Abstract

Inspired by the classic hole-cavity blackbody model, we propose an open metasurface blackbody operating at microwave frequencies, whose unit cell is a dielectric resonator lying on an opaque metal plate. The resonator has a high temperature coefficient of dielectric constant, thus the blackbody can be thermally tunable. Furthermore, when the resonator is combined with ferrite, a magnetically tunable blackbody is also obtained. Absorption spectra of these two tunable blackbody unit cells are measured, and they agree very well with the simulated results. The proposed blackbodies offer a new opportunity for practical tunable microwave absorbers in applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber

Yongjun Huang, Guangjun Wen, Weiren Zhu, Jian Li, Li-Ming Si, and Malin Premaratne
Opt. Express 22(13) 16408-16417 (2014)

Metasurface Salisbury screen: achieving ultra-wideband microwave absorption

Ziheng Zhou, Ke Chen, Junming Zhao, Ping Chen, Tian Jiang, Bo Zhu, Yijun Feng, and Yue Li
Opt. Express 25(24) 30241-30252 (2017)

Hybridized resonances to design tunable binary phase metasurface unit cells

Nadège Kaina, Matthieu Dupré, Mathias Fink, and Geoffroy Lerosey
Opt. Express 22(16) 18881-18888 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Ohl, “Light sensitive device,” U.S. Patent, 2402662(1946).
  2. C. Huelsmeyer, “Telemobiloscope,” U.S. Patent, 810150(1906).
  3. S. E. Han and D. J. Norris, “Control of thermal emission by selective heating of periodic structures,” Phys. Rev. Lett. 104(4), 043901 (2010).
    [PubMed]
  4. M. Gueltig, H. Ossmer, M. Ohtsuka, H. Miki, K. Tsuchiya, T. Takagi, and M. Kohl, “High frequency thermal energy harvesting using magnetic shape memory films,” Adv. Energy Mater. 4(17), 1400751 (2014).
  5. J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
    [PubMed]
  6. A. Sharma, V. Singh, T. L. Bougher, and B. A. Cola, “A carbon nanotube optical rectenna,” Nat. Nanotechnol. 10(12), 1027–1032 (2015).
    [PubMed]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [PubMed]
  8. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [PubMed]
  9. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [PubMed]
  10. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
    [PubMed]
  11. W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).
  12. P. Richner, H. Eghlidi, S. J. P. Kress, M. Schmid, D. J. Norris, and D. Poulikakos, “Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution,” ACS Appl. Mater. Interfaces 8(18), 11690–11697 (2016).
    [PubMed]
  13. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
  14. Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
    [PubMed]
  15. J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
  16. X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
  17. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [PubMed]
  18. I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).
  19. X. M. Liu, Q. Zhao, C. W. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
  20. K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
  21. C. H. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
  22. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [PubMed]
  23. Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).
  24. Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
    [PubMed]
  25. Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).
  26. K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2014).
    [PubMed]
  27. M. Lei, N. Y. Feng, Q. M. Wang, Y. A. Hao, S. G. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).
  28. Y. Huang, G. Wen, W. Zhu, J. Li, L. M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
    [PubMed]

2016 (5)

P. Richner, H. Eghlidi, S. J. P. Kress, M. Schmid, D. J. Norris, and D. Poulikakos, “Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution,” ACS Appl. Mater. Interfaces 8(18), 11690–11697 (2016).
[PubMed]

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).

M. Lei, N. Y. Feng, Q. M. Wang, Y. A. Hao, S. G. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).

X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).

2015 (4)

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[PubMed]

A. Sharma, V. Singh, T. L. Bougher, and B. A. Cola, “A carbon nanotube optical rectenna,” Nat. Nanotechnol. 10(12), 1027–1032 (2015).
[PubMed]

2014 (8)

M. Gueltig, H. Ossmer, M. Ohtsuka, H. Miki, K. Tsuchiya, T. Takagi, and M. Kohl, “High frequency thermal energy harvesting using magnetic shape memory films,” Adv. Energy Mater. 4(17), 1400751 (2014).

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).

