Abstract

Polarization attraction of a 10-Gb/s non-return-to-zero binary phase-shift keyed (NRZ-BPSK) signal has been successfully demonstrated for the first time in a counter-propagating beam configuration using a continuous-wave pump, in a highly nonlinear fiber, by utilizing the Kerr nonlinear cross-polarization process inherent to that fiber. The efficacy of mitigating polarization-dependent loss across polarization-sensitive devices was emulated with a linear polarizer located before the receiver. The receiver sensitivity penalty at 10−9 bit-error-rate relative to the baseline NRZ-BPSK signal was < 0.5 dB, when polarization attraction was employed for a polarization-scrambled signal (after achieving a degree of polarization > 90%). The results confirm that polarization attraction is independent of modulation format.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evaluation of the robustness of polarization attraction for 10.7-GBaud NRZ-BPSK after long-haul 100-GHz DWDM transmission

A. DeLong, W. Astar, B. M. Cannon, and G. M. Carter
Opt. Express 26(13) 16639-16669 (2018)

Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF

W. Astar, C.-C. Wei, Y.-J. Chen, J. Chen, and G. M. Carter
Opt. Express 16(16) 12039-12049 (2008)

All-optical amplitude-phase transmultiplexing of RZ-OOK and RZ-BPSK to RZ-QPSK by polarization-insensitive XPM using a nonlinear birefringent AlGaAs waveguide

