Abstract

We investigate that effect of the curvature on induced hybridization and modification of emission profiles for each chiral’s index single-wall carbon nanotubes (SWCNTs). According to the Schwinger two particle pair state method, we provide an analytical expression by calculating polar of spot intensity as a function of the polar angle. The emission profiles for indirect transition have an asymmetric shape as a function of the electron wave vector of the axis direction kt and depend on the chiral index. Here we show polarization-dependent, given analytically by expanding the matrix element into the scalar product of the light polarization vector and the dipole vector. These scalar products having a maximum value depend on the summation of phase factors of spinors of electrons in the conduction band Φc and valence band Φv. In the case of direct transition, dipole vector tube axis is maximum at the phase summation of Φc and Φv is 0 or 2π. In contrast, the maximum dipole vector circumference is obtained at the phase summation of π for the case of indirect transition. We can predict a strong emission peak and emission profiles which can be used to identify optical transitions in an individual SWCNT with different chiral indices experimentally.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices

Martin H.P. Pfeiffer, Ninette Stürzl, Christoph W. Marquardt, Michael Engel, Simone Dehm, Frank Hennrich, Manfred M. Kappes, Uli Lemmer, and Ralph Krupke
Opt. Express 19(S6) A1184-A1189 (2011)

Carbon nanotube arrays based high-performance infrared photodetector [Invited]

Qingsheng Zeng, Sheng Wang, Leijing Yang, Zhenxing Wang, Tian Pei, Zhiyong Zhang, Lian-Mao Peng, Weiwei Zhou, Jie Liu, Weiya Zhou, and Sishen Xie
Opt. Mater. Express 2(6) 839-848 (2012)

Structure–property relations in individual carbon nanotubes [Invited]

Fengrui Yao, Jingyi Tang, Feng Wang, and Kaihui Liu
J. Opt. Soc. Am. B 33(7) C102-C107 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
    [Crossref] [PubMed]
  2. E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Rev. Mod. Phys. 87, 703 (2015).
    [Crossref]
  3. R. Rosati, F. Dolcini, and F. Rossi, “Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation,” Phy. Rev. B 92, 235423 (2015).
    [Crossref]
  4. Z. Li, B. Bai, C. Li, and Q. Dai, “Efficient photo-thermionic emission from carbon nanotube arrays,” Carbon 96, 641 (2016).
    [Crossref]
  5. T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An Electrically driven, ultrahigh-Speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14, 3277 (2014).
    [Crossref] [PubMed]
  6. Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
    [Crossref]
  7. Y. Fan, S. B. Singer, R. Bergstrom, and B. C. Regan, “Probing Planck’s law with incandescent light emission from a single carbon nanotube,” Phys. Rev. Lett. 102, 187402 (2009).
    [Crossref]
  8. Y. Miyauchi, “Photoluminescence studies on exciton photophysics in carbon nanotubes,” J. Mater. Chem. C 1, 6499 (2013).
    [Crossref]
  9. M. Fujiwara, D. Tsuya, and H. Maki, “Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices,” Appl. Phys. Lett. 103, 143122 (2013).
    [Crossref]
  10. M. Barkelid, G. A. Steele, and V. Zwiller, “Probing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy,” Nano Lett. 11, 5649 (2012).
    [Crossref]
  11. S. B. Singer, M. Mecklenburg, E. R. White, and B. C. Regan, “Polarized light emission from individual incandescent carbon nanotubes,” Phy. Rev. B 83, 233404 (2011).
    [Crossref]
  12. C. Fantini, J. Cassimiro, V.S.T. Peressinotto, F. Plentz, A.G. Souza Filho, C.A. Furtado, and A.P. Santos, “Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants,” Chem. Phys. Lett. 473, 96 (2009).
    [Crossref]
  13. Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
    [Crossref]
  14. W. Izumida, A. Vikström, and R. Saito, “Asymmetric velocities of Dirac particles and Vernier spectrum in metallic single-wall carbon nanotubes,” Phy. Rev. B 85, 165430 (2012).
    [Crossref]
  15. W. Izumida, R. Okuyama, A. Yamakage, and R. Saito, “Angular momentum and topology in semiconducting single-wall carbon nanotubes,” Phy. Rev. B 93, 195442 (2016).
    [Crossref]
  16. M. Mecklenburg, Jason Woo, and B. C. Regan, “Tree-level electron-photon interactions in graphene,” Phys. Rev. B 81, 245401 (2010).
    [Crossref]
  17. B. Rosenstein, M. Lewkowicz, and H. C. Kao, “Signature of the Schwinger pair creation rate via radiation generated in graphene by a strong electric current,” J. Phys.: Conf. Ser. 400, 042051 (2012).
  18. J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951).
    [Crossref]
  19. P. Fanbanraia, A. Hutema, and S. Boonchui, “Effects of strain on the Schwinger pair creation in graphene,” Physica B 472, 84 (2015).
    [Crossref]
  20. T. Ando, “Theory of electronic states and transport in carbon nanotubes,” J. Phys. Soc. Jpn. 74, 777 (2005).
    [Crossref]
  21. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College, London, 1998).
    [Crossref]
  22. H. C. Kao, M. Lewkowicz, and B. Rosenstein, “Ballistic transport, chiral anomaly, and emergence of the neutral electron-hole plasma in graphene,” Phys. Rev. B 82, 035406 (2010).
    [Crossref]
  23. A. H. Davoody, F. Karimi, M. S. Arnold, and I. Knezevic, “Theory of exciton energy transfer in carbon nanotube composites,” J. Phys. Chem. C 30, 16354 (2016).
    [Crossref]
  24. E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, “Analytical approach to optical absorption in carbon nanotubes,” Phys. Rev. B 74, 195431 (2016).
    [Crossref]
  25. K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
    [Crossref] [PubMed]
  26. C. L. Kane and E. J. Mele, “Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes,” Phys. Rev. B 78, 1932 (1997).
  27. Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard, “Definitive Band Gaps for Single-Wall Carbon Nanotubes,” J. Phys. Chem. Lett 1, 2964 (2010).
    [Crossref]

