Abstract

In this work, we investigated the mid-infrared (MIR) optical properties of selenide (Se-based) chalcogenide glasses (ChGs) within an As- and Ge-free system, namely the environment-friendly and low-cost tin–antimony–selenium (Sn-Sb-Se, SSS) ternary system, which has not been systematically studied to the best of our knowledge. As compared to ChGs within those conventional Se-based systems, SSS ChGs were found to exhibit extended infrared transmittance range as well as larger linear refractive index (n0). Femtosecond Z-scan measurements show the presence of evident three-photon absorption from Urbach absorption of the SSS ChGs at MIR wavelength, which resonantly enhanced the nonlinear refractive behavior and resulted in large nonlinear refractive index (n2).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Third-order optical nonlinearities of chalcogenide glasses within Ge-Sn-Se ternary system at a mid-infrared window

Beijing Qiao, Shixun Dai, Yinsheng Xu, Peiqing Zhang, Xiang Shen, Tiefeng Xu, Qiuhua Nie, Wei Ji, and Feifei Chen
Opt. Mater. Express 5(10) 2359-2365 (2015)

Glass formation and mid-infrared optical nonlinearities of chalcogenide glasses in germanium-tin-sulfur ternary system

Yicong Huang, Feifei Chen, Ruiqiang Lin, Xiaoyu Zhang, Shixun Dai, Qiuhua Nie, and Xianghua Zhang
Opt. Mater. Express 6(10) 3053-3062 (2016)

Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system

Shixun Dai, Feifei Chen, Yinsheng Xu, Zhe Xu, Xiang Shen, Tiefeng Xu, Rongping Wang, and Wei Ji
Opt. Express 23(2) 1300-1307 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Lutherdavies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
  2. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
  3. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
    [PubMed]
  4. J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
    [PubMed]
  5. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
  6. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
    [PubMed]
  7. S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014).
  8. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Lutherdavies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
  9. S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23(2), 1300–1307 (2015).
    [PubMed]
  10. A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
  11. K. Kumar, P. Sharma, S. S. Bhatt, and N. Thakur, “Thermal and Optical Study of Te15(Se100-xBix)85 (x = 0, 1, 3) Chalcogenide Glasses,” J. Nano- Electron. Phys. 3(1), 1123–1131 (2011).
  12. A. B. Adam, S. Sakrani, and Y. Wahab, “Glass-formation region of ternary Sn–Sb–Se-based chalcogenide glasses,” J. Mater. Sci. 40(7), 1571–1576 (2005).
  13. A. B. Adam, “Infrared and Raman studies on Snx–Sb5–Se95-x chalcogenide glasses,” J. King Saud Univ.-Sci. 21(2), 93–97 (2009).
  14. M. M. A. Imran and O. A. Lafi, “Glass transition kinetics and optical band gap in Se85− xSb15Snx(x = 10, 11, 12.5, and 13) chalcogenide glasses,” Mater. Chem. Phys. 129(3), 1201–1206 (2011).
  15. M. M. A. Imran, “Thermal characterization of Se85−xSb15Snx (10≤x≤13) chalcogenide glasses,” Physica B 406(22), 4289–4295 (2011).
  16. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
  17. B. Qiao, F. Chen, P. Zhang, Q. Nie, S. Dai, T. Xu, W. Ji, X. Shen, and Y. Xu, “Third-order optical nonlinearities of chalcogenide glasses within Ge-Sn-Se ternary system at a mid-infrared window,” Opt. Mater. Express 5(10), 2359 (2015).
  18. L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
    [PubMed]
  19. S. S. Fouad, E. A. A. El-Shazly, M. R. Balboul, S. A. Fayek, and M. S. El-Bana, “Optical parameter studies of thermally evaporated As-Se-Sn glassy system,” J. Mater. Sci-Mater. El. 17(3), 193–198 (2006).
  20. G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge–Se–In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).
  21. Y. Wang, S. Dai, F. Chen, T. Xu, and Q. Nie, “Physical properties and optical band gap of new tellurite glasses within the TeO2–Nb2O5–Bi2O3 system,” Mater. Chem. Phys. 113(1), 407–411 (2009).
  22. V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides. II,” J. Appl. Phys. 79(3), 1741–1745 (1996).
  23. Z. H. Zhou, T. Hashimoto, H. Nasu, and K. Kamiya, “Two-photon absorption and nonlinear refraction of lanthanum sulfide-gallium sulfide glasses,” J. Appl. Phys. 84(5), 2380–2384 (1998).
  24. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
    [PubMed]
  25. R. K. Shukla, S. Swarup, A. Kumar, and A. N. Nigam, “X-ray K-absorption studies in glassy Se80Te10 and Se80Te18M10 (M=Ag, Cd, In and Sb),” Semicond. Sci. Technol. 4(8), 681 (1999).
  26. J.-L. Adam and X. Zhang, Chalcogenide glasses: preparation, properties and applications (Woodhead Publishing, 2014).
  27. H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74(6), 3683–3687 (1993).
  28. G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,” Opt. Commun. 232(1), 417–423 (2004).
  29. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
  30. M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
  31. S. Q. Chen, Z. B. Liu, W. P. Zang, J. G. Tian, W. Y. Zhou, F. Song, and C. P. Zhang, “Study on Z-scan characteristics for a large nonlinear phase shift,” J. Opt. Soc. Am. B 22(9), 1911–1916 (2005).
  32. E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
    [PubMed]
  33. T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21(26), 32192–32198 (2013).
    [PubMed]
  34. B. Gu, J. Wang, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Z-scan theory for material with two- and three-photon absorption,” Opt. Express 13(23), 9230–9234 (2005).
    [PubMed]
  35. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
    [PubMed]
  36. H. Nasu, O. Sugimoto, J. Matsuoka, and K. Kamiya, “Non-resonant-type third-order optical non-linearity of alkali silicate and alkali aluminosilicate glasses — contribution of individual chemical species in the glasses to χ(3),” J. Non-Cryst. Solids 182(3), 321–327 (1995).
  37. S. Asokan, G. Parthasarathy, and E. S. R. Gopal, “High-pressure studies on Ge-Te glasses. Evidence for a critical composition in IV-VI chalcogenide glassy systems,” Philos. Mag. 57, 49–60 (1988).
  38. W. H. Wei, R. P. Wang, X. Shen, L. Fang, and B. Lutherdavies, “Correlation between structural and physical properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117, 16571–16576 (2013).

