Abstract

Quantum dots (QDs) integration into photonic devices requires varied approaches to control and modulate their emission. We demonstrate voltage-tunable PC structures with integrated QDs over suspended piezoelectric aluminum nitride thin film resonators that modulate PC enhancement at MHz frequencies. When the piezoelectric device is actuated at its resonant mechanical frequency, the extracted QD emission direction is likewise modulated via the optical resonant frequency of the PC. Modulation uses nanometer-scale mechanical displacements, offering the potential for greater switching speed and improved mechanical robustness that is not subject to the effects of stiction with a scalable fabrication approach.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Region specific enhancement of quantum dot emission using interleaved two-dimensional photonic crystals

Gloria G. See, Lu Xu, Matt S. Naughton, Tiantian Tang, Yolanda Bonita, Jake Joo, Peter Trefonas, Kishori Deshpande, Paul J. A. Kenis, Ralph G. Nuzzo, and Brian T. Cunningham
Appl. Opt. 54(9) 2302-2308 (2015)

Modified spontaneous emission of CdTe quantum dots inside a photonic crystal

Jia-Yu Zhang, Xiao-Yong Wang, Min Xiao, and Yong-Hong Ye
Opt. Lett. 28(16) 1430-1432 (2003)

Enhanced quantum dot optical down-conversion using asymmetric 2D photonic crystals

Fuchyi Yang and Brian T. Cunningham
Opt. Express 19(5) 3908-3918 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
    [PubMed]
  2. H. Volkan, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, and A. Eychmüller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6, 632–647 (2011).
  3. A. Rahmani, A. Rostami, H. R. Saghai, and M. K. Moravvej-farshi, “Optik Ultrafast GaN / AlN modulator based on quantum dot for terabit all-optical communication,” Optik (Stuttg.) 125, 3844–3851 (2014).
  4. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).
  5. K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).
  6. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, 1–13 (2015).
  7. N. Yamamoto, K. Akahane, T. Umezawa, and T. Kawanishi, “Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for short-range optical communications,” Jpn. J. Appl. Phys. 54, 04DG01 (2015).
  8. C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, V. Wong, Y. K. Sim, and S. J. Chua, “Characteristics of 1.3 μm InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Appl. Phys. Lett. 94, 143108 (2009).
  9. S. Weiss, M. C. Schlamp, and A. P. Alivisatos, “Electronic Displays Using Optically Pumped Semiconductor Nanocrystals,” U.S. patent 6,864,626 B1 (2005).
  10. C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
    [PubMed]
  11. J. L. O’Brien, “Optical Quantum Computing,” Science 318(5856), 1567–1570 (2007).
    [PubMed]
  12. A. Majumdar, N. Manquest, and A. Faraon, “Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator,” Opt. Express 18, 18651–18658 (2010).
  13. W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, “High-Speed InAs Quantum-Dot Electrooptic Phase Modulators,” IEEE Photonics Technol. Lett. 23, 1748–1750 (2011).
  14. X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).
  15. S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
  16. M. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99, 041102 (2011).
  17. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
    [PubMed]
  18. G. G. See, L. Xu, M. S. Naughton, T. Tang, Y. Bonita, J. Joo, P. Trefonas, K. Deshpande, P. J. Kenis, R. G. Nuzzo, and B. T. Cunningham, “Region specific enhancement of quantum dot emission using interleaved two-dimensional photonic crystals,” Appl. Opt. 54(9), 2302–2308 (2015).
    [PubMed]
  19. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
    [PubMed]
  20. K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).
  21. M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic Thue-Morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale 5(1), 331–336 (2013).
    [PubMed]
  22. N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surfaces,” J. Appl. Phys. 103, 083104 (2008).
  23. L. Xu, E. Sutanto, A. G. Alleyne, R. G. Nuzzo, and B. T. Cunningham, “Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals,” Appl. Phys. Lett. 107, 051101 (2015).
  24. Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).
  25. M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrical modulation of silicon-based two-dimensional photonic bandgap structures,” Appl. Phys. Lett. 88, 2172070 (2006).
  26. Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).
  27. H. Tian and J. Zi, “One-dimensional tunable photonic crystals by means of external magnetic fields,” Opt. Commun. 252, 321–328 (2005).
  28. D. Englund, A. Faraon, A. Majumdar, N. Stoltz, P. Petroff, and J. Vuckovic, “An optical modulator based on a single strongly coupled quantum dot-cavity system in a p-i-n junction,” Opt. Express 17(21), 18651–18658 (2009).
    [PubMed]
  29. Y. H. Cui, Q. Wu, W. Park, J. Jeon, M. J. Kim, and J. B. Lee, “MEMS-based mechanically tunable flexible photonic crystal,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2009), pp. 509–512.
  30. S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 3015–3017 (2001).
  31. I. R. Howell, C. Li, N. S. Colella, K. Ito, and J. J. Watkins, “Strain-Tunable One Dimensional Photonic Crystals Based on Zirconium Dioxide/Slide-Ring Elastomer Nanocomposites for Mechanochromic Sensing,” ACS Appl. Mater. Interfaces 7(6), 3641–3646 (2015).
    [PubMed]
  32. O. Levy, B. Z. Steinberg, A. Boag, S. Krylov, and I. Goldfarb, “Mechanical tuning of two-dimensional photonic crystal cavity by micro Electro mechanical flexures,” Sens. Actuators A Phys. 139, 47–52 (2007).
  33. S. Jun and Y.-S. Cho, “Deformation-induced bandgap tuning of 2D silicon-based photonic crystals,” Opt. Express 11(21), 2769–2774 (2003).
    [PubMed]
  34. Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2015).
  35. N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
    [PubMed]
  36. S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103, 151102 (2013).
  37. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).
  38. S. Krishnamurthy and P. V. Santos, “Optical modulation in photonic band gap structures by surface acoustic waves,” J. Appl. Phys. 96, 1803–1810 (2004).
  39. G. N. Nielson, R. H. Olsson, P. R. Resnick, and O. B. Spahn, “High-speed MEMS micromirror switching,” in Conf. Lasers Electro-Optics, 2007 CLEO (2007), pp. 2–3.
  40. C. Duarte, E. Salm, B. Dorvel, B. Reddy, and R. Bashir, “On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification,” Biomed. Microdevices 15(5), 821–830 (2013).
    [PubMed]
  41. R. Aigner, “MEMS in RF filter applications: Thin-film bulk acoustic wave technology,” Sensors Updat. 12, 175–210 (2003).
  42. (Ferro-Ceramic Grinding Inc.), “Ceramic Properties Tables,” http://ferroceramic.com/alumina_nitride_table.htm .
  43. Q. D. Ubi, “UbiQD Announces Record Efficiency from its Cadmium-Free Quantum Dots,” http://ubiqd.com/2017/04/10/ubiqd-announces-record-efficiency-cadmium-free-quantum-dots/ .
  44. D. Armitage, I. Underwood, and S. Wu, Introduction to Microdisplays (John Wiley & Sons, Inc, 2006).
  45. DOE/Oak Ridge National Laboratory, “Large-scale techniquee to product quantum dots,” www.sciencedaily.com/releases/2016/05/160519161227.htm .