2016 (4)

Z. Li, B. Bai, C. Li, and Q. Dai, “Efficient photo-thermionic emission from carbon nanotube arrays,” Carbon 96, 641 (2016).
[Crossref]

W. Izumida, R. Okuyama, A. Yamakage, and R. Saito, “Angular momentum and topology in semiconducting single-wall carbon nanotubes,” Phy. Rev. B 93, 195442 (2016).
[Crossref]

A. H. Davoody, F. Karimi, M. S. Arnold, and I. Knezevic, “Theory of exciton energy transfer in carbon nanotube composites,” J. Phys. Chem. C 30, 16354 (2016).
[Crossref]

E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, “Analytical approach to optical absorption in carbon nanotubes,” Phys. Rev. B 74, 195431 (2016).
[Crossref]

2015 (4)

P. Fanbanraia, A. Hutema, and S. Boonchui, “Effects of strain on the Schwinger pair creation in graphene,” Physica B 472, 84 (2015).
[Crossref]

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Rev. Mod. Phys. 87, 703 (2015).
[Crossref]

R. Rosati, F. Dolcini, and F. Rossi, “Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation,” Phy. Rev. B 92, 235423 (2015).
[Crossref]

2014 (2)

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An Electrically driven, ultrahigh-Speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14, 3277 (2014).
[Crossref] [PubMed]

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Miyauchi, “Photoluminescence studies on exciton photophysics in carbon nanotubes,” J. Mater. Chem. C 1, 6499 (2013).
[Crossref]

M. Fujiwara, D. Tsuya, and H. Maki, “Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices,” Appl. Phys. Lett. 103, 143122 (2013).
[Crossref]

2012 (4)

M. Barkelid, G. A. Steele, and V. Zwiller, “Probing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy,” Nano Lett. 11, 5649 (2012).
[Crossref]

W. Izumida, A. Vikström, and R. Saito, “Asymmetric velocities of Dirac particles and Vernier spectrum in metallic single-wall carbon nanotubes,” Phy. Rev. B 85, 165430 (2012).
[Crossref]

B. Rosenstein, M. Lewkowicz, and H. C. Kao, “Signature of the Schwinger pair creation rate via radiation generated in graphene by a strong electric current,” J. Phys.: Conf. Ser. 400, 042051 (2012).

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

2011 (1)

S. B. Singer, M. Mecklenburg, E. R. White, and B. C. Regan, “Polarized light emission from individual incandescent carbon nanotubes,” Phy. Rev. B 83, 233404 (2011).
[Crossref]

2010 (3)

M. Mecklenburg, Jason Woo, and B. C. Regan, “Tree-level electron-photon interactions in graphene,” Phys. Rev. B 81, 245401 (2010).
[Crossref]

H. C. Kao, M. Lewkowicz, and B. Rosenstein, “Ballistic transport, chiral anomaly, and emergence of the neutral electron-hole plasma in graphene,” Phys. Rev. B 82, 035406 (2010).
[Crossref]

Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard, “Definitive Band Gaps for Single-Wall Carbon Nanotubes,” J. Phys. Chem. Lett 1, 2964 (2010).
[Crossref]

2009 (2)

Y. Fan, S. B. Singer, R. Bergstrom, and B. C. Regan, “Probing Planck’s law with incandescent light emission from a single carbon nanotube,” Phys. Rev. Lett. 102, 187402 (2009).
[Crossref]

C. Fantini, J. Cassimiro, V.S.T. Peressinotto, F. Plentz, A.G. Souza Filho, C.A. Furtado, and A.P. Santos, “Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants,” Chem. Phys. Lett. 473, 96 (2009).
[Crossref]

2006 (1)

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

2005 (1)

T. Ando, “Theory of electronic states and transport in carbon nanotubes,” J. Phys. Soc. Jpn. 74, 777 (2005).
[Crossref]

1997 (1)

C. L. Kane and E. J. Mele, “Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes,” Phys. Rev. B 78, 1932 (1997).

1951 (1)

J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951).
[Crossref]

Aloni, S.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Ando, T.