Y. Huang, G. Wen, W. Zhu, J. Li, L. M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[PubMed]

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2014).
[PubMed]

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).

2013 (1)

X. M. Liu, Q. Zhao, C. W. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).

2012 (2)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[PubMed]

2011 (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

C. H. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).

2010 (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

S. E. Han and D. J. Norris, “Control of thermal emission by selective heating of periodic structures,” Phys. Rev. Lett. 104(4), 043901 (2010).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Abbott, D.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).

Aono, M.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).

Ben-Abdallah, P.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[PubMed]

Bhaskaran, M.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).

Bi, K.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).

M. Lei, N. Y. Feng, Q. M. Wang, Y. A. Hao, S. G. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2014).
[PubMed]

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).

Biehs, S. A.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[PubMed]

Bougher, T. L.

A. Sharma, V. Singh, T. L. Bougher, and B. A. Cola, “A carbon nanotube optical rectenna,” Nat. Nanotechnol. 10(12), 1027–1032 (2015).
[PubMed]

Celanovic, I.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

Chen, J.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[PubMed]

Chen, K.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).

Chen, L.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).

Chou, J. B.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

Cola, B. A.

A. Sharma, V. Singh, T. L. Bougher, and B. A. Cola, “A carbon nanotube optical rectenna,” Nat. Nanotechnol. 10(12), 1027–1032 (2015).
[PubMed]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Dao, T. D.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).

Eghlidi, H.

P. Richner, H. Eghlidi, S. J. P. Kress, M. Schmid, D. J. Norris, and D. Poulikakos, “Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution,” ACS Appl. Mater. Interfaces 8(18), 11690–11697 (2016).
[PubMed]

Fan, Y. C.

Fang, N. X.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Feng, N. Y.

M. Lei, N. Y. Feng, Q. M. Wang, Y. A. Hao, S. G. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).

Fumeaux, C.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Gu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[PubMed]

Gueltig, M.

M. Gueltig, H. Ossmer, M. Ohtsuka, H. Miki, K. Tsuchiya, T. Takagi, and M. Kohl, “High frequency thermal energy harvesting using magnetic shape memory films,” Adv. Energy Mater. 4(17), 1400751 (2014).

Guo, L. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).

Guo, Y.

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2014).
[PubMed]

Guo, Y. S.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).

Han, S. E.

S. E. Han and D. J. Norris, “Control of thermal emission by selective heating of periodic structures,” Phys. Rev. Lett. 104(4), 043901 (2010).
[PubMed]

Hao, Y. A.

M. Lei, N. Y. Feng, Q. M. Wang, Y. A. Hao, S. G. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Hou, X. J.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).

Huang, S.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[PubMed]

Huang, S. G.

M. Lei, N. Y. Feng, Q. M. Wang, Y. A. Hao, S. G. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).

Huang, Y.

Ishii, S.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).

Jang, T.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

John, J.

C. H. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Kang, C.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).

Kaplan, A. F.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).

Kee, C. S.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).

Kim, S. G.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

Kohl, M.

M. Gueltig, H. Ossmer, M. Ohtsuka, H. Miki, K. Tsuchiya, T. Takagi, and M. Kohl, “High frequency thermal energy harvesting using magnetic shape memory films,” Adv. Energy Mater. 4(17), 1400751 (2014).

Koschny, T.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Kress, S. J. P.

P. Richner, H. Eghlidi, S. J. P. Kress, M. Schmid, D. J. Norris, and D. Poulikakos, “Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution,” ACS Appl. Mater. Interfaces 8(18), 11690–11697 (2016).
[PubMed]

Lan, C.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Lan, C. W.

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).

X. M. Liu, Q. Zhao, C. W. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Lee, I. S.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).

Lee, J. W.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).

Lee, Y. E.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

Lei, M.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).

M. Lei, N. Y. Feng, Q. M. Wang, Y. A. Hao, S. G. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2014).
[PubMed]

Lenert, A.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

Li, B.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Li, H. Q.

Li, J.

Li, J. S.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).

Li, L. F.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).

Liang, H.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).