2016 (1)

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[PubMed]

2015 (7)

I. R. Howell, C. Li, N. S. Colella, K. Ito, and J. J. Watkins, “Strain-Tunable One Dimensional Photonic Crystals Based on Zirconium Dioxide/Slide-Ring Elastomer Nanocomposites for Mechanochromic Sensing,” ACS Appl. Mater. Interfaces 7(6), 3641–3646 (2015).
[PubMed]

L. Xu, E. Sutanto, A. G. Alleyne, R. G. Nuzzo, and B. T. Cunningham, “Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals,” Appl. Phys. Lett. 107, 051101 (2015).

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, 1–13 (2015).

N. Yamamoto, K. Akahane, T. Umezawa, and T. Kawanishi, “Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for short-range optical communications,” Jpn. J. Appl. Phys. 54, 04DG01 (2015).

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

G. G. See, L. Xu, M. S. Naughton, T. Tang, Y. Bonita, J. Joo, P. Trefonas, K. Deshpande, P. J. Kenis, R. G. Nuzzo, and B. T. Cunningham, “Region specific enhancement of quantum dot emission using interleaved two-dimensional photonic crystals,” Appl. Opt. 54(9), 2302–2308 (2015).
[PubMed]

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2015).

2014 (2)

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

A. Rahmani, A. Rostami, H. R. Saghai, and M. K. Moravvej-farshi, “Optik Ultrafast GaN / AlN modulator based on quantum dot for terabit all-optical communication,” Optik (Stuttg.) 125, 3844–3851 (2014).

2013 (4)

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic Thue-Morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale 5(1), 331–336 (2013).
[PubMed]

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103, 151102 (2013).

C. Duarte, E. Salm, B. Dorvel, B. Reddy, and R. Bashir, “On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification,” Biomed. Microdevices 15(5), 821–830 (2013).
[PubMed]

2012 (2)

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

2011 (3)

M. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99, 041102 (2011).

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, “High-Speed InAs Quantum-Dot Electrooptic Phase Modulators,” IEEE Photonics Technol. Lett. 23, 1748–1750 (2011).

H. Volkan, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, and A. Eychmüller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6, 632–647 (2011).

2010 (1)

A. Majumdar, N. Manquest, and A. Faraon, “Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator,” Opt. Express 18, 18651–18658 (2010).

2009 (3)

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, V. Wong, Y. K. Sim, and S. J. Chua, “Characteristics of 1.3 μm InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Appl. Phys. Lett. 94, 143108 (2009).

D. Englund, A. Faraon, A. Majumdar, N. Stoltz, P. Petroff, and J. Vuckovic, “An optical modulator based on a single strongly coupled quantum dot-cavity system in a p-i-n junction,” Opt. Express 17(21), 18651–18658 (2009).
[PubMed]

2008 (2)

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surfaces,” J. Appl. Phys. 103, 083104 (2008).

K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).

2007 (3)

O. Levy, B. Z. Steinberg, A. Boag, S. Krylov, and I. Goldfarb, “Mechanical tuning of two-dimensional photonic crystal cavity by micro Electro mechanical flexures,” Sens. Actuators A Phys. 139, 47–52 (2007).

J. L. O’Brien, “Optical Quantum Computing,” Science 318(5856), 1567–1570 (2007).
[PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[PubMed]

2006 (1)

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrical modulation of silicon-based two-dimensional photonic bandgap structures,” Appl. Phys. Lett. 88, 2172070 (2006).