2016 (1)

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).

2015 (4)

2014 (4)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).

S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014).

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Lutherdavies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).

2013 (2)

T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21(26), 32192–32198 (2013).
[PubMed]

W. H. Wei, R. P. Wang, X. Shen, L. Fang, and B. Lutherdavies, “Correlation between structural and physical properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117, 16571–16576 (2013).

2012 (1)

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[PubMed]

2011 (4)

B. J. Eggleton, B. Lutherdavies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

M. M. A. Imran and O. A. Lafi, “Glass transition kinetics and optical band gap in Se85− xSb15Snx(x = 10, 11, 12.5, and 13) chalcogenide glasses,” Mater. Chem. Phys. 129(3), 1201–1206 (2011).

M. M. A. Imran, “Thermal characterization of Se85−xSb15Snx (10≤x≤13) chalcogenide glasses,” Physica B 406(22), 4289–4295 (2011).

K. Kumar, P. Sharma, S. S. Bhatt, and N. Thakur, “Thermal and Optical Study of Te15(Se100-xBix)85 (x = 0, 1, 3) Chalcogenide Glasses,” J. Nano- Electron. Phys. 3(1), 1123–1131 (2011).

2009 (2)

A. B. Adam, “Infrared and Raman studies on Snx–Sb5–Se95-x chalcogenide glasses,” J. King Saud Univ.-Sci. 21(2), 93–97 (2009).

Y. Wang, S. Dai, F. Chen, T. Xu, and Q. Nie, “Physical properties and optical band gap of new tellurite glasses within the TeO2–Nb2O5–Bi2O3 system,” Mater. Chem. Phys. 113(1), 407–411 (2009).