B. M. Cannon, T. Mahmood, W. Astar, P. Apiratikul, G. Porkolab, P. Boudra, T. Mohsenin, C. J. K. Richardson, and G. M. Carter
Opt. Express 21(17) 19885-19899 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
    [Crossref]
  2. J. Garnier, J. Fatome, and G. Le Meur, “Statistical analysis of pulse propagation driven by polarization-mode dispersion,” J. Opt. Soc. Am. B 19(9), 1968–1977 (2002).
    [Crossref]
  3. M. Brodsky, N. J. Frigo, M. Boroditsky, and M. Tur, “Polarization mode dispersion of installed fibers,” J. Lightwave Technol. 24(12), 4584–4599 (2006).
    [Crossref]
  4. V. E. Chernov and B. A. Zon, “Depolarization of laser radiation in a nonlinear medium,” J. Opt. Soc. Am. B 10(2), 210–212 (1993).
    [Crossref]
  5. A. Picozzi, “Entropy and degree of polarization for nonlinear optical waves,” Opt. Lett. 29(14), 1653–1655 (2004).
    [Crossref] [PubMed]
  6. H. Prakash and D. K. Singh, “Change in coherence properties and degree of polarization of light propagating in a lossless isotropic nonlinear Kerr medium,” J. Phys. At. Mol. Opt. Phys. 41(4), 045401 (2008).
    [Crossref]
  7. B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photonics Technol. Lett. 12(11), 1582–1584 (2000).
    [Crossref]
  8. C. D. Poole and D. L. Favin, “Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,” J. Lightwave Technol. 12(6), 917–929 (1994).
    [Crossref]
  9. T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express 13(14), 5409–5415 (2005).
    [Crossref] [PubMed]
  10. K. Mishina, S. Kitagawa, and A. Maruta, “All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber,” Opt. Express 15(13), 8444–8453 (2007).
    [Crossref] [PubMed]
  11. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25(4), 257–259 (2000).
    [Crossref] [PubMed]
  12. S. Pitois and M. Haelterman, “Optical fiber polarization funnel,” in Nonlinear Guided Waves and Their Applications, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper MC79.
  13. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
    [Crossref] [PubMed]
  14. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010).
    [Crossref] [PubMed]
  15. P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19(18), 17158–17166 (2011).
    [Crossref] [PubMed]
  16. V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28(8), 1782–1791 (2011).
    [Crossref]
  17. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35(12), 2025–2027 (2010).
    [Crossref] [PubMed]
  18. M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Am. B 31(3), 572–580 (2014).
    [Crossref]
  19. V. V. Kozlov and S. Wabnitz, “Theoretical study of polarization attraction in high-birefringence and spun fibers,” Opt. Lett. 35(23), 3949–3951 (2010).
    [Crossref] [PubMed]
  20. E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36(20), 4038–4040 (2011).
    [Crossref] [PubMed]
  21. V. V. Kozlov, J. Nuño, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B 28(1), 100–108 (2011).
    [Crossref]
  22. M. Barozzi and A. Vannucci, “Dynamics of lossless polarization attraction,” Photon. Res. 3(5), 229–233 (2015).
    [Crossref]
  23. P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a lightbeam in optical fibers,” J. Opt. Soc. Am. B 29(8), 2046–2052 (2012).
    [Crossref]
  24. J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
    [Crossref]
  25. M. Barozzi and A. Vannucci, “Lossless polarization attraction of telecom signals: application to all-optical OSNR enhancement,” J. Opt. Soc. Am. B 31(11), 2712–2720 (2014).
    [Crossref]
  26. M. Barozzi, A. Vannucci, and G. Picchi, “All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer,” Proc. SPIE 9450, 94501G (2015).
  27. V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
    [Crossref]
  28. V. V. Kozlov, J. Nuño, J. D. Ania-Castanon, and S. Wabnitz, “Theoretical Study of Optical Fiber Raman Polarizers With Counterpropagating Beams,” J. Lightwave Technol. 29(3), 341–347 (2011).
    [Crossref]
  29. P. J. Winzer and R. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [Crossref]
  30. C. R. Menyuk and B. S. Marks, “Interaction of Polarization Mode Dispersion and Nonlinearity in Optical Fiber Transmission Systems,” J. Lightwave Technol. 24(7), 2806–2826 (2006).
    [Crossref]
  31. D. David, D. D. Holm, and M. V. Tratnik, “Hamiltonian Chaos in Nonlinear Optical Polarization Dynamics,” Phys. Rep. 187(6), 281–367 (1990).
    [Crossref]
  32. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
    [Crossref]
  33. R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “Electrostriction: Nonlinear Electromechanical Coupling in Solid Dielectrics,” J. Phys. Chem. B 101(48), 10141–10150 (1997).
    [Crossref]
  34. K. Inoue, T. Hasegawa, and H. Toba, “Influence of Stimulated Brillouin Scattering and Optimum Length in Fiber Four-Wave Mixing Wavelength Conversion,” IEEE Photonics Technol. Lett. 7(3), 327–329 (1995).
    [Crossref]
  35. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS Threshold in a Short Highly Nonlinear Fiber by Applying a Temperature Distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001).
    [Crossref]
  36. F. W. Willems and W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29(23), 2062–2063 (1993).
    [Crossref]
  37. F. W. Willems, W. Muys, and J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photonics Technol. Lett. 6(12), 1476–1478 (1994).
    [Crossref]
  38. P. A. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 9(11), 1576–1582 (1991).
    [Crossref]
  39. M. Barozzi and A. Vannucci, “Performance characterization and guidelines for the design of a counter-propagating nonlinear lossless polarizer,” J. Opt. Soc. Am. B 30(12), 3102–3112 (2013).
    [Crossref]
  40. J. Fatome, S. Pitois, P. Morin, E. Assémat, D. Sugny, A. Picozzi, H. R. Jauslin, G. Millot, V. V. Kozlov, and S. Wabnitz, “A universal optical all-fiber Omnipolarizer,” Sci. Rep. 2(1), 938 (2012).
    [Crossref] [PubMed]

2015 (3)

M. Barozzi and A. Vannucci, “Dynamics of lossless polarization attraction,” Photon. Res. 3(5), 229–233 (2015).
[Crossref]

M. Barozzi, A. Vannucci, and G. Picchi, “All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer,” Proc. SPIE 9450, 94501G (2015).