Liu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Liu, X.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[PubMed]

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2014).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[PubMed]

Liu, X. M.

X. M. Liu, Q. Zhao, C. W. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).

Liu, Z.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[PubMed]

Lv, X. L.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Ma, J.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Meng, Y.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Miki, H.

M. Gueltig, H. Ossmer, M. Ohtsuka, H. Miki, K. Tsuchiya, T. Takagi, and M. Kohl, “High frequency thermal energy harvesting using magnetic shape memory films,” Adv. Energy Mater. 4(17), 1400751 (2014).

Milder, A.

C. H. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Nagao, T.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).

Neuner, B.

C. H. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).

Norris, D. J.

P. Richner, H. Eghlidi, S. J. P. Kress, M. Schmid, D. J. Norris, and D. Poulikakos, “Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution,” ACS Appl. Mater. Interfaces 8(18), 11690–11697 (2016).
[PubMed]

S. E. Han and D. J. Norris, “Control of thermal emission by selective heating of periodic structures,” Phys. Rev. Lett. 104(4), 043901 (2010).
[PubMed]

Ohtsuka, M.

M. Gueltig, H. Ossmer, M. Ohtsuka, H. Miki, K. Tsuchiya, T. Takagi, and M. Kohl, “High frequency thermal energy harvesting using magnetic shape memory films,” Adv. Energy Mater. 4(17), 1400751 (2014).

Ossmer, H.

M. Gueltig, H. Ossmer, M. Ohtsuka, H. Miki, K. Tsuchiya, T. Takagi, and M. Kohl, “High frequency thermal energy harvesting using magnetic shape memory films,” Adv. Energy Mater. 4(17), 1400751 (2014).

Padilla, W. J.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Pan, P.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[PubMed]

Poulikakos, D.

P. Richner, H. Eghlidi, S. J. P. Kress, M. Schmid, D. J. Norris, and D. Poulikakos, “Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution,” ACS Appl. Mater. Interfaces 8(18), 11690–11697 (2016).
[PubMed]

Premaratne, M.

Qi, L. M.

Qiao, M.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Richner, P.

P. Richner, H. Eghlidi, S. J. P. Kress, M. Schmid, D. J. Norris, and D. Poulikakos, “Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution,” ACS Appl. Mater. Interfaces 8(18), 11690–11697 (2016).
[PubMed]

Rinnerbauer, V.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Savoy, S.

C. H. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).

Schmid, M.

P. Richner, H. Eghlidi, S. J. P. Kress, M. Schmid, D. J. Norris, and D. Poulikakos, “Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution,” ACS Appl. Mater. Interfaces 8(18), 11690–11697 (2016).
[PubMed]

Shah, C. M.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).

Sharma, A.

A. Sharma, V. Singh, T. L. Bougher, and B. A. Cola, “A carbon nanotube optical rectenna,” Nat. Nanotechnol. 10(12), 1027–1032 (2015).
[PubMed]

Shen, N. H.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Shin, Y. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).

Shvets, G.

C. H. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).

Si, L. M.

Singh, V.

A. Sharma, V. Singh, T. L. Bougher, and B. A. Cola, “A carbon nanotube optical rectenna,” Nat. Nanotechnol. 10(12), 1027–1032 (2015).
[PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Sohn, I. B.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).

Soljacic, M.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

Soukoulis, C. M.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Sriram, S.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[PubMed]

Takagi, T.

M. Gueltig, H. Ossmer, M. Ohtsuka, H. Miki, K. Tsuchiya, T. Takagi, and M. Kohl, “High frequency thermal energy harvesting using magnetic shape memory films,” Adv. Energy Mater. 4(17), 1400751 (2014).

Tschikin, M.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[PubMed]

Tsuchiya, K.

M. Gueltig, H. Ossmer, M. Ohtsuka, H. Miki, K. Tsuchiya, T. Takagi, and M. Kohl, “High frequency thermal energy harvesting using magnetic shape memory films,” Adv. Energy Mater. 4(17), 1400751 (2014).

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Ung, B. S. Y.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).

Wang, E. N.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

Wang, Q. M.