2008 (1)

2007 (1)

G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge–Se–In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).

2006 (2)

L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
[PubMed]

S. S. Fouad, E. A. A. El-Shazly, M. R. Balboul, S. A. Fayek, and M. S. El-Bana, “Optical parameter studies of thermally evaporated As-Se-Sn glassy system,” J. Mater. Sci-Mater. El. 17(3), 193–198 (2006).

2005 (3)

2004 (1)

G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,” Opt. Commun. 232(1), 417–423 (2004).

2002 (1)

2000 (2)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
[PubMed]

1999 (1)

R. K. Shukla, S. Swarup, A. Kumar, and A. N. Nigam, “X-ray K-absorption studies in glassy Se80Te10 and Se80Te18M10 (M=Ag, Cd, In and Sb),” Semicond. Sci. Technol. 4(8), 681 (1999).

1998 (1)

Z. H. Zhou, T. Hashimoto, H. Nasu, and K. Kamiya, “Two-photon absorption and nonlinear refraction of lanthanum sulfide-gallium sulfide glasses,” J. Appl. Phys. 84(5), 2380–2384 (1998).

1996 (1)

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides. II,” J. Appl. Phys. 79(3), 1741–1745 (1996).

1995 (1)

H. Nasu, O. Sugimoto, J. Matsuoka, and K. Kamiya, “Non-resonant-type third-order optical non-linearity of alkali silicate and alkali aluminosilicate glasses — contribution of individual chemical species in the glasses to χ(3),” J. Non-Cryst. Solids 182(3), 321–327 (1995).

1993 (1)

H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74(6), 3683–3687 (1993).

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).

1988 (1)

S. Asokan, G. Parthasarathy, and E. S. R. Gopal, “High-pressure studies on Ge-Te glasses. Evidence for a critical composition in IV-VI chalcogenide glassy systems,” Philos. Mag. 57, 49–60 (1988).

1964 (1)

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).

Abdelmoneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

Abdel-Moneim, N. S.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[PubMed]

Abouraddy, A. F.

S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014).

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[PubMed]

Adam, A. B.

A. B. Adam, “Infrared and Raman studies on Snx–Sb5–Se95-x chalcogenide glasses,” J. King Saud Univ.-Sci. 21(2), 93–97 (2009).

A. B. Adam, S. Sakrani, and Y. Wahab, “Glass-formation region of ternary Sn–Sb–Se-based chalcogenide glasses,” J. Mater. Sci. 40(7), 1571–1576 (2005).

Aggarwal, I. D.

Asokan, S.

S. Asokan, G. Parthasarathy, and E. S. R. Gopal, “High-pressure studies on Ge-Te glasses. Evidence for a critical composition in IV-VI chalcogenide glassy systems,” Philos. Mag. 57, 49–60 (1988).

Balboul, M. R.

S. S. Fouad, E. A. A. El-Shazly, M. R. Balboul, S. A. Fayek, and M. S. El-Bana, “Optical parameter studies of thermally evaporated As-Se-Sn glassy system,” J. Mater. Sci-Mater. El. 17(3), 193–198 (2006).

Banaei, E. H.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[PubMed]

Barney, E. R.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[PubMed]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

Bhatt, S. S.

K. Kumar, P. Sharma, S. S. Bhatt, and N. Thakur, “Thermal and Optical Study of Te15(Se100-xBix)85 (x = 0, 1, 3) Chalcogenide Glasses,” J. Nano- Electron. Phys. 3(1), 1123–1131 (2011).

Bookey, H. T.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[PubMed]

Boudebs, G.

L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
[PubMed]

G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,” Opt. Commun. 232(1), 417–423 (2004).

Carlie, N.

Chen, F.

Chen, J.

Chen, S. Q.

Cheong, S. W.

Cherukulappurath, S.

L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
[PubMed]

G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,” Opt. Commun. 232(1), 417–423 (2004).

Choi, D. Y.

Cui, Y.

Dai, S.

Danto, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).

Delfyett, P. J.