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (3)

J. Fatome, S. Pitois, P. Morin, E. Assémat, D. Sugny, A. Picozzi, H. R. Jauslin, G. Millot, V. V. Kozlov, and S. Wabnitz, “A universal optical all-fiber Omnipolarizer,” Sci. Rep. 2(1), 938 (2012).
[Crossref] [PubMed]

P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a lightbeam in optical fibers,” J. Opt. Soc. Am. B 29(8), 2046–2052 (2012).
[Crossref]

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
[Crossref]

2011 (5)

2010 (4)

2008 (2)

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
[Crossref] [PubMed]

H. Prakash and D. K. Singh, “Change in coherence properties and degree of polarization of light propagating in a lossless isotropic nonlinear Kerr medium,” J. Phys. At. Mol. Opt. Phys. 41(4), 045401 (2008).
[Crossref]

2007 (1)

2006 (3)

2005 (1)

2004 (1)

2002 (1)

2001 (1)

2000 (2)

B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photonics Technol. Lett. 12(11), 1582–1584 (2000).
[Crossref]

J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25(4), 257–259 (2000).
[Crossref] [PubMed]

1997 (1)

R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “Electrostriction: Nonlinear Electromechanical Coupling in Solid Dielectrics,” J. Phys. Chem. B 101(48), 10141–10150 (1997).
[Crossref]

1995 (1)

K. Inoue, T. Hasegawa, and H. Toba, “Influence of Stimulated Brillouin Scattering and Optimum Length in Fiber Four-Wave Mixing Wavelength Conversion,” IEEE Photonics Technol. Lett. 7(3), 327–329 (1995).
[Crossref]

1994 (2)

F. W. Willems, W. Muys, and J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photonics Technol. Lett. 6(12), 1476–1478 (1994).
[Crossref]

C. D. Poole and D. L. Favin, “Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,” J. Lightwave Technol. 12(6), 917–929 (1994).
[Crossref]

1993 (2)

V. E. Chernov and B. A. Zon, “Depolarization of laser radiation in a nonlinear medium,” J. Opt. Soc. Am. B 10(2), 210–212 (1993).
[Crossref]

F. W. Willems and W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29(23), 2062–2063 (1993).
[Crossref]

1991 (1)

P. A. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 9(11), 1576–1582 (1991).
[Crossref]

1990 (1)

D. David, D. D. Holm, and M. V. Tratnik, “Hamiltonian Chaos in Nonlinear Optical Polarization Dynamics,” Phys. Rep. 187(6), 281–367 (1990).
[Crossref]

1986 (1)

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

Andrekson, P. A.

Ania-Castanon, J. D.

Assemat, E.

Assémat, E.

Azizoglu, M.

P. A. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 9(11), 1576–1582 (1991).
[Crossref]

Barozzi, M.

Bennink, R. S.

Boivin, L.

B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photonics Technol. Lett. 12(11), 1582–1584 (2000).
[Crossref]

Boroditsky, M.

Boyd, R. W.

Brodsky, M.

Chernov, V. E.

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Claveau, R.

Collings, B. C.

B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photonics Technol. Lett. 12(11), 1582–1584 (2000).
[Crossref]

Dargent, D.

David, D.

D. David, D. D. Holm, and M. V. Tratnik, “Hamiltonian Chaos in Nonlinear Optical Polarization Dynamics,” Phys. Rep. 187(6), 281–367 (1990).
[Crossref]

Dross, F.

Essiambre, R.

Fatome, J.