T. Ando, “Theory of electronic states and transport in carbon nanotubes,” J. Phys. Soc. Jpn. 74, 777 (2005).
[Crossref]

Arakawa, Y.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Arnold, M. S.

A. H. Davoody, F. Karimi, M. S. Arnold, and I. Knezevic, “Theory of exciton energy transfer in carbon nanotube composites,” J. Phys. Chem. C 30, 16354 (2016).
[Crossref]

Bai, B.

Z. Li, B. Bai, C. Li, and Q. Dai, “Efficient photo-thermionic emission from carbon nanotube arrays,” Carbon 96, 641 (2016).
[Crossref]

Bai, X.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Barkelid, M.

M. Barkelid, G. A. Steele, and V. Zwiller, “Probing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy,” Nano Lett. 11, 5649 (2012).
[Crossref]

Berciaud, S.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Bergstrom, R.

Y. Fan, S. B. Singer, R. Bergstrom, and B. C. Regan, “Probing Planck’s law with incandescent light emission from a single carbon nanotube,” Phys. Rev. Lett. 102, 187402 (2009).
[Crossref]

Boonchui, S.

P. Fanbanraia, A. Hutema, and S. Boonchui, “Effects of strain on the Schwinger pair creation in graphene,” Physica B 472, 84 (2015).
[Crossref]

Capaz, R. B.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Cassimiro, J.

C. Fantini, J. Cassimiro, V.S.T. Peressinotto, F. Plentz, A.G. Souza Filho, C.A. Furtado, and A.P. Santos, “Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants,” Chem. Phys. Lett. 473, 96 (2009).
[Crossref]

Dai, Q.

Z. Li, B. Bai, C. Li, and Q. Dai, “Efficient photo-thermionic emission from carbon nanotube arrays,” Carbon 96, 641 (2016).
[Crossref]

Davoody, A. H.

A. H. Davoody, F. Karimi, M. S. Arnold, and I. Knezevic, “Theory of exciton energy transfer in carbon nanotube composites,” J. Phys. Chem. C 30, 16354 (2016).
[Crossref]

Deshpande, V. V.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Deslippe, J.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Dolcini, F.

R. Rosati, F. Dolcini, and F. Rossi, “Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation,” Phy. Rev. B 92, 235423 (2015).
[Crossref]

Dresselhaus, G.

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College, London, 1998).
[Crossref]

Dresselhaus, M. S.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College, London, 1998).
[Crossref]

Dresselhaus, M.S.

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

Fan, Y.

Y. Fan, S. B. Singer, R. Bergstrom, and B. C. Regan, “Probing Planck’s law with incandescent light emission from a single carbon nanotube,” Phys. Rev. Lett. 102, 187402 (2009).
[Crossref]

Fanbanraia, P.

P. Fanbanraia, A. Hutema, and S. Boonchui, “Effects of strain on the Schwinger pair creation in graphene,” Physica B 472, 84 (2015).
[Crossref]

Fantini, C.

C. Fantini, J. Cassimiro, V.S.T. Peressinotto, F. Plentz, A.G. Souza Filho, C.A. Furtado, and A.P. Santos, “Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants,” Chem. Phys. Lett. 473, 96 (2009).
[Crossref]

Flensberg, K.

E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Rev. Mod. Phys. 87, 703 (2015).
[Crossref]

Fujiwara, M.

M. Fujiwara, D. Tsuya, and H. Maki, “Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices,” Appl. Phys. Lett. 103, 143122 (2013).
[Crossref]

Furtado, C.A.

C. Fantini, J. Cassimiro, V.S.T. Peressinotto, F. Plentz, A.G. Souza Filho, C.A. Furtado, and A.P. Santos, “Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants,” Chem. Phys. Lett. 473, 96 (2009).
[Crossref]

Goddard, W. A.

Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard, “Definitive Band Gaps for Single-Wall Carbon Nanotubes,” J. Phys. Chem. Lett 1, 2964 (2010).
[Crossref]

Grove-Rasmussen, K.

E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Rev. Mod. Phys. 87, 703 (2015).
[Crossref]

Grüneis, A.

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

Heinz, T. F.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Hirtschulz, M.