2005 (1)

H. Tian and J. Zi, “One-dimensional tunable photonic crystals by means of external magnetic fields,” Opt. Commun. 252, 321–328 (2005).

2004 (3)

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

S. Krishnamurthy and P. V. Santos, “Optical modulation in photonic band gap structures by surface acoustic waves,” J. Appl. Phys. 96, 1803–1810 (2004).

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[PubMed]

2003 (2)

S. Jun and Y.-S. Cho, “Deformation-induced bandgap tuning of 2D silicon-based photonic crystals,” Opt. Express 11(21), 2769–2774 (2003).
[PubMed]

R. Aigner, “MEMS in RF filter applications: Thin-film bulk acoustic wave technology,” Sensors Updat. 12, 175–210 (2003).

2002 (1)

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).

2001 (2)

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).

S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 3015–3017 (2001).

Aigner, R.

R. Aigner, “MEMS in RF filter applications: Thin-film bulk acoustic wave technology,” Sensors Updat. 12, 175–210 (2003).

Akahane, K.

N. Yamamoto, K. Akahane, T. Umezawa, and T. Kawanishi, “Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for short-range optical communications,” Jpn. J. Appl. Phys. 54, 04DG01 (2015).

Alleyne, A. G.

L. Xu, E. Sutanto, A. G. Alleyne, R. G. Nuzzo, and B. T. Cunningham, “Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals,” Appl. Phys. Lett. 107, 051101 (2015).

Anderson, S. P.

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrical modulation of silicon-based two-dimensional photonic bandgap structures,” Appl. Phys. Lett. 88, 2172070 (2006).

Badolato, A.

M. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99, 041102 (2011).

Bae, W. K.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Barbastathis, G.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

Bashir, R.

C. Duarte, E. Salm, B. Dorvel, B. Reddy, and R. Bashir, “On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification,” Biomed. Microdevices 15(5), 821–830 (2013).
[PubMed]

Bawendi, M.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

Boag, A.

O. Levy, B. Z. Steinberg, A. Boag, S. Krylov, and I. Goldfarb, “Mechanical tuning of two-dimensional photonic crystal cavity by micro Electro mechanical flexures,” Sens. Actuators A Phys. 139, 47–52 (2007).

Bonita, Y.

Breen, C.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

Bulovic, V.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

Cao, Q.

C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, V. Wong, Y. K. Sim, and S. J. Chua, “Characteristics of 1.3 μm InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Appl. Phys. Lett. 94, 143108 (2009).

Capasso, R.

M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic Thue-Morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale 5(1), 331–336 (2013).
[PubMed]

Char, K.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Cho, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Cho, K.-S.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Cho, Y.-S.

Choi, B. L.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[PubMed]

Chua, S. J.

C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, V. Wong, Y. K. Sim, and S. J. Chua, “Characteristics of 1.3 μm InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Appl. Phys. Lett. 94, 143108 (2009).

Coe-sullivan, S.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

Colella, N. S.

I. R. Howell, C. Li, N. S. Colella, K. Ito, and J. J. Watkins, “Strain-Tunable One Dimensional Photonic Crystals Based on Zirconium Dioxide/Slide-Ring Elastomer Nanocomposites for Mechanochromic Sensing,” ACS Appl. Mater. Interfaces 7(6), 3641–3646 (2015).
[PubMed]

Cui, Y. H.

Y. H. Cui, Q. Wu, W. Park, J. Jeon, M. J. Kim, and J. B. Lee, “MEMS-based mechanically tunable flexible photonic crystal,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2009), pp. 509–512.

Cunningham, B. T.

G. G. See, L. Xu, M. S. Naughton, T. Tang, Y. Bonita, J. Joo, P. Trefonas, K. Deshpande, P. J. Kenis, R. G. Nuzzo, and B. T. Cunningham, “Region specific enhancement of quantum dot emission using interleaved two-dimensional photonic crystals,” Appl. Opt. 54(9), 2302–2308 (2015).
[PubMed]

L. Xu, E. Sutanto, A. G. Alleyne, R. G. Nuzzo, and B. T. Cunningham, “Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals,” Appl. Phys. Lett. 107, 051101 (2015).

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surfaces,” J. Appl. Phys. 103, 083104 (2008).

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[PubMed]

Dang, C.

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

Davanço, M.

M. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99, 041102 (2011).

David, A.

K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).

Davidov, D.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).

De Geyter, B.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

De Nicola, S.

M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic Thue-Morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale 5(1), 331–336 (2013).
[PubMed]

Delehanty, J. B.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Demir, H. V.

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

Denbaars, S.

K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).

Deshpande, K.

Dev, K.

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

Dorvel, B.

C. Duarte, E. Salm, B. Dorvel, B. Reddy, and R. Bashir, “On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification,” Biomed. Microdevices 15(5), 821–830 (2013).
[PubMed]

Duarte, C.

C. Duarte, E. Salm, B. Dorvel, B. Reddy, and R. Bashir, “On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification,” Biomed. Microdevices 15(5), 821–830 (2013).
[PubMed]

Efros, A. L.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Englund, D.

Erdem, T.

H. Volkan, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, and A. Eychmüller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6, 632–647 (2011).