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Am. B 31(3), 572–580 (2014).
[Crossref]

P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a lightbeam in optical fibers,” J. Opt. Soc. Am. B 29(8), 2046–2052 (2012).
[Crossref]

J. Fatome, S. Pitois, P. Morin, E. Assémat, D. Sugny, A. Picozzi, H. R. Jauslin, G. Millot, V. V. Kozlov, and S. Wabnitz, “A universal optical all-fiber Omnipolarizer,” Sci. Rep. 2(1), 938 (2012).
[Crossref] [PubMed]

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
[Crossref]

V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28(8), 1782–1791 (2011).
[Crossref]

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19(18), 17158–17166 (2011).
[Crossref] [PubMed]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010).
[Crossref] [PubMed]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
[Crossref] [PubMed]

J. Garnier, J. Fatome, and G. Le Meur, “Statistical analysis of pulse propagation driven by polarization-mode dispersion,” J. Opt. Soc. Am. B 19(9), 1968–1977 (2002).
[Crossref]

Favin, D. L.

C. D. Poole and D. L. Favin, “Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,” J. Lightwave Technol. 12(6), 917–929 (1994).
[Crossref]

Finot, C.

Fisher, R. A.

Frigo, N. J.

Garnier, J.

Guasoni, M.

Hansryd, J.

Hasegawa, T.

K. Inoue, T. Hasegawa, and H. Toba, “Influence of Stimulated Brillouin Scattering and Optimum Length in Fiber Four-Wave Mixing Wavelength Conversion,” IEEE Photonics Technol. Lett. 7(3), 327–329 (1995).
[Crossref]

Heebner, J. E.

Holm, D. D.

D. David, D. D. Holm, and M. V. Tratnik, “Hamiltonian Chaos in Nonlinear Optical Polarization Dynamics,” Phys. Rep. 187(6), 281–367 (1990).
[Crossref]

Humblet, P. A.

P. A. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 9(11), 1576–1582 (1991).
[Crossref]

Inoue, K.

K. Inoue, T. Hasegawa, and H. Toba, “Influence of Stimulated Brillouin Scattering and Optimum Length in Fiber Four-Wave Mixing Wavelength Conversion,” IEEE Photonics Technol. Lett. 7(3), 327–329 (1995).
[Crossref]

Jauslin, H. R.

Kitagawa, S.

Knudsen, S. N.

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Kozlov, V. V.

Lagrange, S.

Le Meur, G.

Leong, J. S.

F. W. Willems, W. Muys, and J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photonics Technol. Lett. 6(12), 1476–1478 (1994).
[Crossref]

Lima, M.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Lin, C.

Luis, R. S.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Marks, B. S.

Maruta, A.

Mendinueta, J. M. D.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Menyuk, C. R.

Millot, G.

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Am. B 31(3), 572–580 (2014).
[Crossref]

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
[Crossref]

J. Fatome, S. Pitois, P. Morin, E. Assémat, D. Sugny, A. Picozzi, H. R. Jauslin, G. Millot, V. V. Kozlov, and S. Wabnitz, “A universal optical all-fiber Omnipolarizer,” Sci. Rep. 2(1), 938 (2012).
[Crossref] [PubMed]

V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28(8), 1782–1791 (2011).
[Crossref]

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19(18), 17158–17166 (2011).
[Crossref] [PubMed]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010).
[Crossref] [PubMed]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
[Crossref] [PubMed]

Mishina, K.

Morin, P.

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Am. B 31(3), 572–580 (2014).
[Crossref]

P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a lightbeam in optical fibers,” J. Opt. Soc. Am. B 29(8), 2046–2052 (2012).
[Crossref]

J. Fatome, S. Pitois, P. Morin, E. Assémat, D. Sugny, A. Picozzi, H. R. Jauslin, G. Millot, V. V. Kozlov, and S. Wabnitz, “A universal optical all-fiber Omnipolarizer,” Sci. Rep. 2(1), 938 (2012).
[Crossref] [PubMed]

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
[Crossref]

V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28(8), 1782–1791 (2011).
[Crossref]

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19(18), 17158–17166 (2011).
[Crossref] [PubMed]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010).
[Crossref] [PubMed]

Muga, N. J. C.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Muys, W.