E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, “Analytical approach to optical absorption in carbon nanotubes,” Phys. Rev. B 74, 195431 (2016).
[Crossref]

Honda, S.

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An Electrically driven, ultrahigh-Speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14, 3277 (2014).
[Crossref] [PubMed]

Hone, J.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Hong, X.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Hutema, A.

P. Fanbanraia, A. Hutema, and S. Boonchui, “Effects of strain on the Schwinger pair creation in graphene,” Physica B 472, 84 (2015).
[Crossref]

Imamura, S.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Ishii, A.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Iwamoto, S.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Izumida, W.

W. Izumida, R. Okuyama, A. Yamakage, and R. Saito, “Angular momentum and topology in semiconducting single-wall carbon nanotubes,” Phy. Rev. B 93, 195442 (2016).
[Crossref]

W. Izumida, A. Vikström, and R. Saito, “Asymmetric velocities of Dirac particles and Vernier spectrum in metallic single-wall carbon nanotubes,” Phy. Rev. B 85, 165430 (2012).
[Crossref]

Jiang, J.

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

Jorio, A.

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

Kane, C. L.

C. L. Kane and E. J. Mele, “Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes,” Phys. Rev. B 78, 1932 (1997).

Kao, H. C.

B. Rosenstein, M. Lewkowicz, and H. C. Kao, “Signature of the Schwinger pair creation rate via radiation generated in graphene by a strong electric current,” J. Phys.: Conf. Ser. 400, 042051 (2012).

H. C. Kao, M. Lewkowicz, and B. Rosenstein, “Ballistic transport, chiral anomaly, and emergence of the neutral electron-hole plasma in graphene,” Phys. Rev. B 82, 035406 (2010).
[Crossref]

Karimi, F.

A. H. Davoody, F. Karimi, M. S. Arnold, and I. Knezevic, “Theory of exciton energy transfer in carbon nanotube composites,” J. Phys. Chem. C 30, 16354 (2016).
[Crossref]

Kato, Y. K.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Kim, P.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Knezevic, I.

A. H. Davoody, F. Karimi, M. S. Arnold, and I. Knezevic, “Theory of exciton energy transfer in carbon nanotube composites,” J. Phys. Chem. C 30, 16354 (2016).
[Crossref]

Knorr, A.

E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, “Analytical approach to optical absorption in carbon nanotubes,” Phys. Rev. B 74, 195431 (2016).
[Crossref]

Kouwenhoven, L. P.

E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Rev. Mod. Phys. 87, 703 (2015).
[Crossref]

Kuemmeth, F.

E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Rev. Mod. Phys. 87, 703 (2015).
[Crossref]

Laird, E. A.

E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Rev. Mod. Phys. 87, 703 (2015).
[Crossref]

Lewkowicz, M.

B. Rosenstein, M. Lewkowicz, and H. C. Kao, “Signature of the Schwinger pair creation rate via radiation generated in graphene by a strong electric current,” J. Phys.: Conf. Ser. 400, 042051 (2012).

H. C. Kao, M. Lewkowicz, and B. Rosenstein, “Ballistic transport, chiral anomaly, and emergence of the neutral electron-hole plasma in graphene,” Phys. Rev. B 82, 035406 (2010).
[Crossref]

Li, C.

Z. Li, B. Bai, C. Li, and Q. Dai, “Efficient photo-thermionic emission from carbon nanotube arrays,” Carbon 96, 641 (2016).
[Crossref]

Li, Z.

Z. Li, B. Bai, C. Li, and Q. Dai, “Efficient photo-thermionic emission from carbon nanotube arrays,” Carbon 96, 641 (2016).
[Crossref]

Liu, K.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Liu, X.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Louie, S. G.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Lu, C.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Maki, H.

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An Electrically driven, ultrahigh-Speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14, 3277 (2014).
[Crossref] [PubMed]

M. Fujiwara, D. Tsuya, and H. Maki, “Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices,” Appl. Phys. Lett. 103, 143122 (2013).
[Crossref]

Malic, E.

E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, “Analytical approach to optical absorption in carbon nanotubes,” Phys. Rev. B 74, 195431 (2016).
[Crossref]

Maruyama, S.

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

Matsuda, Y.

Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard, “Definitive Band Gaps for Single-Wall Carbon Nanotubes,” J. Phys. Chem. Lett 1, 2964 (2010).
[Crossref]

Mecklenburg, M.

S. B. Singer, M. Mecklenburg, E. R. White, and B. C. Regan, “Polarized light emission from individual incandescent carbon nanotubes,” Phy. Rev. B 83, 233404 (2011).
[Crossref]

M. Mecklenburg, Jason Woo, and B. C. Regan, “Tree-level electron-photon interactions in graphene,” Phys. Rev. B 81, 245401 (2010).
[Crossref]

Mele, E. J.