Deng, D. S.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[PubMed]

Dimitrov, V.

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides. II,” J. Appl. Phys. 79(3), 1741–1745 (1996).

Ding, J.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

Eggleton, B. J.

B. J. Eggleton, B. Lutherdavies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

El-Bana, M. S.

S. S. Fouad, E. A. A. El-Shazly, M. R. Balboul, S. A. Fayek, and M. S. El-Bana, “Optical parameter studies of thermally evaporated As-Se-Sn glassy system,” J. Mater. Sci-Mater. El. 17(3), 193–198 (2006).

El-Shazly, E. A. A.

S. S. Fouad, E. A. A. El-Shazly, M. R. Balboul, S. A. Fayek, and M. S. El-Bana, “Optical parameter studies of thermally evaporated As-Se-Sn glassy system,” J. Mater. Sci-Mater. El. 17(3), 193–198 (2006).

Ensley, T. R.

Fan, Y. X.

Fang, L.

W. H. Wei, R. P. Wang, X. Shen, L. Fang, and B. Lutherdavies, “Correlation between structural and physical properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117, 16571–16576 (2013).

Fayek, S. A.

S. S. Fouad, E. A. A. El-Shazly, M. R. Balboul, S. A. Fayek, and M. S. El-Bana, “Optical parameter studies of thermally evaporated As-Se-Sn glassy system,” J. Mater. Sci-Mater. El. 17(3), 193–198 (2006).

Fink, Y.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[PubMed]

Fouad, S. S.

S. S. Fouad, E. A. A. El-Shazly, M. R. Balboul, S. A. Fayek, and M. S. El-Bana, “Optical parameter studies of thermally evaporated As-Se-Sn glassy system,” J. Mater. Sci-Mater. El. 17(3), 193–198 (2006).

Furniss, D.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[PubMed]

Gai, X.

Gopal, E. S. R.

S. Asokan, G. Parthasarathy, and E. S. R. Gopal, “High-pressure studies on Ge-Te glasses. Evidence for a critical composition in IV-VI chalcogenide glassy systems,” Philos. Mag. 57, 49–60 (1988).

Gosciniak, J.

Gu, B.

Guignard, M.

G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,” Opt. Commun. 232(1), 417–423 (2004).

Guo, W.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).

Harbold, J. M.

Hashimoto, T.

Z. H. Zhou, T. Hashimoto, H. Nasu, and K. Kamiya, “Two-photon absorption and nonlinear refraction of lanthanum sulfide-gallium sulfide glasses,” J. Appl. Phys. 84(5), 2380–2384 (1998).

Hu, H.

Hu, J.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).

Humeau, A.

Hwang, H. Y.

Ilday, F. O.

Imran, M. M. A.

M. M. A. Imran and O. A. Lafi, “Glass transition kinetics and optical band gap in Se85− xSb15Snx(x = 10, 11, 12.5, and 13) chalcogenide glasses,” Mater. Chem. Phys. 129(3), 1201–1206 (2011).

M. M. A. Imran, “Thermal characterization of Se85−xSb15Snx (10≤x≤13) chalcogenide glasses,” Physica B 406(22), 4289–4295 (2011).

Ji, W.

Johnson, S. G.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[PubMed]

Kamiya, K.

Z. H. Zhou, T. Hashimoto, H. Nasu, and K. Kamiya, “Two-photon absorption and nonlinear refraction of lanthanum sulfide-gallium sulfide glasses,” J. Appl. Phys. 84(5), 2380–2384 (1998).

H. Nasu, O. Sugimoto, J. Matsuoka, and K. Kamiya, “Non-resonant-type third-order optical non-linearity of alkali silicate and alkali aluminosilicate glasses — contribution of individual chemical species in the glasses to χ(3),” J. Non-Cryst. Solids 182(3), 321–327 (1995).

Kanbara, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74(6), 3683–3687 (1993).

Kar, A.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[PubMed]

Katsufuji, T.

Kaufman, J. J.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[PubMed]

Kobayashi, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74(6), 3683–3687 (1993).

Koga, M.

