Abstract

We report on the use of a simple interferometer built with strongly-coupled core optical fiber for accurate vibration sensing. Our multi-core fiber (MCF) is designed to mode match a standard single-mode optical fiber (SMF). The interferometer consists of a low insertion loss SMF-MCF-SMF structure where only two super-modes interfere. The polymer coating of the MCF was structured and the interferometer was sandwiched between a flat piece and a V-groove. In this manner our device is highly sensitive to force with sensitivity reaching −4225 pm/N. To make the MCF interferometer sensitive to vibrations the flat piece was allowed to move, thus, its periodic movements exert cyclic localized pressure on the MCF which makes the interference pattern to shift periodically. Our sensors can be used to monitor vibrations in a broad frequency range with the advantage that the measurements are unaffected by temperature changes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Miniature multicore optical fiber vibration sensor

Joel Villatoro, Enrique Antonio-Lopez, Axel Schülzgen, and Rodrigo Amezcua-Correa
Opt. Lett. 42(10) 2022-2025 (2017)

Robust in-fiber spatial interferometer using multicore fiber for vibration detection

Zhiyong Zhao, Zhengyong Liu, Ming Tang, Songnian Fu, Liang Wang, Nan Guo, Chao Jin, Hwa-Yaw Tam, and Chao Lu
Opt. Express 26(23) 29629-29637 (2018)

Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing

Li Duan, Peng Zhang, Ming Tang, Ruoxu Wang, Zhiyong Zhao, Songnian Fu, Lin Gan, Benpeng Zhu, Weijun Tong, Deming Liu, and Perry Ping Shum
Opt. Express 24(18) 20210-20218 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. K. Gangopadhyay, “Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fiber-optic vibration sensing,” Sensor Actuat. A-Phys. 113, 20–38 (2004).
  2. Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010).
    [Crossref]
  3. T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photonics Technol. Lett. 8(12), 1677–1679 (1996).
    [Crossref]
  4. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
    [Crossref]
  5. A. Fender, W. N. MacPherson, R. R. Maier, J. S. Barton, D. S. George, R. I. Howden, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
    [Crossref]
  6. P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
    [Crossref]
  7. Q. Liu, Z. A. Jia, H. Fu, D. Yu, H. Gao, and X. Qiao, “Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp,” IEEE Sens. J. 16(17), 6611–6616 (2016).
    [Crossref]
  8. R. P. Linessio, K. de Morais Sousa, T. da Silva, C. A. Bavastri, P. F. da Costa Antunes, and J. C. C. da Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
    [Crossref]
  9. B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2011).
    [Crossref]
  10. B. Xu, Y. Li, M. Sun, Z. W. Zhang, X. Y. Dong, Z. X. Zhang, and S. Z. Jin, “Acoustic vibration sensor based on nonadiabatic tapered fibers,” Opt. Lett. 37(22), 4768–4770 (2012).
    [Crossref] [PubMed]
  11. X. Wu, X. Wang, S. Li, S. Huang, Q. Ge, and B. Yu, “Cantilever fiber-optic accelerometer based on modal interferometer,” IEEE Photonics Technol. Lett. 27(15), 1632–1635 (2015).
    [Crossref]
  12. D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
    [Crossref]
  13. K. Park, Y. S. Kim, S. Jo, and Y. W. Lee, “Polarization-interference-based fiber vibration sensor incorporating polarization-diversity loop structure,” IEEE Sens. J. 16(7), 1949–1955 (2016).
    [Crossref]
  14. T. K. Gangopadhyay, “Non-contact vibration measurement based on an extrinsic Fabry–Perot interferometer implemented using arrays of single mode fibers,” Meas. Sci. Technol. 15(5), 911–917 (2004).
    [Crossref]
  15. Z. Wang, W. Zhang, J. Han, W. Huang, and F. Li, “Diaphragm-based fiber optic Fabry–Perot accelerometer with high consistency,” J. Lightwave Technol. 32, 4208–4213 (2014).
  16. J. Guo and C. Yang, “Non-contact fiber vibration sensor based on intracavity modulation of an extrinsic Fabry–Perot interferometer,” IEEE Sens. J. 15(12), 7229–7233 (2015).
    [Crossref]
  17. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
    [Crossref] [PubMed]
  18. G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
    [Crossref] [PubMed]
  19. J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
    [Crossref] [PubMed]
  20. J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
    [Crossref] [PubMed]
  21. C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011).
    [Crossref] [PubMed]
  22. C. Xia, M. A. Eftekhar, R. Amezcua-Correa, J. E. Antonio-Lopez, A. Schülzgen, D. Christodoulides, and G. Li, “Supermodes in coupled multi-core waveguide structures,” IEEE J. Sel. Top. Quantum Electron. 22(2), 196–207 (2016).
    [Crossref]
  23. A. Sánchez, S. Orozco, A. V. Porta, and M. A. Ortiz, “Elasto–optical behavior model of a step-index fiber under localized pressure,” Mater. Chem. Phys. 139(1), 176–180 (2013).
    [Crossref]
  24. A. Bichler, S. Lecler, B. Serio, S. Fischer, and P. Pfeiffer, “Mode couplings and elasto-optic effects study in a proposed mechanical microperturbed multimode optical fiber sensor,” J. Opt. Soc. Am. A 29(11), 2386–2393 (2012).
    [Crossref] [PubMed]
  25. K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
    [Crossref] [PubMed]
  26. J. Villatoro, E. Antonio-Lopez, A. Schülzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42(10), 2022–2025 (2017).
    [Crossref] [PubMed]

