D. Mao, W. Zhang, Z. Ren, and J. Zhao, “Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region,” Opt. Lett. 40(17), 3994–3997 (2015).
[PubMed]

B. Jiang, X. Lu, D. Mao, W. Zhang, and J. Zhao, “In-Situ monitoring method for solution volatilization using tilted fiber Bragg grating,” IEEE Sens. J. 15(5), 3000–3003 (2015).

Qi, M.

Qian, W.

Qin, C.

Rauf, A.

Ren, Z.

Sanders, C.

Saunders, J. E.

Semenova, Y.

Shao, L.-Y.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).

Shi, J.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 188768 (2013).

Sun, Z.

Thomson, D. J.

Tian, X.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 188768 (2013).

Vieweg, M.

Wang, H.

Wang, P.

Wang, Y.

Wei, H.

Wu, Q.

Yam, S. S. H.

Yan, Z.

Yang, F.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[PubMed]

Yuan, L.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 188768 (2013).

Zhang, L.

Zhang, S.

Zhang, W.

B. Jiang, X. Lu, D. Mao, W. Zhang, and J. Zhao, “In-Situ monitoring method for solution volatilization using tilted fiber Bragg grating,” IEEE Sens. J. 15(5), 3000–3003 (2015).

B. Jiang, X. Lu, X. Gan, M. Qi, Y. Wang, L. Han, D. Mao, W. Zhang, Z. Ren, and J. Zhao, “Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region,” Opt. Lett. 40(17), 3994–3997 (2015).
[PubMed]

Zhang, Z.

Zhao, C.-L.

Zhao, J.

Zhao, W.

Zhong, X.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 188768 (2013).

Zhou, K.

Zhou, W.

Zhou, Y.

W. Zhou, Y. Zhou, and J. Albert, “A true fiber optic refractometer,” Laser Photonics Rev. 11(1), 1600157 (2017).

Appl. Opt. (2)

Biosens. Bioelectron. (1)

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron. 55, 452–458 (2014).
[PubMed]

IEEE Photonics Technol. Lett. (1)

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).

IEEE Sens. J. (2)

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).

B. Jiang, X. Lu, D. Mao, W. Zhang, and J. Zhao, “In-Situ monitoring method for solution volatilization using tilted fiber Bragg grating,” IEEE Sens. J. 15(5), 3000–3003 (2015).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (2)

W. Zhou, Y. Zhou, and J. Albert, “A true fiber optic refractometer,” Laser Photonics Rev. 11(1), 1600157 (2017).

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).

Nat. Commun. (2)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[PubMed]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[PubMed]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. Express (1)

Sens. Actuators B Chem. (1)

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 188768 (2013).

Soft Matter (1)

J. E. Saunders, H. Chen, C. Brauer, M. Clayton, W. Chen, J. A. Barnes, and H.-P. Loock, “Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry,” Soft Matter 11(45), 8746–8757 (2015).
[PubMed]

Other (1)

M. N. Polyanskiy, “Refractive index database (Fused silica),” https://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic model of a TFBG-based refractometer, (b) optical microscopic image of tilted fringes of an 8.5° TFBG, (c) transmission spectra of the TFBG, and (d) separations of adjacent cladding mode resonances at different mode-orders or resonant wavelengths.
Fig. 2
Fig. 2 (a) Spectral evolution of TFBG-1 with the RI change. The cut-off mode position for each RI value is shown in the shadow area. The inset is the zoomed spectrum of the cut-off mode resonance for RI of 1.380. (b) Wavelengths of cut-off mode resonances of the TFBG versus surrounding RI.
Fig. 3
Fig. 3 Calibration relationship of cut-off mode resonant wavelength with the change of surrounding RI. (a) Resonant wavelengths with main scale and vernier scale versus RI (bottom coordinate) and ERI (top coordinate), insets: (top-left) marked wavelength position of the cut-off mode resonances, and (bottom-right) vernier spectra and scale in a zoomed region. (b) Detailed spectral evolutions of the cut-off mode resonances of two different orders in a small RI range.
Fig. 4
Fig. 4 With the temperature increasing, (a) wavelength shifts of the core and the cladding modes when the TFBG is in air, and (b) wavelength shift of cut-off mode when the TFBG in ethanol.
Fig. 5
Fig. 5 Variations of the calculated ERI and RI with the temperature.
Fig. 6
Fig. 6 Determination of repeatability and uncertainty of the refractometer. Inset: the spectra of three measurements at 40°C and the spectral shift in the interval of 1°C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ co =2 n eff co ( λ co ) Λ g ,
λ cl =[ n eff co ( λ cl )+ n eff cl ( λ cl ) ] Λ g ,
n eff cl ( λ cl )= 2 λ cl λ co n eff co ( λ co ) n eff co ( λ cl ).

Metrics