H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74(6), 3683–3687 (1993).

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

Kubodera, K. I.

H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74(6), 3683–3687 (1993).

Kumar, A.

R. K. Shukla, S. Swarup, A. Kumar, and A. N. Nigam, “X-ray K-absorption studies in glassy Se80Te10 and Se80Te18M10 (M=Ag, Cd, In and Sb),” Semicond. Sci. Technol. 4(8), 681 (1999).

Kumar, K.

K. Kumar, P. Sharma, S. S. Bhatt, and N. Thakur, “Thermal and Optical Study of Te15(Se100-xBix)85 (x = 0, 1, 3) Chalcogenide Glasses,” J. Nano- Electron. Phys. 3(1), 1123–1131 (2011).

Lafi, O. A.

M. M. A. Imran and O. A. Lafi, “Glass transition kinetics and optical band gap in Se85− xSb15Snx(x = 10, 11, 12.5, and 13) chalcogenide glasses,” Mater. Chem. Phys. 129(3), 1201–1206 (2011).

Lenz, G.

Li, H. P.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).

Li, L.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).

Liang, X.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[PubMed]

Lin, H.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).

Lines, M. E.

Liu, Z. B.

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).

Lutherdavies, B.

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Lutherdavies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).

W. H. Wei, R. P. Wang, X. Shen, L. Fang, and B. Lutherdavies, “Correlation between structural and physical properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117, 16571–16576 (2013).

B. J. Eggleton, B. Lutherdavies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Luther-Davies, B.

Madden, S.

Marquez, M. P.

Matsuoka, J.

H. Nasu, O. Sugimoto, J. Matsuoka, and K. Kamiya, “Non-resonant-type third-order optical non-linearity of alkali silicate and alkali aluminosilicate glasses — contribution of individual chemical species in the glasses to χ(3),” J. Non-Cryst. Solids 182(3), 321–327 (1995).

McCarthy, J. E.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[PubMed]

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

Musgraves, J. D.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).

Nasu, H.

Z. H. Zhou, T. Hashimoto, H. Nasu, and K. Kamiya, “Two-photon absorption and nonlinear refraction of lanthanum sulfide-gallium sulfide glasses,” J. Appl. Phys. 84(5), 2380–2384 (1998).

H. Nasu, O. Sugimoto, J. Matsuoka, and K. Kamiya, “Non-resonant-type third-order optical non-linearity of alkali silicate and alkali aluminosilicate glasses — contribution of individual chemical species in the glasses to χ(3),” J. Non-Cryst. Solids 182(3), 321–327 (1995).

Nguyen, V. Q.

Nie, Q.

B. Qiao, F. Chen, P. Zhang, Q. Nie, S. Dai, T. Xu, W. Ji, X. Shen, and Y. Xu, “Third-order optical nonlinearities of chalcogenide glasses within Ge-Sn-Se ternary system at a mid-infrared window,” Opt. Mater. Express 5(10), 2359 (2015).

Y. Wang, S. Dai, F. Chen, T. Xu, and Q. Nie, “Physical properties and optical band gap of new tellurite glasses within the TeO2–Nb2O5–Bi2O3 system,” Mater. Chem. Phys. 113(1), 407–411 (2009).

Nigam, A. N.

R. K. Shukla, S. Swarup, A. Kumar, and A. N. Nigam, “X-ray K-absorption studies in glassy Se80Te10 and Se80Te18M10 (M=Ag, Cd, In and Sb),” Semicond. Sci. Technol. 4(8), 681 (1999).

Parthasarathy, G.

S. Asokan, G. Parthasarathy, and E. S. R. Gopal, “High-pressure studies on Ge-Te glasses. Evidence for a critical composition in IV-VI chalcogenide glassy systems,” Philos. Mag. 57, 49–60 (1988).

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

Petit, L.

Prasad, A.

Qi, S.

Qian, G.

Qiao, B.

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

Richardson, K.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).

B. J. Eggleton, B. Lutherdavies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
[PubMed]

Saffarini, G.

G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge–Se–In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).

Saiter, J. M.

G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge–Se–In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).