2017 (2)

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

J. Villatoro, E. Antonio-Lopez, A. Schülzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42(10), 2022–2025 (2017).
[Crossref] [PubMed]

2016 (6)

J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
[Crossref] [PubMed]

C. Xia, M. A. Eftekhar, R. Amezcua-Correa, J. E. Antonio-Lopez, A. Schülzgen, D. Christodoulides, and G. Li, “Supermodes in coupled multi-core waveguide structures,” IEEE J. Sel. Top. Quantum Electron. 22(2), 196–207 (2016).
[Crossref]

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

K. Park, Y. S. Kim, S. Jo, and Y. W. Lee, “Polarization-interference-based fiber vibration sensor incorporating polarization-diversity loop structure,” IEEE Sens. J. 16(7), 1949–1955 (2016).
[Crossref]

Q. Liu, Z. A. Jia, H. Fu, D. Yu, H. Gao, and X. Qiao, “Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp,” IEEE Sens. J. 16(17), 6611–6616 (2016).
[Crossref]

R. P. Linessio, K. de Morais Sousa, T. da Silva, C. A. Bavastri, P. F. da Costa Antunes, and J. C. C. da Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

2015 (3)

X. Wu, X. Wang, S. Li, S. Huang, Q. Ge, and B. Yu, “Cantilever fiber-optic accelerometer based on modal interferometer,” IEEE Photonics Technol. Lett. 27(15), 1632–1635 (2015).
[Crossref]

J. Guo and C. Yang, “Non-contact fiber vibration sensor based on intracavity modulation of an extrinsic Fabry–Perot interferometer,” IEEE Sens. J. 15(12), 7229–7233 (2015).
[Crossref]

G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

A. Sánchez, S. Orozco, A. V. Porta, and M. A. Ortiz, “Elasto–optical behavior model of a step-index fiber under localized pressure,” Mater. Chem. Phys. 139(1), 176–180 (2013).
[Crossref]

2012 (2)

2011 (2)

C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011).
[Crossref] [PubMed]

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2011).
[Crossref]

2010 (1)

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010).
[Crossref]

2009 (1)

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

2008 (1)

A. Fender, W. N. MacPherson, R. R. Maier, J. S. Barton, D. S. George, R. I. Howden, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

2004 (2)

T. K. Gangopadhyay, “Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fiber-optic vibration sensing,” Sensor Actuat. A-Phys. 113, 20–38 (2004).

T. K. Gangopadhyay, “Non-contact vibration measurement based on an extrinsic Fabry–Perot interferometer implemented using arrays of single mode fibers,” Meas. Sci. Technol. 15(5), 911–917 (2004).
[Crossref]

1998 (1)

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

1996 (1)

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photonics Technol. Lett. 8(12), 1677–1679 (1996).
[Crossref]

Alberto, N. J.