C. L. Kane and E. J. Mele, “Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes,” Phys. Rev. B 78, 1932 (1997).

Milde, F.

E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, “Analytical approach to optical absorption in carbon nanotubes,” Phys. Rev. B 74, 195431 (2016).
[Crossref]

Miura, R.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Miyauchi, Y.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Y. Miyauchi, “Photoluminescence studies on exciton photophysics in carbon nanotubes,” J. Mater. Chem. C 1, 6499 (2013).
[Crossref]

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

Mori, T.

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An Electrically driven, ultrahigh-Speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14, 3277 (2014).
[Crossref] [PubMed]

Nygård, J.

E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Rev. Mod. Phys. 87, 703 (2015).
[Crossref]

Ohta, R.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Okuyama, R.

W. Izumida, R. Okuyama, A. Yamakage, and R. Saito, “Angular momentum and topology in semiconducting single-wall carbon nanotubes,” Phy. Rev. B 93, 195442 (2016).
[Crossref]

Oyama, Y.

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

Perebeinos, V.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Peressinotto, V.S.T.

C. Fantini, J. Cassimiro, V.S.T. Peressinotto, F. Plentz, A.G. Souza Filho, C.A. Furtado, and A.P. Santos, “Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants,” Chem. Phys. Lett. 473, 96 (2009).
[Crossref]

Plentz, F.

C. Fantini, J. Cassimiro, V.S.T. Peressinotto, F. Plentz, A.G. Souza Filho, C.A. Furtado, and A.P. Santos, “Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants,” Chem. Phys. Lett. 473, 96 (2009).
[Crossref]

Regan, B. C.

S. B. Singer, M. Mecklenburg, E. R. White, and B. C. Regan, “Polarized light emission from individual incandescent carbon nanotubes,” Phy. Rev. B 83, 233404 (2011).
[Crossref]

M. Mecklenburg, Jason Woo, and B. C. Regan, “Tree-level electron-photon interactions in graphene,” Phys. Rev. B 81, 245401 (2010).
[Crossref]

Y. Fan, S. B. Singer, R. Bergstrom, and B. C. Regan, “Probing Planck’s law with incandescent light emission from a single carbon nanotube,” Phys. Rev. Lett. 102, 187402 (2009).
[Crossref]

Reich, S.

E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, “Analytical approach to optical absorption in carbon nanotubes,” Phys. Rev. B 74, 195431 (2016).
[Crossref]

Rosati, R.

R. Rosati, F. Dolcini, and F. Rossi, “Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation,” Phy. Rev. B 92, 235423 (2015).
[Crossref]

Rosenstein, B.

B. Rosenstein, M. Lewkowicz, and H. C. Kao, “Signature of the Schwinger pair creation rate via radiation generated in graphene by a strong electric current,” J. Phys.: Conf. Ser. 400, 042051 (2012).

H. C. Kao, M. Lewkowicz, and B. Rosenstein, “Ballistic transport, chiral anomaly, and emergence of the neutral electron-hole plasma in graphene,” Phys. Rev. B 82, 035406 (2010).
[Crossref]

Rossi, F.

R. Rosati, F. Dolcini, and F. Rossi, “Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation,” Phy. Rev. B 92, 235423 (2015).
[Crossref]

Saito, R.

W. Izumida, R. Okuyama, A. Yamakage, and R. Saito, “Angular momentum and topology in semiconducting single-wall carbon nanotubes,” Phy. Rev. B 93, 195442 (2016).
[Crossref]

W. Izumida, A. Vikström, and R. Saito, “Asymmetric velocities of Dirac particles and Vernier spectrum in metallic single-wall carbon nanotubes,” Phy. Rev. B 85, 165430 (2012).
[Crossref]

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College, London, 1998).
[Crossref]

Samsonidze, Ge. G.

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

Santos, A.P.

C. Fantini, J. Cassimiro, V.S.T. Peressinotto, F. Plentz, A.G. Souza Filho, C.A. Furtado, and A.P. Santos, “Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants,” Chem. Phys. Lett. 473, 96 (2009).
[Crossref]

Sato, K.

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

Schwinger, J.

J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951).
[Crossref]

Shimada, T.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Singer, S. B.

S. B. Singer, M. Mecklenburg, E. R. White, and B. C. Regan, “Polarized light emission from individual incandescent carbon nanotubes,” Phy. Rev. B 83, 233404 (2011).
[Crossref]

Y. Fan, S. B. Singer, R. Bergstrom, and B. C. Regan, “Probing Planck’s law with incandescent light emission from a single carbon nanotube,” Phys. Rev. Lett. 102, 187402 (2009).
[Crossref]

Souza Filho, A.G.