Sakka, S.

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides. II,” J. Appl. Phys. 79(3), 1741–1745 (1996).

Sakrani, S.

A. B. Adam, S. Sakrani, and Y. Wahab, “Glass-formation region of ternary Sn–Sb–Se-based chalcogenide glasses,” J. Mater. Sci. 40(7), 1571–1576 (2005).

Sanchez, F.

G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,” Opt. Commun. 232(1), 417–423 (2004).

Sanghera, J. S.

Schmitt, H.

G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge–Se–In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).

Seddon, A. B.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[PubMed]

Shabahang, S.

S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014).

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[PubMed]

Sharma, P.

K. Kumar, P. Sharma, S. S. Bhatt, and N. Thakur, “Thermal and Optical Study of Te15(Se100-xBix)85 (x = 0, 1, 3) Chalcogenide Glasses,” J. Nano- Electron. Phys. 3(1), 1123–1131 (2011).

Shaw, L. B.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).

Shen, X.

Shukla, R. K.

R. K. Shukla, S. Swarup, A. Kumar, and A. N. Nigam, “X-ray K-absorption studies in glassy Se80Te10 and Se80Te18M10 (M=Ag, Cd, In and Sb),” Semicond. Sci. Technol. 4(8), 681 (1999).

Slusher, R. E.

Smektala, F.

G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,” Opt. Commun. 232(1), 417–423 (2004).

Smith, A.

Song, F.

Spälter, S.

Sugimoto, O.

H. Nasu, O. Sugimoto, J. Matsuoka, and K. Kamiya, “Non-resonant-type third-order optical non-linearity of alkali silicate and alkali aluminosilicate glasses — contribution of individual chemical species in the glasses to χ(3),” J. Non-Cryst. Solids 182(3), 321–327 (1995).

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

Swarup, S.

R. K. Shukla, S. Swarup, A. Kumar, and A. N. Nigam, “X-ray K-absorption studies in glassy Se80Te10 and Se80Te18M10 (M=Ag, Cd, In and Sb),” Semicond. Sci. Technol. 4(8), 681 (1999).

Tan, D. T.

Tang, D.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).

Tang, S. H.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

Tao, G.

S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014).

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[PubMed]

Thakur, N.

K. Kumar, P. Sharma, S. S. Bhatt, and N. Thakur, “Thermal and Optical Study of Te15(Se100-xBix)85 (x = 0, 1, 3) Chalcogenide Glasses,” J. Nano- Electron. Phys. 3(1), 1123–1131 (2011).

Tian, J. G.

Titman, J.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[PubMed]

Towey, J. J.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[PubMed]

Troles, J.

G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,” Opt. Commun. 232(1), 417–423 (2004).

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).

Venkatram, N.

Wahab, Y.

A. B. Adam, S. Sakrani, and Y. Wahab, “Glass-formation region of ternary Sn–Sb–Se-based chalcogenide glasses,” J. Mater. Sci. 40(7), 1571–1576 (2005).

Wang, H. T.

Wang, J.

Wang, R.

Wang, R. P.

W. H. Wei, R. P. Wang, X. Shen, L. Fang, and B. Lutherdavies, “Correlation between structural and physical properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117, 16571–16576 (2013).

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[PubMed]

Wang, T.

Wang, Y.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).

Y. Wang, S. Dai, F. Chen, T. Xu, and Q. Nie, “Physical properties and optical band gap of new tellurite glasses within the TeO2–Nb2O5–Bi2O3 system,” Mater. Chem. Phys. 113(1), 407–411 (2009).

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).

Wei, W.

Wei, W. H.

W. H. Wei, R. P. Wang, X. Shen, L. Fang, and B. Lutherdavies, “Correlation between structural and physical properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117, 16571–16576 (2013).

Wise, F. W.

Xu, T.

Xu, Y.

Xu, Z.

Yang, A.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).

Yang, Z.

Yin, M.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).

Yu, Y.

Zang, W. P.

Zha, C. J.

Zhai, C.

Zhang, B.

Zhang, C. P.