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

Althouse, B. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Amezcua Correa, R.

Amezcua-Correa, R.

J. Villatoro, E. Antonio-Lopez, A. Schülzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42(10), 2022–2025 (2017).
[Crossref] [PubMed]

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
[Crossref] [PubMed]

C. Xia, M. A. Eftekhar, R. Amezcua-Correa, J. E. Antonio-Lopez, A. Schülzgen, D. Christodoulides, and G. Li, “Supermodes in coupled multi-core waveguide structures,” IEEE J. Sel. Top. Quantum Electron. 22(2), 196–207 (2016).
[Crossref]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
[Crossref] [PubMed]

Antonio-Lopez, E.

Antonio-Lopez, J. E.

Arrizabalaga, O.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

Bai, N.

Barton, J. S.

A. Fender, W. N. MacPherson, R. R. Maier, J. S. Barton, D. S. George, R. I. Howden, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Bavastri, C. A.

R. P. Linessio, K. de Morais Sousa, T. da Silva, C. A. Bavastri, P. F. da Costa Antunes, and J. C. C. da Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

Berkoff, T. A.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photonics Technol. Lett. 8(12), 1677–1679 (1996).
[Crossref]

Bichler, A.

Botsialas, A.

Choubey, R. K.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Christodoulides, D.

C. Xia, M. A. Eftekhar, R. Amezcua-Correa, J. E. Antonio-Lopez, A. Schülzgen, D. Christodoulides, and G. Li, “Supermodes in coupled multi-core waveguide structures,” IEEE J. Sel. Top. Quantum Electron. 22(2), 196–207 (2016).
[Crossref]

Corres, J. M.

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010).
[Crossref]

Costa, A. G.

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

da Costa Antunes, P. F.

R. P. Linessio, K. de Morais Sousa, T. da Silva, C. A. Bavastri, P. F. da Costa Antunes, and J. C. C. da Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

da Silva, J. C. C.

R. P. Linessio, K. de Morais Sousa, T. da Silva, C. A. Bavastri, P. F. da Costa Antunes, and J. C. C. da Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

da Silva, T.

R. P. Linessio, K. de Morais Sousa, T. da Silva, C. A. Bavastri, P. F. da Costa Antunes, and J. C. C. da Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

de Brito Andre, P. S.

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

de Lemos Pinto, J.

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

de Morais Sousa, K.

R. P. Linessio, K. de Morais Sousa, T. da Silva, C. A. Bavastri, P. F. da Costa Antunes, and J. C. C. da Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

Dong, B.

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2011).
[Crossref]

Dong, X. Y.

Durana, G.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

Eftekhar, M. A.

C. Xia, M. A. Eftekhar, R. Amezcua-Correa, J. E. Antonio-Lopez, A. Schülzgen, D. Christodoulides, and G. Li, “Supermodes in coupled multi-core waveguide structures,” IEEE J. Sel. Top. Quantum Electron. 22(2), 196–207 (2016).
[Crossref]

Eznaveh, Z. S.

Fender, A.

A. Fender, W. N. MacPherson, R. R. Maier, J. S. Barton, D. S. George, R. I. Howden, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Fischer, S.

Fu, H.

Q. Liu, Z. A. Jia, H. Fu, D. Yu, H. Gao, and X. Qiao, “Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp,” IEEE Sens. J. 16(17), 6611–6616 (2016).
[Crossref]

Gangopadhyay, T. K.

T. K. Gangopadhyay, “Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fiber-optic vibration sensing,” Sensor Actuat. A-Phys. 113, 20–38 (2004).

T. K. Gangopadhyay, “Non-contact vibration measurement based on an extrinsic Fabry–Perot interferometer implemented using arrays of single mode fibers,” Meas. Sci. Technol. 15(5), 911–917 (2004).
[Crossref]

Gao, H.

Q. Liu, Z. A. Jia, H. Fu, D. Yu, H. Gao, and X. Qiao, “Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp,” IEEE Sens. J. 16(17), 6611–6616 (2016).
[Crossref]

García, Y. R.

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010).
[Crossref]

Ge, Q.