C. Fantini, J. Cassimiro, V.S.T. Peressinotto, F. Plentz, A.G. Souza Filho, C.A. Furtado, and A.P. Santos, “Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants,” Chem. Phys. Lett. 473, 96 (2009).
[Crossref]

Steele, G. A.

E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Rev. Mod. Phys. 87, 703 (2015).
[Crossref]

M. Barkelid, G. A. Steele, and V. Zwiller, “Probing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy,” Nano Lett. 11, 5649 (2012).
[Crossref]

Suzuura, H.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Tahir-Kheli, J.

Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard, “Definitive Band Gaps for Single-Wall Carbon Nanotubes,” J. Phys. Chem. Lett 1, 2964 (2010).
[Crossref]

Takekoshi, M.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Tomio, Y.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Tsuya, D.

M. Fujiwara, D. Tsuya, and H. Maki, “Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices,” Appl. Phys. Lett. 103, 143122 (2013).
[Crossref]

Vikström, A.

W. Izumida, A. Vikström, and R. Saito, “Asymmetric velocities of Dirac particles and Vernier spectrum in metallic single-wall carbon nanotubes,” Phy. Rev. B 85, 165430 (2012).
[Crossref]

Wang, E.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Wang, F.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Wang, W.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

White, E. R.

S. B. Singer, M. Mecklenburg, E. R. White, and B. C. Regan, “Polarized light emission from individual incandescent carbon nanotubes,” Phy. Rev. B 83, 233404 (2011).
[Crossref]

Woo, Jason

M. Mecklenburg, Jason Woo, and B. C. Regan, “Tree-level electron-photon interactions in graphene,” Phys. Rev. B 81, 245401 (2010).
[Crossref]

Xiao, F.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Yamakage, A.

W. Izumida, R. Okuyama, A. Yamakage, and R. Saito, “Angular momentum and topology in semiconducting single-wall carbon nanotubes,” Phy. Rev. B 93, 195442 (2016).
[Crossref]

Yamauchi, Y.

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An Electrically driven, ultrahigh-Speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14, 3277 (2014).
[Crossref] [PubMed]

Zettl, A.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Zhang, Z.

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

Zwiller, V.

M. Barkelid, G. A. Steele, and V. Zwiller, “Probing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy,” Nano Lett. 11, 5649 (2012).
[Crossref]

Appl. Phys. Lett. (1)

M. Fujiwara, D. Tsuya, and H. Maki, “Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices,” Appl. Phys. Lett. 103, 143122 (2013).
[Crossref]

Carbon (2)

Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes,” Carbon 44, 873 (2006).
[Crossref]

Z. Li, B. Bai, C. Li, and Q. Dai, “Efficient photo-thermionic emission from carbon nanotube arrays,” Carbon 96, 641 (2016).
[Crossref]

Chem. Phys. Lett. (1)

C. Fantini, J. Cassimiro, V.S.T. Peressinotto, F. Plentz, A.G. Souza Filho, C.A. Furtado, and A.P. Santos, “Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants,” Chem. Phys. Lett. 473, 96 (2009).
[Crossref]

J. Mater. Chem. C (1)

Y. Miyauchi, “Photoluminescence studies on exciton photophysics in carbon nanotubes,” J. Mater. Chem. C 1, 6499 (2013).
[Crossref]

J. Phys. Chem. C (1)

A. H. Davoody, F. Karimi, M. S. Arnold, and I. Knezevic, “Theory of exciton energy transfer in carbon nanotube composites,” J. Phys. Chem. C 30, 16354 (2016).
[Crossref]

J. Phys. Chem. Lett (1)

Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard, “Definitive Band Gaps for Single-Wall Carbon Nanotubes,” J. Phys. Chem. Lett 1, 2964 (2010).
[Crossref]

J. Phys. Soc. Jpn. (1)

T. Ando, “Theory of electronic states and transport in carbon nanotubes,” J. Phys. Soc. Jpn. 74, 777 (2005).
[Crossref]

J. Phys.: Conf. Ser. (1)

B. Rosenstein, M. Lewkowicz, and H. C. Kao, “Signature of the Schwinger pair creation rate via radiation generated in graphene by a strong electric current,” J. Phys.: Conf. Ser. 400, 042051 (2012).