F. W. Willems, W. Muys, and J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photonics Technol. Lett. 6(12), 1476–1478 (1994).
[Crossref]

F. W. Willems and W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29(23), 2062–2063 (1993).
[Crossref]

Newnham, R. E.

R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “Electrostriction: Nonlinear Electromechanical Coupling in Solid Dielectrics,” J. Phys. Chem. B 101(48), 10141–10150 (1997).
[Crossref]

Nuño, J.

Picchi, G.

M. Barozzi, A. Vannucci, and G. Picchi, “All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer,” Proc. SPIE 9450, 94501G (2015).

Picozzi, A.

Pitois, S.

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Am. B 31(3), 572–580 (2014).
[Crossref]

P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a lightbeam in optical fibers,” J. Opt. Soc. Am. B 29(8), 2046–2052 (2012).
[Crossref]

J. Fatome, S. Pitois, P. Morin, E. Assémat, D. Sugny, A. Picozzi, H. R. Jauslin, G. Millot, V. V. Kozlov, and S. Wabnitz, “A universal optical all-fiber Omnipolarizer,” Sci. Rep. 2(1), 938 (2012).
[Crossref] [PubMed]

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
[Crossref]

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19(18), 17158–17166 (2011).
[Crossref] [PubMed]

V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28(8), 1782–1791 (2011).
[Crossref]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010).
[Crossref] [PubMed]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
[Crossref] [PubMed]

Poole, C. D.

C. D. Poole and D. L. Favin, “Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,” J. Lightwave Technol. 12(6), 917–929 (1994).
[Crossref]

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

Prakash, H.

H. Prakash and D. K. Singh, “Change in coherence properties and degree of polarization of light propagating in a lossless isotropic nonlinear Kerr medium,” J. Phys. At. Mol. Opt. Phys. 41(4), 045401 (2008).
[Crossref]

Puttnam, B. J.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Ribeiro, V. C.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Shahpari, A.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Shinada, S.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Shu, C.

Singh, D. K.

H. Prakash and D. K. Singh, “Change in coherence properties and degree of polarization of light propagating in a lossless isotropic nonlinear Kerr medium,” J. Phys. At. Mol. Opt. Phys. 41(4), 045401 (2008).
[Crossref]

Su, J.

R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “Electrostriction: Nonlinear Electromechanical Coupling in Solid Dielectrics,” J. Phys. Chem. B 101(48), 10141–10150 (1997).
[Crossref]

Sugny, D.

Sundar, V.

R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “Electrostriction: Nonlinear Electromechanical Coupling in Solid Dielectrics,” J. Phys. Chem. B 101(48), 10141–10150 (1997).
[Crossref]

Teixeira, A.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Toba, H.

K. Inoue, T. Hasegawa, and H. Toba, “Influence of Stimulated Brillouin Scattering and Optimum Length in Fiber Four-Wave Mixing Wavelength Conversion,” IEEE Photonics Technol. Lett. 7(3), 327–329 (1995).
[Crossref]

Tratnik, M. V.

D. David, D. D. Holm, and M. V. Tratnik, “Hamiltonian Chaos in Nonlinear Optical Polarization Dynamics,” Phys. Rep. 187(6), 281–367 (1990).
[Crossref]

Tur, M.

Vannucci, A.

Wabnitz, S.

Wada, N.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Wagner, R. E.

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

Westlund, M.

Willems, F. W.

F. W. Willems, W. Muys, and J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photonics Technol. Lett. 6(12), 1476–1478 (1994).
[Crossref]

F. W. Willems and W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29(23), 2062–2063 (1993).
[Crossref]

Winzer, P. J.

Yang, T.

Yimnirun, R.

R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “Electrostriction: Nonlinear Electromechanical Coupling in Solid Dielectrics,” J. Phys. Chem. B 101(48), 10141–10150 (1997).
[Crossref]

Zhang, Q. M.