Erickson, J. S.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Eychmüller, A.

H. Volkan, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, and A. Eychmüller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6, 632–647 (2011).

Faraon, A.

A. Majumdar, N. Manquest, and A. Faraon, “Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator,” Opt. Express 18, 18651–18658 (2010).

D. Englund, A. Faraon, A. Majumdar, N. Stoltz, P. Petroff, and J. Vuckovic, “An optical modulator based on a single strongly coupled quantum dot-cavity system in a p-i-n junction,” Opt. Express 17(21), 18651–18658 (2009).
[PubMed]

Fauchet, P. M.

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrical modulation of silicon-based two-dimensional photonic bandgap structures,” Appl. Phys. Lett. 88, 2172070 (2006).

Fetterman, H. R.

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, “High-Speed InAs Quantum-Dot Electrooptic Phase Modulators,” IEEE Photonics Technol. Lett. 23, 1748–1750 (2011).

Floris Van Driel, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[PubMed]

Frenkel, A.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).

Ganesh, N.

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surfaces,” J. Appl. Phys. 103, 083104 (2008).

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[PubMed]

Gaponik, N.

H. Volkan, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, and A. Eychmüller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6, 632–647 (2011).

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2015).

Goldfarb, I.

O. Levy, B. Z. Steinberg, A. Boag, S. Krylov, and I. Goldfarb, “Mechanical tuning of two-dimensional photonic crystal cavity by micro Electro mechanical flexures,” Sens. Actuators A Phys. 139, 47–52 (2007).

Golosovsky, M.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).

Gomes, R.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

Gopalan, V.

S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 3015–3017 (2001).

Hamilton, C.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

Han, J. Y.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Hassinen, A.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

Haurylau, M.

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrical modulation of silicon-based two-dimensional photonic bandgap structures,” Appl. Phys. Lett. 88, 2172070 (2006).

Hens, Z.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

Howell, I. R.

I. R. Howell, C. Li, N. S. Colella, K. Ito, and J. J. Watkins, “Strain-Tunable One Dimensional Photonic Crystals Based on Zirconium Dioxide/Slide-Ring Elastomer Nanocomposites for Mechanochromic Sensing,” ACS Appl. Mater. Interfaces 7(6), 3641–3646 (2015).
[PubMed]

Hu, E. L.

K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).

Huffaker, D. L.

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, “High-Speed InAs Quantum-Dot Electrooptic Phase Modulators,” IEEE Photonics Technol. Lett. 23, 1748–1750 (2011).

Huston, A. L.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Ippen, E. P.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

Irman, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[PubMed]

Ito, K.

I. R. Howell, C. Li, N. S. Colella, K. Ito, and J. J. Watkins, “Strain-Tunable One Dimensional Photonic Crystals Based on Zirconium Dioxide/Slide-Ring Elastomer Nanocomposites for Mechanochromic Sensing,” ACS Appl. Mater. Interfaces 7(6), 3641–3646 (2015).
[PubMed]

Iza, M.

K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).

Jang, E.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Jeon, J.

Y. H. Cui, Q. Wu, W. Park, J. Jeon, M. J. Kim, and J. B. Lee, “MEMS-based mechanically tunable flexible photonic crystal,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2009), pp. 509–512.

Jeon, Y.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

Johnson, S. G.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

Joo, J.

Joo, W.-J.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Jun, S.

Kawanishi, T.

N. Yamamoto, K. Akahane, T. Umezawa, and T. Kawanishi, “Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for short-range optical communications,” Jpn. J. Appl. Phys. 54, 04DG01 (2015).

Kazlas, P. T.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

Kenis, P. J.

Kim, B.-K.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Kim, H.

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103, 151102 (2013).

Kim, J. M.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Kim, M. J.

Y. H. Cui, Q. Wu, W. Park, J. Jeon, M. J. Kim, and J. B. Lee, “MEMS-based mechanically tunable flexible photonic crystal,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2009), pp. 509–512.

Kim, R. S.

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, “High-Speed InAs Quantum-Dot Electrooptic Phase Modulators,” IEEE Photonics Technol. Lett. 23, 1748–1750 (2011).

Kim, S.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 3015–3017 (2001).

Kim, T.-H.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Krishnamurthy, S.

S. Krishnamurthy and P. V. Santos, “Optical modulation in photonic band gap structures by surface acoustic waves,” J. Appl. Phys. 96, 1803–1810 (2004).

Krylov, S.

O. Levy, B. Z. Steinberg, A. Boag, S. Krylov, and I. Goldfarb, “Mechanical tuning of two-dimensional photonic crystal cavity by micro Electro mechanical flexures,” Sens. Actuators A Phys. 139, 47–52 (2007).

Kushto, G.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Kwak, J.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Kwon, S.-J.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Lambert, K.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

Lee, C.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Lee, D.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Lee, E. K.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Lee, J. B.

Y. H. Cui, Q. Wu, W. Park, J. Jeon, M. J. Kim, and J. B. Lee, “MEMS-based mechanically tunable flexible photonic crystal,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2009), pp. 509–512.

Lee, S.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Lee, S. J.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Levy, O.

O. Levy, B. Z. Steinberg, A. Boag, S. Krylov, and I. Goldfarb, “Mechanical tuning of two-dimensional photonic crystal cavity by micro Electro mechanical flexures,” Sens. Actuators A Phys. 139, 47–52 (2007).