Nano Lett. (2)

M. Barkelid, G. A. Steele, and V. Zwiller, “Probing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy,” Nano Lett. 11, 5649 (2012).
[Crossref]

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An Electrically driven, ultrahigh-Speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14, 3277 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7, 325 (2012).
[Crossref] [PubMed]

Phy. Rev. B (5)

R. Rosati, F. Dolcini, and F. Rossi, “Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation,” Phy. Rev. B 92, 235423 (2015).
[Crossref]

Y. Miyauchi, Z. Zhang, M. Takekoshi, Y. Tomio, H. Suzuura, V. Perebeinos, V. V. Deshpande, C. Lu, S. Berciaud, P. Kim, J. Hone, and T. F. Heinz, “Tunable electronic correlation effects in nanotube-light interactions,” Phy. Rev. B 92, 205407 (2015).
[Crossref]

S. B. Singer, M. Mecklenburg, E. R. White, and B. C. Regan, “Polarized light emission from individual incandescent carbon nanotubes,” Phy. Rev. B 83, 233404 (2011).
[Crossref]

W. Izumida, A. Vikström, and R. Saito, “Asymmetric velocities of Dirac particles and Vernier spectrum in metallic single-wall carbon nanotubes,” Phy. Rev. B 85, 165430 (2012).
[Crossref]

W. Izumida, R. Okuyama, A. Yamakage, and R. Saito, “Angular momentum and topology in semiconducting single-wall carbon nanotubes,” Phy. Rev. B 93, 195442 (2016).
[Crossref]

Phys. Rev. (1)

J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951).
[Crossref]

Phys. Rev. B (4)

M. Mecklenburg, Jason Woo, and B. C. Regan, “Tree-level electron-photon interactions in graphene,” Phys. Rev. B 81, 245401 (2010).
[Crossref]

C. L. Kane and E. J. Mele, “Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes,” Phys. Rev. B 78, 1932 (1997).

E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, “Analytical approach to optical absorption in carbon nanotubes,” Phys. Rev. B 74, 195431 (2016).
[Crossref]

H. C. Kao, M. Lewkowicz, and B. Rosenstein, “Ballistic transport, chiral anomaly, and emergence of the neutral electron-hole plasma in graphene,” Phys. Rev. B 82, 035406 (2010).
[Crossref]

Phys. Rev. Lett. (1)

Y. Fan, S. B. Singer, R. Bergstrom, and B. C. Regan, “Probing Planck’s law with incandescent light emission from a single carbon nanotube,” Phys. Rev. Lett. 102, 187402 (2009).
[Crossref]

Physica B (1)

P. Fanbanraia, A. Hutema, and S. Boonchui, “Effects of strain on the Schwinger pair creation in graphene,” Physica B 472, 84 (2015).
[Crossref]

Rev. Mod. Phys. (1)

E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Rev. Mod. Phys. 87, 703 (2015).
[Crossref]

Other (1)

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College, London, 1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic picture are respectively corresponding to two characteristic curves for photoluminescence (PL) spectroscopy with experimental results as [10]. (a) sin2θγcos2θγ for the direct transition µ = 0 as , (b) A + Bsin2θγ + Csin4θγ for the indirect transition µ = ±1 as ± 1.
Fig. 2
Fig. 2 Schematic picture are energy band gap via each diameters (a) metallic SWCNTs, (b) semiconducting type I SWCNTs and (c) semiconducting type II SWCNTs.
Fig. 3
Fig. 3 (a)–(c) kγ of metallic SWCNTs, (d)–(f) kγ of semiconducting type I SWCNTs and (g)–(i) kγ of semiconducting type II SWCNT.
Fig. 4
Fig. 4 Show the magnitude of dipole vector tube axis (ℳz) and circumference (ℳxy) for the initial electron wavenumber ktτΔk = 0.025 nm−1. (a)–(c) metallic SWCNTs, (d)–(f) semiconducting type I SWCNTs, (g)–(i) semiconducting type II.
Fig. 5
Fig. 5 Show the magnitude of dipole vector tube axis (ℳz) and circumference (ℳxy) for the initial electron wavenumber ktτΔk = −0.025 nm−1. (a)–(c) metallic SWCNTs, (d)–(f) semiconducting type I SWCNTs, (g)–(i) semiconducting type II.
Fig. 6
Fig. 6 Emission profiles at chiral angle of 0° for the initial electron wavenumber ktτΔk = ±0.025 nm−1 in (a) Metallic SWCNTs transition M1− → M0 (b) Semiconducting type I SWCNTs transition S3 → S1 (c) Semiconducting type II SWCNTs transition S3 → S1.
Fig. 7
Fig. 7 Emission profiles versus tube diameter at chiral angle ≈ 25.3° for the initial electron wavenumber ktτΔk = ±0.025 nm−1 (a) Metallic SWCNTs transition M1− → M0 (b) Semiconducting Type I SWCNTs transition S3 → S1 (c) Semiconducting Type II SWCNTs transition S3 → S1.
Fig. 8
Fig. 8 Show maximum radiation via tube diameter and each chiral angles for ktτΔk = 0.025 nm−1. (a)–(c) Maximum radiation of metallic SWCNTs (d)–(f) Maximum radiation of Semiconducting type I SWCNTs (g)–(i) Maximum radiation of semiconducting type II SWCNTs.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