R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “Electrostriction: Nonlinear Electromechanical Coupling in Solid Dielectrics,” J. Phys. Chem. B 101(48), 10141–10150 (1997).
[Crossref]

Zon, B. A.

Adv. Opt. Photonics (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Electron. Lett. (2)

F. W. Willems and W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29(23), 2062–2063 (1993).
[Crossref]

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (4)

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

F. W. Willems, W. Muys, and J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photonics Technol. Lett. 6(12), 1476–1478 (1994).
[Crossref]

K. Inoue, T. Hasegawa, and H. Toba, “Influence of Stimulated Brillouin Scattering and Optimum Length in Fiber Four-Wave Mixing Wavelength Conversion,” IEEE Photonics Technol. Lett. 7(3), 327–329 (1995).
[Crossref]

B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photonics Technol. Lett. 12(11), 1582–1584 (2000).
[Crossref]

J. Lightwave Technol. (7)

J. Opt. Soc. Am. B (8)

M. Barozzi and A. Vannucci, “Lossless polarization attraction of telecom signals: application to all-optical OSNR enhancement,” J. Opt. Soc. Am. B 31(11), 2712–2720 (2014).
[Crossref]

P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a lightbeam in optical fibers,” J. Opt. Soc. Am. B 29(8), 2046–2052 (2012).
[Crossref]

M. Barozzi and A. Vannucci, “Performance characterization and guidelines for the design of a counter-propagating nonlinear lossless polarizer,” J. Opt. Soc. Am. B 30(12), 3102–3112 (2013).
[Crossref]

V. E. Chernov and B. A. Zon, “Depolarization of laser radiation in a nonlinear medium,” J. Opt. Soc. Am. B 10(2), 210–212 (1993).
[Crossref]

J. Garnier, J. Fatome, and G. Le Meur, “Statistical analysis of pulse propagation driven by polarization-mode dispersion,” J. Opt. Soc. Am. B 19(9), 1968–1977 (2002).
[Crossref]

V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28(8), 1782–1791 (2011).
[Crossref]

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Am. B 31(3), 572–580 (2014).
[Crossref]

V. V. Kozlov, J. Nuño, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B 28(1), 100–108 (2011).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

H. Prakash and D. K. Singh, “Change in coherence properties and degree of polarization of light propagating in a lossless isotropic nonlinear Kerr medium,” J. Phys. At. Mol. Opt. Phys. 41(4), 045401 (2008).
[Crossref]

J. Phys. Chem. B (1)

R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “Electrostriction: Nonlinear Electromechanical Coupling in Solid Dielectrics,” J. Phys. Chem. B 101(48), 10141–10150 (1997).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Photon. Res. (1)

Phys. Rep. (1)

D. David, D. D. Holm, and M. V. Tratnik, “Hamiltonian Chaos in Nonlinear Optical Polarization Dynamics,” Phys. Rep. 187(6), 281–367 (1990).
[Crossref]

Proc. SPIE (1)

M. Barozzi, A. Vannucci, and G. Picchi, “All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer,” Proc. SPIE 9450, 94501G (2015).

Sci. Rep. (1)

J. Fatome, S. Pitois, P. Morin, E. Assémat, D. Sugny, A. Picozzi, H. R. Jauslin, G. Millot, V. V. Kozlov, and S. Wabnitz, “A universal optical all-fiber Omnipolarizer,” Sci. Rep. 2(1), 938 (2012).
[Crossref] [PubMed]

Other (1)