Li, C.

I. R. Howell, C. Li, N. S. Colella, K. Ito, and J. J. Watkins, “Strain-Tunable One Dimensional Photonic Crystals Based on Zirconium Dioxide/Slide-Ring Elastomer Nanocomposites for Mechanochromic Sensing,” ACS Appl. Mater. Interfaces 7(6), 3641–3646 (2015).
[PubMed]

Liang, B.

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, “High-Speed InAs Quantum-Dot Electrooptic Phase Modulators,” IEEE Photonics Technol. Lett. 23, 1748–1750 (2011).

Lim, D. R.

C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, V. Wong, Y. K. Sim, and S. J. Chua, “Characteristics of 1.3 μm InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Appl. Phys. Lett. 94, 143108 (2009).

Lim, J.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Lionel, C.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

Liu, S.

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

Liu, W.

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, “High-Speed InAs Quantum-Dot Electrooptic Phase Modulators,” IEEE Photonics Technol. Lett. 23, 1748–1750 (2011).

Lodahl, P.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[PubMed]

Loke, W. K.

C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, V. Wong, Y. K. Sim, and S. J. Chua, “Characteristics of 1.3 μm InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Appl. Phys. Lett. 94, 143108 (2009).

Lozano, G.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

Majumdar, A.

A. Majumdar, N. Manquest, and A. Faraon, “Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator,” Opt. Express 18, 18651–18658 (2010).

D. Englund, A. Faraon, A. Majumdar, N. Stoltz, P. Petroff, and J. Vuckovic, “An optical modulator based on a single strongly coupled quantum dot-cavity system in a p-i-n junction,” Opt. Express 17(21), 18651–18658 (2009).
[PubMed]

Mäkinen, A. J.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[PubMed]

Manna, L.

M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic Thue-Morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale 5(1), 331–336 (2013).
[PubMed]

Manquest, N.

A. Majumdar, N. Manquest, and A. Faraon, “Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator,” Opt. Express 18, 18651–18658 (2010).

Marshall, K. L.

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrical modulation of silicon-based two-dimensional photonic bandgap structures,” Appl. Phys. Lett. 88, 2172070 (2006).

Mashford, B. S.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

Mathias, P. C.

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surfaces,” J. Appl. Phys. 103, 083104 (2008).

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[PubMed]

Matioli, E.

K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).

McGroddy, K.

K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, 1–13 (2015).

Moravvej-farshi, M. K.

A. Rahmani, A. Rostami, H. R. Saghai, and M. K. Moravvej-farshi, “Optik Ultrafast GaN / AlN modulator based on quantum dot for terabit all-optical communication,” Optik (Stuttg.) 125, 3844–3851 (2014).

Mormile, P.

M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic Thue-Morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale 5(1), 331–336 (2013).
[PubMed]

Mutlugun, E.

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

H. Volkan, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, and A. Eychmüller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6, 632–647 (2011).

Nakamura, S.

K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).

Naughton, M. S.

Nenna, G.

M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic Thue-Morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale 5(1), 331–336 (2013).
[PubMed]

Ngo, C. Y.

C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, V. Wong, Y. K. Sim, and S. J. Chua, “Characteristics of 1.3 μm InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Appl. Phys. Lett. 94, 143108 (2009).

Nielson, G. N.

G. N. Nielson, R. H. Olsson, P. R. Resnick, and O. B. Spahn, “High-speed MEMS micromirror switching,” in Conf. Lasers Electro-Optics, 2007 CLEO (2007), pp. 2–3.

Nikolaev, I. S.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[PubMed]

Nizamoglu, S.

H. Volkan, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, and A. Eychmüller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6, 632–647 (2011).

Nuzzo, R. G.

L. Xu, E. Sutanto, A. G. Alleyne, R. G. Nuzzo, and B. T. Cunningham, “Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals,” Appl. Phys. Lett. 107, 051101 (2015).

G. G. See, L. Xu, M. S. Naughton, T. Tang, Y. Bonita, J. Joo, P. Trefonas, K. Deshpande, P. J. Kenis, R. G. Nuzzo, and B. T. Cunningham, “Region specific enhancement of quantum dot emission using interleaved two-dimensional photonic crystals,” Appl. Opt. 54(9), 2302–2308 (2015).
[PubMed]

O’Brien, J. L.

J. L. O’Brien, “Optical Quantum Computing,” Science 318(5856), 1567–1570 (2007).
[PubMed]

O’Shaughnessy, T. J.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Oh, E.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Olsson, R. H.

G. N. Nielson, R. H. Olsson, P. R. Resnick, and O. B. Spahn, “High-speed MEMS micromirror switching,” in Conf. Lasers Electro-Optics, 2007 CLEO (2007), pp. 2–3.

Overgaag, K.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[PubMed]

Ozaki, M.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).

Park, I.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Park, M.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Park, W.

Y. H. Cui, Q. Wu, W. Park, J. Jeon, M. J. Kim, and J. B. Lee, “MEMS-based mechanically tunable flexible photonic crystal,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2009), pp. 509–512.

Petroff, P.

Petti, L.

M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic Thue-Morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale 5(1), 331–336 (2013).
[PubMed]

Plum, E.