X. Wu, X. Wang, S. Li, S. Huang, Q. Ge, and B. Yu, “Cantilever fiber-optic accelerometer based on modal interferometer,” IEEE Photonics Technol. Lett. 27(15), 1632–1635 (2015).
[Crossref]

George, D. S.

A. Fender, W. N. MacPherson, R. R. Maier, J. S. Barton, D. S. George, R. I. Howden, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Goicoechea, J.

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010).
[Crossref]

Guo, J.

J. Guo and C. Yang, “Non-contact fiber vibration sensor based on intracavity modulation of an extrinsic Fabry–Perot interferometer,” IEEE Sens. J. 15(12), 7229–7233 (2015).
[Crossref]

Han, J.

Hoekman, M.

Howden, R. I.

A. Fender, W. N. MacPherson, R. R. Maier, J. S. Barton, D. S. George, R. I. Howden, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Huang, S.

X. Wu, X. Wang, S. Li, S. Huang, Q. Ge, and B. Yu, “Cantilever fiber-optic accelerometer based on modal interferometer,” IEEE Photonics Technol. Lett. 27(15), 1632–1635 (2015).
[Crossref]

Huang, W.

Jia, Z. A.

Q. Liu, Z. A. Jia, H. Fu, D. Yu, H. Gao, and X. Qiao, “Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp,” IEEE Sens. J. 16(17), 6611–6616 (2016).
[Crossref]

Jin, S. Z.

Jo, S.

K. Park, Y. S. Kim, S. Jo, and Y. W. Lee, “Polarization-interference-based fiber vibration sensor incorporating polarization-diversity loop structure,” IEEE Sens. J. 16(7), 1949–1955 (2016).
[Crossref]

Jobst, G.

Johnson, G. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Kale, S. N.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Kersey, A. D.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photonics Technol. Lett. 8(12), 1677–1679 (1996).
[Crossref]

Kim, Y. S.

K. Park, Y. S. Kim, S. Jo, and Y. W. Lee, “Polarization-interference-based fiber vibration sensor incorporating polarization-diversity loop structure,” IEEE Sens. J. 16(7), 1949–1955 (2016).
[Crossref]

Lecler, S.

Lee, Y. W.

K. Park, Y. S. Kim, S. Jo, and Y. W. Lee, “Polarization-interference-based fiber vibration sensor incorporating polarization-diversity loop structure,” IEEE Sens. J. 16(7), 1949–1955 (2016).
[Crossref]

Li, F.

Li, G.

C. Xia, M. A. Eftekhar, R. Amezcua-Correa, J. E. Antonio-Lopez, A. Schülzgen, D. Christodoulides, and G. Li, “Supermodes in coupled multi-core waveguide structures,” IEEE J. Sel. Top. Quantum Electron. 22(2), 196–207 (2016).
[Crossref]

C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011).
[Crossref] [PubMed]

Li, S.

X. Wu, X. Wang, S. Li, S. Huang, Q. Ge, and B. Yu, “Cantilever fiber-optic accelerometer based on modal interferometer,” IEEE Photonics Technol. Lett. 27(15), 1632–1635 (2015).
[Crossref]

Li, Y.

LiKamWa, P.

Lima, H. F. T.

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

Linessio, R. P.

R. P. Linessio, K. de Morais Sousa, T. da Silva, C. A. Bavastri, P. F. da Costa Antunes, and J. C. C. da Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

Liu, Q.

Q. Liu, Z. A. Jia, H. Fu, D. Yu, H. Gao, and X. Qiao, “Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp,” IEEE Sens. J. 16(17), 6611–6616 (2016).
[Crossref]

MacPherson, W. N.

A. Fender, W. N. MacPherson, R. R. Maier, J. S. Barton, D. S. George, R. I. Howden, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Maier, R. R.

A. Fender, W. N. MacPherson, R. R. Maier, J. S. Barton, D. S. George, R. I. Howden, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Makarona, E.

Martinez-Rios, A.

Misiakos, K.

Ng, J.

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2011).
[Crossref]

Nogueira, R. N.

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

Orozco, S.