Zhang, M.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).

Zhang, P.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

Zhou, W. Y.

Zhou, Z. H.

Z. H. Zhou, T. Hashimoto, H. Nasu, and K. Kamiya, “Two-photon absorption and nonlinear refraction of lanthanum sulfide-gallium sulfide glasses,” J. Appl. Phys. 84(5), 2380–2384 (1998).

Zimmermann, J.

Zou, Y.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).

Appl. Phys. B (1)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).

Appl. Phys. Lett. (1)

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).

J. Am. Ceram. Soc. (1)

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).

J. Appl. Phys. (3)

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides. II,” J. Appl. Phys. 79(3), 1741–1745 (1996).

Z. H. Zhou, T. Hashimoto, H. Nasu, and K. Kamiya, “Two-photon absorption and nonlinear refraction of lanthanum sulfide-gallium sulfide glasses,” J. Appl. Phys. 84(5), 2380–2384 (1998).

H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74(6), 3683–3687 (1993).

J. King Saud Univ.-Sci. (1)

A. B. Adam, “Infrared and Raman studies on Snx–Sb5–Se95-x chalcogenide glasses,” J. King Saud Univ.-Sci. 21(2), 93–97 (2009).

J. Mater. Sci-Mater. El. (1)

S. S. Fouad, E. A. A. El-Shazly, M. R. Balboul, S. A. Fayek, and M. S. El-Bana, “Optical parameter studies of thermally evaporated As-Se-Sn glassy system,” J. Mater. Sci-Mater. El. 17(3), 193–198 (2006).

J. Mater. Sci. (1)

A. B. Adam, S. Sakrani, and Y. Wahab, “Glass-formation region of ternary Sn–Sb–Se-based chalcogenide glasses,” J. Mater. Sci. 40(7), 1571–1576 (2005).

J. Nano- Electron. Phys. (1)

K. Kumar, P. Sharma, S. S. Bhatt, and N. Thakur, “Thermal and Optical Study of Te15(Se100-xBix)85 (x = 0, 1, 3) Chalcogenide Glasses,” J. Nano- Electron. Phys. 3(1), 1123–1131 (2011).

J. Non-Cryst. Solids (1)

H. Nasu, O. Sugimoto, J. Matsuoka, and K. Kamiya, “Non-resonant-type third-order optical non-linearity of alkali silicate and alkali aluminosilicate glasses — contribution of individual chemical species in the glasses to χ(3),” J. Non-Cryst. Solids 182(3), 321–327 (1995).

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

W. H. Wei, R. P. Wang, X. Shen, L. Fang, and B. Lutherdavies, “Correlation between structural and physical properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117, 16571–16576 (2013).

Mater. Chem. Phys. (2)

Y. Wang, S. Dai, F. Chen, T. Xu, and Q. Nie, “Physical properties and optical band gap of new tellurite glasses within the TeO2–Nb2O5–Bi2O3 system,” Mater. Chem. Phys. 113(1), 407–411 (2009).

M. M. A. Imran and O. A. Lafi, “Glass transition kinetics and optical band gap in Se85− xSb15Snx(x = 10, 11, 12.5, and 13) chalcogenide glasses,” Mater. Chem. Phys. 129(3), 1201–1206 (2011).

Nat. Photonics (3)

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).

B. J. Eggleton, B. Lutherdavies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdelmoneim, and Z. Tang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).

Nature (1)

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[PubMed]

Opt. Commun. (1)

G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,” Opt. Commun. 232(1), 417–423 (2004).

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. (1)

G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge–Se–In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).

Opt. Mater. Express (2)

Philos. Mag. (1)

S. Asokan, G. Parthasarathy, and E. S. R. Gopal, “High-pressure studies on Ge-Te glasses. Evidence for a critical composition in IV-VI chalcogenide glassy systems,” Philos. Mag. 57, 49–60 (1988).

Phys. Chem. Chem. Phys. (1)

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[PubMed]

Physica B (1)

M. M. A. Imran, “Thermal characterization of Se85−xSb15Snx (10≤x≤13) chalcogenide glasses,” Physica B 406(22), 4289–4295 (2011).