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[PubMed]

Popovic, Z.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

Qi, M.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

Rahmani, A.

A. Rahmani, A. Rostami, H. R. Saghai, and M. K. Moravvej-farshi, “Optik Ultrafast GaN / AlN modulator based on quantum dot for terabit all-optical communication,” Optik (Stuttg.) 125, 3844–3851 (2014).

Rakher, M. T.

M. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99, 041102 (2011).

Rakich, P. T.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

Reddy, B.

C. Duarte, E. Salm, B. Dorvel, B. Reddy, and R. Bashir, “On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification,” Biomed. Microdevices 15(5), 821–830 (2013).
[PubMed]

Resnick, P. R.

G. N. Nielson, R. H. Olsson, P. R. Resnick, and O. B. Spahn, “High-speed MEMS micromirror switching,” in Conf. Lasers Electro-Optics, 2007 CLEO (2007), pp. 2–3.

Rippa, M.

M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic Thue-Morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale 5(1), 331–336 (2013).
[PubMed]

Rivas, J. G.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

Rodriguez, S. R. K.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2015).

Rostami, A.

A. Rahmani, A. Rostami, H. R. Saghai, and M. K. Moravvej-farshi, “Optik Ultrafast GaN / AlN modulator based on quantum dot for terabit all-optical communication,” Optik (Stuttg.) 125, 3844–3851 (2014).

Rowland, C. E.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Saado, Y.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).

Saghai, H. R.

A. Rahmani, A. Rostami, H. R. Saghai, and M. K. Moravvej-farshi, “Optik Ultrafast GaN / AlN modulator based on quantum dot for terabit all-optical communication,” Optik (Stuttg.) 125, 3844–3851 (2014).

Salm, E.

C. Duarte, E. Salm, B. Dorvel, B. Reddy, and R. Bashir, “On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification,” Biomed. Microdevices 15(5), 821–830 (2013).
[PubMed]

Santos, P. V.

S. Krishnamurthy and P. V. Santos, “Optical modulation in photonic band gap structures by surface acoustic waves,” J. Appl. Phys. 96, 1803–1810 (2004).

Schuh, D.

M. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99, 041102 (2011).

See, G. G.

Shimoda, Y.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).

Sim, Y. K.

C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, V. Wong, Y. K. Sim, and S. J. Chua, “Characteristics of 1.3 μm InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Appl. Phys. Lett. 94, 143108 (2009).

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[PubMed]

Smith, H. I.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[PubMed]

Solomon, G. S.

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103, 151102 (2013).

Spahn, O. B.

G. N. Nielson, R. H. Olsson, P. R. Resnick, and O. B. Spahn, “High-speed MEMS micromirror switching,” in Conf. Lasers Electro-Optics, 2007 CLEO (2007), pp. 2–3.

Speck, J. S.

K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).

Srinivasan, K.

M. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99, 041102 (2011).

Steckel, J.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

Steinberg, B. Z.

O. Levy, B. Z. Steinberg, A. Boag, S. Krylov, and I. Goldfarb, “Mechanical tuning of two-dimensional photonic crystal cavity by micro Electro mechanical flexures,” Sens. Actuators A Phys. 139, 47–52 (2007).

Stevenson, M.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

Stewart, M. H.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Stoltz, N.

Sun, S.

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103, 151102 (2013).

Sun, X. W.

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

Susumu, K.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Sutanto, E.

L. Xu, E. Sutanto, A. G. Alleyne, R. G. Nuzzo, and B. T. Cunningham, “Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals,” Appl. Phys. Lett. 107, 051101 (2015).

Tan, S. T.

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

Tang, T.

Tang, Y.

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

Teng, J.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2015).

Tian, H.

H. Tian and J. Zi, “One-dimensional tunable photonic crystals by means of external magnetic fields,” Opt. Commun. 252, 321–328 (2005).

Trefonas, P.

Umezawa, T.

N. Yamamoto, K. Akahane, T. Umezawa, and T. Kawanishi, “Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for short-range optical communications,” Jpn. J. Appl. Phys. 54, 04DG01 (2015).

Van Thourhout, D.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

Vanmaekelbergh, D.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[PubMed]

Verschuuren, M. A.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

Volkan, H.

H. Volkan, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, and A. Eychmüller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6, 632–647 (2011).

Vos, W. L.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[PubMed]

Vuckovic, J.

Waks, E.

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103, 151102 (2013).

Wang, C.-M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2015).

Wang, J.

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2015).

Watkins, J. J.

I. R. Howell, C. Li, N. S. Colella, K. Ito, and J. J. Watkins, “Strain-Tunable One Dimensional Photonic Crystals Based on Zirconium Dioxide/Slide-Ring Elastomer Nanocomposites for Mechanochromic Sensing,” ACS Appl. Mater. Interfaces 7(6), 3641–3646 (2015).
[PubMed]

Weisbuch, C.

K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).

Wolak, M. A.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Wong, C. W.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

Wong, V.

C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, V. Wong, Y. K. Sim, and S. J. Chua, “Characteristics of 1.3 μm InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Appl. Phys. Lett. 94, 143108 (2009).

Woo, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Wu, Q.

Y. H. Cui, Q. Wu, W. Park, J. Jeon, M. J. Kim, and J. B. Lee, “MEMS-based mechanically tunable flexible photonic crystal,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2009), pp. 509–512.