A. Sánchez, S. Orozco, A. V. Porta, and M. A. Ortiz, “Elasto–optical behavior model of a step-index fiber under localized pressure,” Mater. Chem. Phys. 139(1), 176–180 (2013).
[Crossref]

Ortiz, M. A.

A. Sánchez, S. Orozco, A. V. Porta, and M. A. Ortiz, “Elasto–optical behavior model of a step-index fiber under localized pressure,” Mater. Chem. Phys. 139(1), 176–180 (2013).
[Crossref]

Ozdur, I.

Park, K.

K. Park, Y. S. Kim, S. Jo, and Y. W. Lee, “Polarization-interference-based fiber vibration sensor incorporating polarization-diversity loop structure,” IEEE Sens. J. 16(7), 1949–1955 (2016).
[Crossref]

Pawar, D.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Pfeiffer, P.

Pinto, P. M. F.

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

Porta, A. V.

A. Sánchez, S. Orozco, A. V. Porta, and M. A. Ortiz, “Elasto–optical behavior model of a step-index fiber under localized pressure,” Mater. Chem. Phys. 139(1), 176–180 (2013).
[Crossref]

Qiao, X.

Q. Liu, Z. A. Jia, H. Fu, D. Yu, H. Gao, and X. Qiao, “Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp,” IEEE Sens. J. 16(17), 6611–6616 (2016).
[Crossref]

Rao, C. N.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Raptis, I.

Rodrigues, H.

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

Sáez de Ocáriz, I.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

Salapatas, A.

Salceda-Delgado, G.

Sánchez, A.

A. Sánchez, S. Orozco, A. V. Porta, and M. A. Ortiz, “Elasto–optical behavior model of a step-index fiber under localized pressure,” Mater. Chem. Phys. 139(1), 176–180 (2013).
[Crossref]

Schülzgen, A.

Serio, B.

Stoffer, R.

Sun, M.

Suo, R.

A. Fender, W. N. MacPherson, R. R. Maier, J. S. Barton, D. S. George, R. I. Howden, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Todd, M. D.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Van Newkirk, A.

Varum, H.

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

Villatoro, J.

Vohra, S. T.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Wang, X.

X. Wu, X. Wang, S. Li, S. Huang, Q. Ge, and B. Yu, “Cantilever fiber-optic accelerometer based on modal interferometer,” IEEE Photonics Technol. Lett. 27(15), 1632–1635 (2015).
[Crossref]

Wang, Y.

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2011).
[Crossref]

Wang, Z.

Wu, X.

X. Wu, X. Wang, S. Li, S. Huang, Q. Ge, and B. Yu, “Cantilever fiber-optic accelerometer based on modal interferometer,” IEEE Photonics Technol. Lett. 27(15), 1632–1635 (2015).
[Crossref]

Xia, C.

C. Xia, M. A. Eftekhar, R. Amezcua-Correa, J. E. Antonio-Lopez, A. Schülzgen, D. Christodoulides, and G. Li, “Supermodes in coupled multi-core waveguide structures,” IEEE J. Sel. Top. Quantum Electron. 22(2), 196–207 (2016).
[Crossref]

C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011).
[Crossref] [PubMed]

Xu, B.

Yang, C.

J. Guo and C. Yang, “Non-contact fiber vibration sensor based on intracavity modulation of an extrinsic Fabry–Perot interferometer,” IEEE Sens. J. 15(12), 7229–7233 (2015).
[Crossref]

Yu, B.

X. Wu, X. Wang, S. Li, S. Huang, Q. Ge, and B. Yu, “Cantilever fiber-optic accelerometer based on modal interferometer,” IEEE Photonics Technol. Lett. 27(15), 1632–1635 (2015).
[Crossref]

Yu, C.

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2011).
[Crossref]

Yu, D.

Q. Liu, Z. A. Jia, H. Fu, D. Yu, H. Gao, and X. Qiao, “Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp,” IEEE Sens. J. 16(17), 6611–6616 (2016).
[Crossref]

Zhang, B.

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2011).
[Crossref]

Zhang, W.

Zhang, Z. W.

Zhang, Z. X.

Zhou, X.