Semicond. Sci. Technol. (1)

R. K. Shukla, S. Swarup, A. Kumar, and A. N. Nigam, “X-ray K-absorption studies in glassy Se80Te10 and Se80Te18M10 (M=Ag, Cd, In and Sb),” Semicond. Sci. Technol. 4(8), 681 (1999).

Other (1)

J.-L. Adam and X. Zhang, Chalcogenide glasses: preparation, properties and applications (Woodhead Publishing, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 FTIR spectra of SSS ChGs (a) the series with constant Sn content of 8 mol% ; (b) Sn content of 10 mol%; (c) Sn content of 12 mol%; (d) As40Se60, Ge20Sb15Se65 and a SSS glass sample (Sn12Sb10).
Fig. 2
Fig. 2 Plot of linear refractive index (n0 at 4 μm) as a function of molar content ratio between Sb and Se, the solid line is linear fitting. Inset shows the n0 as a function of the Sn/Se ratio, the solid lines are guide for eyes.
Fig. 3
Fig. 3 Plot of linear refractive index (n0 at 4 μm) as a function of bandgap energy (Eg) for the all SSS ChGs.
Fig. 4
Fig. 4 Dispersion curves of the five SSS glass samples (Sn6Sb20, Sn8Sb15, Sn8Sb20, Sn10Sb20 and Sn10Sb10).
Fig. 5
Fig. 5 Closed-aperture (CA) Z-scans of three SSS glass samples (Sn10Sb20, Sn10Sb15 and Sn10Sb10) as well as the As40Se60 glass. The solid lines are theoretical fitting.
Fig. 6
Fig. 6 (a) Open-aperture (OA) Z-scans of three SSS glass samples (Sn10Sb10, Sn10Sb15 and Sn10Sb20) as well as the As40Se60 glass, the solid lines are theoretical fitting; (b) Plotting of ln(1-TOA) versus lnI0 for the a representative SSS glass samples (Sn10Sb20), slope of ~2 confirms three-photon absorption, inset is OA Z-scans of the sample tested at laser power of 40, 45 and 50 μW respectively.
Fig. 7
Fig. 7 Plot of nonlinear refractive index (n2 at 4 μm) with three-photon absorption coefficient (a3 at 4 μm) for the all SSS ChGs as well as the As40Se60 glass.
Fig. 8
Fig. 8 Raman spectra of three series SSS ChGs grouped by Sn content.
Fig. 9
Fig. 9 Decomposed Raman spectra of three series SSS ChGs grouped by Sn content.
Fig. 10
Fig. 10 Variation of integral area for each Gaussian peak in Raman spectrum as a function of Sb content; The data points was obtained from SSS ChGs with Sn content of 8 mol% (black square), 10 mol% (red circle) and 12 mol% (green triangle).
Fig. 11
Fig. 11 (a) Variation of optical band gap (Eg) and linear refractive index (n0 at 4 μm) as a function of average coordination number (Z); (b) Variation of nonlinear refractive index (n2 at 4 μm) as a function of Z.

Tables (1)

Tables Icon

Table 1 Chemical composition, linear and and nonlinear infrared optical parameters of the SSS ChGs as well as the ChGs for reference.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

χ ( 3 ) = [ χ ( 1 ) ] 4 × 10 10 ( esu )
χ (1) = n 0 -1
v= 1 2π f M
E=Ecl+Erm
Ecl=DclEhp
Dcl= 4x+3y x+y+c
Ehp= [4xD(SeSn)+3yD(SeSb)] [4x+3y]
Erm= 2[0.5ZDcl]D(SeSe) Z ,Z= 4x+3y+2c x+y+c
v SL = n M 1 n S n L
T CA =1+ 4Δ ϕ 0 ( z/ z 0 ) [ 1+ ( z/ z 0 ) 2 ][ 9+ ( z/ z 0 ) 2 ]
T OA = 1 1+2 α 3 L eff { I 0 /[ 1+ ( z/ z 0 ) 2 ] } 2

Metrics