M. Lei, N. Y. Feng, Q. M. Wang, Y. A. Hao, S. G. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Wen, G.

Withayachumnankul, W.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).

Wu, C. H.

C. H. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).

Wu, H. Y.

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).

Xiao, J.

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2014).
[PubMed]

Xiao, Z.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Yang, J. K.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).

Yeng, Y. X.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

Youn, H.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).

Zhang, F.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Zhang, P.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Zhang, X.

Zhao, Q.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2014).
[PubMed]

X. M. Liu, Q. Zhao, C. W. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).

Zhou, J.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2014).
[PubMed]

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).

X. M. Liu, Q. Zhao, C. W. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).

Zhu, W.

Zollars, B.

C. H. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).

ACS Appl. Mater. Interfaces (2)

P. Richner, H. Eghlidi, S. J. P. Kress, M. Schmid, D. J. Norris, and D. Poulikakos, “Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution,” ACS Appl. Mater. Interfaces 8(18), 11690–11697 (2016).
[PubMed]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[PubMed]

ACS Photonics (3)

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).

Adv. Energy Mater. (1)

M. Gueltig, H. Ossmer, M. Ohtsuka, H. Miki, K. Tsuchiya, T. Takagi, and M. Kohl, “High frequency thermal energy harvesting using magnetic shape memory films,” Adv. Energy Mater. 4(17), 1400751 (2014).

Adv. Funct. Mater. (1)

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).

Adv. Mater. (2)

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[PubMed]

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[PubMed]

Appl. Phys. Lett. (4)

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108(5), 051906 (2016).

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).

X. M. Liu, Q. Zhao, C. W. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).

J. Appl. Phys. (1)

M. Lei, N. Y. Feng, Q. M. Wang, Y. A. Hao, S. G. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).

Nano Lett. (2)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Nat. Nanotechnol. (1)

A. Sharma, V. Singh, T. L. Bougher, and B. A. Cola, “A carbon nanotube optical rectenna,” Nat. Nanotechnol. 10(12), 1027–1032 (2015).
[PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

C. H. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).

Phys. Rev. Lett. (5)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[PubMed]

S. E. Han and D. J. Norris, “Control of thermal emission by selective heating of periodic structures,” Phys. Rev. Lett. 104(4), 043901 (2010).
[PubMed]

Sci. Rep. (1)

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2014).
[PubMed]

Other (2)

R. Ohl, “Light sensitive device,” U.S. Patent, 2402662(1946).

C. Huelsmeyer, “Telemobiloscope,” U.S. Patent, 810150(1906).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Blackbody models. (a) The proposed open structure − a dielectric cube near a metal plate. The incident radiation wavelength is larger than the side length of cube. (b) The classic closed structure − a hole in a spherical cavity with opaque walls. Here the wavelength of the incident radiation is smaller than the hole diameter.
Fig. 2
Fig. 2 Schematic diagram of the dielectric metasurface blackbody and analysis of the electric field intensity and energy flow density distributions around and inside the dielectric cube. (a) The metasurface blackbody composed of subwavelength dielectric cubes periodically arrayed on a metal substrate. The electric field intensity (b) and energy flow density (c) vector distributions in the x-z plane at the resonant frequency of the dielectric cube.
Fig. 3
Fig. 3 Numerically simulated performance of the dielectric metasurface-based blackbody. (a) Reflection, transmission, and absorption response spectra. (b) Peak absorption dependence on dielectric loss tangent. The inset shows the unit cell’s equivalent circuit.
Fig. 4
Fig. 4 (a) Ceramic cube resonators and (b) the thermally tunable microwave measurement setup. (c) Measured and (d) simulated temperature dependent absorption spectra.
Fig. 5
Fig. 5 (a) Schematic diagram of the magnetically tunable blackbody unit cell consisting of a copper plate, a ceramic resonator, and a ferrite cube. (b) Photograph of the magnetically tunable measurement setup. (c) Measured and (d) simulated magnetic field dependent absorption spectra of the ceramic-ferrite pair lying on the copper plate.

Metrics