Zubia, J.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xia, M. A. Eftekhar, R. Amezcua-Correa, J. E. Antonio-Lopez, A. Schülzgen, D. Christodoulides, and G. Li, “Supermodes in coupled multi-core waveguide structures,” IEEE J. Sel. Top. Quantum Electron. 22(2), 196–207 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (4)

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photonics Technol. Lett. 8(12), 1677–1679 (1996).
[Crossref]

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2011).
[Crossref]

X. Wu, X. Wang, S. Li, S. Huang, Q. Ge, and B. Yu, “Cantilever fiber-optic accelerometer based on modal interferometer,” IEEE Photonics Technol. Lett. 27(15), 1632–1635 (2015).
[Crossref]

IEEE Sens. J. (6)

A. Fender, W. N. MacPherson, R. R. Maier, J. S. Barton, D. S. George, R. I. Howden, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

P. F. da Costa Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. de Lemos Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. de Brito Andre, “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J. 9(11), 1347–1354 (2009).
[Crossref]

Q. Liu, Z. A. Jia, H. Fu, D. Yu, H. Gao, and X. Qiao, “Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp,” IEEE Sens. J. 16(17), 6611–6616 (2016).
[Crossref]

R. P. Linessio, K. de Morais Sousa, T. da Silva, C. A. Bavastri, P. F. da Costa Antunes, and J. C. C. da Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

K. Park, Y. S. Kim, S. Jo, and Y. W. Lee, “Polarization-interference-based fiber vibration sensor incorporating polarization-diversity loop structure,” IEEE Sens. J. 16(7), 1949–1955 (2016).
[Crossref]

J. Guo and C. Yang, “Non-contact fiber vibration sensor based on intracavity modulation of an extrinsic Fabry–Perot interferometer,” IEEE Sens. J. 15(12), 7229–7233 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Sens. (1)

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010).
[Crossref]

Mater. Chem. Phys. (1)

A. Sánchez, S. Orozco, A. V. Porta, and M. A. Ortiz, “Elasto–optical behavior model of a step-index fiber under localized pressure,” Mater. Chem. Phys. 139(1), 176–180 (2013).
[Crossref]

Meas. Sci. Technol. (1)

T. K. Gangopadhyay, “Non-contact vibration measurement based on an extrinsic Fabry–Perot interferometer implemented using arrays of single mode fibers,” Meas. Sci. Technol. 15(5), 911–917 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Sci. Rep. (1)

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

Sensor Actuat. A-Phys. (1)

T. K. Gangopadhyay, “Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fiber-optic vibration sensing,” Sensor Actuat. A-Phys. 113, 20–38 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Micrograph of the cross section of the MCF used to build the devices. (b) Drawing of an MCF interferometer showing the two coated regions. Lf is the length of the MCF. (c) Illustration of the MCF interferometer placed on a V-groove. (d) Illustration of the coated zone of the interferometer with the forces that act on the MCF. F0 is the force on the MCF caused vibrations or acoustic waves and F1 and F2 are the reaction forces. (e) Simulated 2D mode profiles of the two super-modes excited in MCF shown in Fig. 1(a).
Fig. 2
Fig. 2 (a) Reflection spectra observed in an interferometer at different forces on the MCF and shift of the interference pattern as a function of force on the MCF (inset). (b) Shift as a function of time (top plot) and FFT (bottom plot) observed in an interferometer when the PZT was oscillating at 310 Hz. The interferometer was built with a 5 cm of MCF.
Fig. 3
Fig. 3 (a) Frequency of the PZT and frequency measured (at room temperature) with a MCF interferometer. The inset shows the amplitude of the FFT at each frequency. (b) Frequency of the PZT and frequency measured at 25 and 80 degree Celsius. The inset graph shows the FFT at 2 Hz. In all cases, Lf was 5 cm.
Fig. 4
Fig. 4 (a) Shift as a function of time when a force of 0.009N was exerted on the MCF interferometer in contact to a PZT vibrating at 500 Hz. The bottom graph shows the FFT of the oscillation and the zone around 0.010 s of the shift vs time graph. (b) FFTs observed for frequencies of the speaker in the 80-490 Hz range. The dotted line shows the height of the FFT at each frequency. The inset graph shows the frequency applied to the speaker and that measured with our MCF interferometer. In all cases, Lf was 5 cm.

Metrics