Xu, L.

L. Xu, E. Sutanto, A. G. Alleyne, R. G. Nuzzo, and B. T. Cunningham, “Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals,” Appl. Phys. Lett. 107, 051101 (2015).

G. G. See, L. Xu, M. S. Naughton, T. Tang, Y. Bonita, J. Joo, P. Trefonas, K. Deshpande, P. J. Kenis, R. G. Nuzzo, and B. T. Cunningham, “Region specific enhancement of quantum dot emission using interleaved two-dimensional photonic crystals,” Appl. Opt. 54(9), 2302–2308 (2015).
[PubMed]

Yamamoto, N.

N. Yamamoto, K. Akahane, T. Umezawa, and T. Kawanishi, “Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for short-range optical communications,” Jpn. J. Appl. Phys. 54, 04DG01 (2015).

Yang, X.

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, 1–13 (2015).

Yoon, D. Y.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

Yoon, S. F.

C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, V. Wong, Y. K. Sim, and S. J. Chua, “Characteristics of 1.3 μm InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Appl. Phys. Lett. 94, 143108 (2009).

Yoshino, K.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2015).

Zanella, M.

M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic Thue-Morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale 5(1), 331–336 (2013).
[PubMed]

Zhang, W.

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surfaces,” J. Appl. Phys. 103, 083104 (2008).

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[PubMed]

Zhao, Y.

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

Zheludev, N. I.

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[PubMed]

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2015).

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, 1–13 (2015).

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

Zi, J.

H. Tian and J. Zi, “One-dimensional tunable photonic crystals by means of external magnetic fields,” Opt. Commun. 252, 321–328 (2005).

ACS Appl. Mater. Interfaces (1)

I. R. Howell, C. Li, N. S. Colella, K. Ito, and J. J. Watkins, “Strain-Tunable One Dimensional Photonic Crystals Based on Zirconium Dioxide/Slide-Ring Elastomer Nanocomposites for Mechanochromic Sensing,” ACS Appl. Mater. Interfaces 7(6), 3641–3646 (2015).
[PubMed]

Adv. Funct. Mater. (1)

X. Yang, K. Dev, J. Wang, E. Mutlugun, C. Dang, Y. Zhao, S. Liu, Y. Tang, S. T. Tan, X. W. Sun, and H. V. Demir, “Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light-Emitting Diodes Using Large-Scale Nanopillar Arrays,” Adv. Funct. Mater. 24, 5977–5984 (2014).

Appl. Opt. (1)

Appl. Phys. Lett. (10)

K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Denbaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett. 93, 103502 (2008).

L. Xu, E. Sutanto, A. G. Alleyne, R. G. Nuzzo, and B. T. Cunningham, “Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals,” Appl. Phys. Lett. 107, 051101 (2015).

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrical modulation of silicon-based two-dimensional photonic bandgap structures,” Appl. Phys. Lett. 88, 2172070 (2006).

S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 3015–3017 (2001).

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).

M. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99, 041102 (2011).

C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, V. Wong, Y. K. Sim, and S. J. Chua, “Characteristics of 1.3 μm InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Appl. Phys. Lett. 94, 143108 (2009).

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103, 151102 (2013).

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, C. Lionel, Y. Jeon, G. Barbastathis, and S. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242 (2004).

Biomed. Microdevices (1)

C. Duarte, E. Salm, B. Dorvel, B. Reddy, and R. Bashir, “On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification,” Biomed. Microdevices 15(5), 821–830 (2013).
[PubMed]

IEEE Photonics Technol. Lett. (1)

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, “High-Speed InAs Quantum-Dot Electrooptic Phase Modulators,” IEEE Photonics Technol. Lett. 23, 1748–1750 (2011).

J. Appl. Phys. (2)

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surfaces,” J. Appl. Phys. 103, 083104 (2008).

S. Krishnamurthy and P. V. Santos, “Optical modulation in photonic band gap structures by surface acoustic waves,” J. Appl. Phys. 96, 1803–1810 (2004).

Jpn. J. Appl. Phys. (1)

N. Yamamoto, K. Akahane, T. Umezawa, and T. Kawanishi, “Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for short-range optical communications,” Jpn. J. Appl. Phys. 54, 04DG01 (2015).

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, 1–13 (2015).

Nano Lett. (2)

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes,” Nano Lett. 15(10), 6848–6854 (2015).
[PubMed]

Nano Today (1)

H. Volkan, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, and A. Eychmüller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6, 632–647 (2011).

Nanoscale (1)

M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic Thue-Morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale 5(1), 331–336 (2013).
[PubMed]

Nat. Nanotechnol. (2)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[PubMed]

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[PubMed]

Nat. Photonics (3)

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2015).

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7, 407–412 (2013).

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3, 341–345 (2009).

Nature (1)

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[PubMed]

Opt. Commun. (1)

H. Tian and J. Zi, “One-dimensional tunable photonic crystals by means of external magnetic fields,” Opt. Commun. 252, 321–328 (2005).

Opt. Express (3)

Optik (Stuttg.) (1)

A. Rahmani, A. Rostami, H. R. Saghai, and M. K. Moravvej-farshi, “Optik Ultrafast GaN / AlN modulator based on quantum dot for terabit all-optical communication,” Optik (Stuttg.) 125, 3844–3851 (2014).