S. Pitois and M. Haelterman, “Optical fiber polarization funnel,” in Nonlinear Guided Waves and Their Applications, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper MC79.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Scheme for polarization attraction to a polarized SOP, of a signal with a scrambled SOP. PA visualizations of the signal are shown at the input and output planes of the HNLF.
Fig. 2
Fig. 2 Experimental setup for polarization attraction of a NRZ-BPSK signal. Each split in the optical path followed by a percentage indicates the presence of an optical coupler. (PPG: pulse pattern generator, PRBS: pseudo-random bit-sequence, PM: phase modulator, MPC: mechanical polarization controller, SBS: Stimulated Brillouin Scattering, Circ: circulator, Δα: variable optical attenuator, PS: polarization scrambler, HP-EDFA: high power erbium-doped fiber amplifier, LNF-EDFA: low-noise-figure EDFA, HNLF: highly nonlinear fiber, AWG: arrayed waveguide grating, AMZI: asymmetric Mach–Zehnder interferometer, PD: photo-detector, BPD: balanced PD, LA: limiting amplifier, VTH: threshold voltage, CDR: clock/data recovery module, CR: clock recovery module, ED: error-detector, OSNR: optical signal-to-noise ratio measurement, Trig.: Trigger for sampling oscilloscope, PRX: received power, PDET: detected power).
Fig. 3
Fig. 3 Input-output characteristic of the CW pump wave propagating in the HNLF with SBS suppression off (red diamonds), and SBS suppression on (green circles). A linear least-squares fit (black line) may be plotted for the latter, with a coefficient of determination R2 = 0.9999.
Fig. 4
Fig. 4 Input-output characteristic of the NRZ-BPSK signal propagating in the HNLF, where no SBS suppression was required. A linear least-squares fit (black line) may be plotted with a coefficient of determination R2 = 0.9999.
Fig. 5
Fig. 5 Output signal DOP as a function of CW pump power, demonstrating that DOP saturation is achieved at ≈1.3 W.
Fig. 6
Fig. 6 Polarization analyzer visualizations of the scrambled NRZ-BPSK signal’s state of polarization are captured with an average over 100 measurements. Figures are taken at the output of the HNLF with (a) CW pump off, DOP ≈9.4%, and (b) with CW pump on, DOP ≈91.2%.
Fig. 7
Fig. 7 Polarization attracted signal DOP as a function of CW pump wavelength. The signal wavelength was held fixed at 1545.3nm.
Fig. 8
Fig. 8 Power Spectra captured at a resolution bandwidth of 0.01 nm for the signal (red) and pump (blue) before injection into the HNLF (top row), the signal and pump after propagating the HNLF (second row), the AWG filter profile (black, third row), and the detected signal (green, bottom row).
Fig. 9
Fig. 9 Polarization scrambled NRZ-BPSK signal eye-diagrams captured in color-grade infinite persistence mode using a sampling oscilloscope module with a 50 GHz bandwidth and a 50 GHz balanced photo-detector at an OSNR > 40 dB/0.1nm. Figure 9(a) displays the signal captured for the baseline (HNLF bypassed), Fig. 9(b) displays the signal after propagating through the HNLF, Fig. 9(c) displays the signal at the output of the null modulator where polarization fluctuations are translated into PDL, and Fig. 9(d) displays the polarization-attracted signal at the output of the null modulator, when the eye-diagram opening is cleared of errors, using polarization attraction.
Fig. 10
Fig. 10 Receiver sensitivity measurements for NRZ-BPSK when the signal was scrambled, polarization attraction was employed, and the signal was observed at the output of the null modulator (red circles), compared against the baseline (black circles). When the CW pump was off, synchronization loss resulted at the error detector. An exponential least-squares fit may be applied to the polarization attraction data points with R2 = 0.999 (dotted red line), and another exponential least-squares fit may be applied to the baseline data points with R2 = 0.9995 (dotted black line). The theoretical receiver sensitivity for DPSK direct-detection in ASE-limited transmission systems, with a matched optical filter and no electrical post-filtering is also plotted (solid black line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

DOP= 1 S 0 + i=1 3 S i + 2 ,
BER=( 1 2 + 1 4 ΔB R OSNR ) e 2 ΔB R OSNR ,

Metrics