Phys. Rev. B (1)

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).

Science (1)

J. L. O’Brien, “Optical Quantum Computing,” Science 318(5856), 1567–1570 (2007).
[PubMed]

Sens. Actuators A Phys. (1)

O. Levy, B. Z. Steinberg, A. Boag, S. Krylov, and I. Goldfarb, “Mechanical tuning of two-dimensional photonic crystal cavity by micro Electro mechanical flexures,” Sens. Actuators A Phys. 139, 47–52 (2007).

Sensors Updat. (1)

R. Aigner, “MEMS in RF filter applications: Thin-film bulk acoustic wave technology,” Sensors Updat. 12, 175–210 (2003).

Other (7)

(Ferro-Ceramic Grinding Inc.), “Ceramic Properties Tables,” http://ferroceramic.com/alumina_nitride_table.htm .

Q. D. Ubi, “UbiQD Announces Record Efficiency from its Cadmium-Free Quantum Dots,” http://ubiqd.com/2017/04/10/ubiqd-announces-record-efficiency-cadmium-free-quantum-dots/ .

D. Armitage, I. Underwood, and S. Wu, Introduction to Microdisplays (John Wiley & Sons, Inc, 2006).

DOE/Oak Ridge National Laboratory, “Large-scale techniquee to product quantum dots,” www.sciencedaily.com/releases/2016/05/160519161227.htm .

G. N. Nielson, R. H. Olsson, P. R. Resnick, and O. B. Spahn, “High-speed MEMS micromirror switching,” in Conf. Lasers Electro-Optics, 2007 CLEO (2007), pp. 2–3.

Y. H. Cui, Q. Wu, W. Park, J. Jeon, M. J. Kim, and J. B. Lee, “MEMS-based mechanically tunable flexible photonic crystal,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2009), pp. 509–512.

S. Weiss, M. C. Schlamp, and A. P. Alivisatos, “Electronic Displays Using Optically Pumped Semiconductor Nanocrystals,” U.S. patent 6,864,626 B1 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Structure of the PC MEMS resonator: (a) A cross sectional schematic shows the device is suspended over a release cavity, and tethers connect the resonator to the substrate material. A piezoelectric AlN layer sandwiched between Pt electrodes, and covered by a PC grating in AlN with a printed layer of UV curable polymer and embedded QDs. (b) Photographs of two completed devices show the resonator body surrounded by the release windows for the two and four tether configurations. The resonators are suspended over a larger cavity, and supported by two or four tethers extending from the Pt layers. (c) An SEM of a resonator, with a higher resolution SEM (d) showing the PC grating structure around an etch via. The vias were used to decrease the release time.
Fig. 2
Fig. 2 Simulated admittance and the mechanical displacement averaged over the resonator surface for (a) a 225 µm x 225 µm, two tether device and (c) a 450 µm x 400 µm, four tether device. The peak average displacement values correspond to resonant frequencies indicated by maximum values in the admittance. (b) The simulated surface displacement at each point of the device surface on the same 225 µm x 225 µm, two tether device. The mechanical surface displacement is simulated at the resonant frequency 22.78 MHz, where the admittance and surface average displacement are at a maximum in (a). (d) The simulated surface displacement of the 450 µm x 400 µm, four tether device at its 30.79 MHz resonant frequency. The areas with the greatest displacement vary with size, tether position and frequency mode.
Fig. 3
Fig. 3 The simulated electric field intensity at the center wavelength of the QD emission (λ = 538 nm) for varied grating periods. Increasing or decreasing the grating period by greater than 10 nm, reduces the electric field enhancement of the QD emission by 62-79%.
Fig. 4
Fig. 4 A diagram of the fabrication process used to produce the PC MEMS devices. (a) Pt electrodes alternating with AlN layers were deposited on a high resistivity Si wafer. (b) The PC grating, electrical vias, and release windows were etched using reactive ion etching. (c) Finally, the devices were released with XeF2 gas using the release windows, leaving the tethers to anchor the resonators to the substrate material, and then the suspended region was printed with a QD/polymer mix over the PC grating.
Fig. 5
Fig. 5 A comparison of the modeled and measured impedance characteristics for a 400 µm x 300 µm device with two tethers. The quality factors of the measured impedances are lower than in the model, and thus not all resonance frequencies appear in the measured output. The measured peak admittance 14.64 MHz is 1.4 MHz offset from the simulated value of 15.99 MHz.
Fig. 6
Fig. 6 (a) Measured oscilloscope signals from a 500 µm x 350 µm, two tether device. To improve signal to noise ratio, the data was integrated over 248 measurements. The QD emission output varies with the 23.9 MHz driving signal. When the driving signal is turned off, the emission is continuous. (b) A Fourier transform was applied to the time domain output signals of the RF source and the out-coupled QD emission while the device was actuated and static, integrated over 248 measurements. The QD emission from the device shows a peak at the same 23.9 MHz frequency of the resonant RF driving signal. The peak amplitude decreases as the input frequency is increased from the resonant frequency up to 25.0 MHz, while the DC component of the output emission increases. The peak is absent when the device is not actuated.

Tables (1)

Tables Icon

Table 1 Key simulated and measured values for resonatorsa

Metrics