ρ 0 ( n , m ) = a 2 π n 2 + n m + m 2 , θ ( n , m ) = A r c c o s [ 2 n + m 2 n 2 + n m + m 2 ] .
0 + c v π + c v σ π .
c v π = v F ( τ Δ q σ 1 Δ k σ 2 )
Δ q = 4 β c o s 3 θ ρ 0 2 , Δ k = 4 ζ s i n 3 θ ρ 0 2 ,
c v σ π = 4 ρ 0 2 [ c 1 q σ 1 + c 2 τ k σ 2 + c 3 q σ 1 + c 4 τ k σ 2 + { c 5 q c o s 3 θ + c 6 k s i n 3 θ } τ σ 0 ]
( q k ) = ( c o s 6 θ s i n 6 θ s i n 6 θ c o s 6 θ ) ( q k ) .
= μ = 0 , 1 , 2 v μ · k σ μ + e c A p s e · σ ,
v 0 = 2 ( c 5 ρ 0 2 c o s 3 θ , c 6 ρ 0 2 s i n 3 θ )
v 1 = ( v F + 2 ρ 0 2 ( c 1 + c 3 c o s 6 θ ) , 2 c 3 ρ 0 2 s i n 6 θ )
v 2 = ( 2 τ c 5 ρ 0 2 c o s 3 θ , τ v F + 2 τ ρ 0 2 ( c 2 c 4 c o s 6 θ )
A p s e = ( τ Δ q , Δ k ) .
E κ ( k ) = ( v 0 ϕ q κ + v 0 z k κ ) + κ ( v 1 ϕ i v 2 ϕ ) q κ + ( v 1 z i v 2 z ) k κ + Λ
| χ κ ( k ) = 1 2 ( κ e i Φ ( k κ ) 1 )
Φ ( k κ ) = A r g ( ( v 1 ϕ i v 2 ϕ ) q κ + ( v 1 z i v 2 z ) k κ + Λ ) .
H = μ = 1 , 2 d 3 r ψ ^ ( r , t ) [ v μ · ( i e c A ( r , t ) ) σ μ ] ψ ^ ( r , t ) = H 0 + H i n t
ψ ^ ( r , t ) = k 1 A ( c ^ k c | χ c ( k c ) e i k c z + i q c ϕ i ω c t + c ^ k v | χ v ( k v ) e i k v z + i q v ϕ i ω v t ) φ ( ρ ) .
A ( r , t ) = k γ , j c 2 π ϵ r ω k V ( a ^ k γ , j ε ^ j e i k γ · r i ω γ t + a ^ k γ , j ε ^ j e i k γ · r + i ω γ t )
ε ^ 1 = ( sin ϕ γ , cos ϕ γ , 0 ) , ε ^ 2 = ( cos θ γ cos ϕ γ , cos θ γ sin ϕ γ , sin θ γ ) ,
k ^ γ = ( sin θ γ cos ϕ γ , sin θ γ sin ϕ γ , cos θ γ ) ,
Γ i f = d d t | ψ f ( t ) | Ψ ( t ) | 2 ,
A m p i f = ψ f ( t ) | Ψ ( t ) e i c 0 t d t ψ f ( t ) | v μ · A ( r , t ) σ μ | ψ i ( t ) .
z = χ v ( k v ) | v μ σ μ · ε ^ 2 z | χ c ( k c ) = b ( k v , k c ) s i n θ γ ,
x y = j = 1 , 2 χ v ( k v ) | v μ σ μ · ε ^ j ϕ | χ c ( k c ) = 1 2 a ( k v , k c ) ( ( 1 i c o s θ γ ) e i ϕ + ( 1 + i c o s θ γ ) e i ϕ )
a ( k v , k c ) = v 0 ϕ e i ( Φ ( k c ) Φ ( k v ) ) ( v 1 ϕ i v 2 ϕ ) e i Φ ( k v ) + ( v 1 ϕ i v 2 ϕ ) e i Φ ( k c ) + v 0 ϕ
b ( k v , k c ) = v 0 z e i ( Φ ( k c ) Φ ( k v ) ) ( v 1 z i v 2 z ) e i Φ ( k v ) + ( v 1 z i v 2 z ) e i Φ ( k c ) + v 0 z .
e i k γ · r = e i k γ z c o s θ γ m γ = ( i ) m γ J m γ ( ρ k γ s i n θ γ ) e i m γ ( ϕ ϕ γ ) ,
d Γ c v d Ω γ = | ψ f | d ϕ m γ ( i ) m γ A m γ ( k γ ) ( z + x y ) e i m γ ( ϕ ϕ γ ) | 2 δ ( c | k γ | E c ( k c ) + E v ( k v ) )
A m γ ( k γ ) = ( α π ϵ r c ) 1 / 2 k γ 1 / 2 J m γ ( ρ 0 k γ sin θ γ )
E v ( k v ) = E c ( k c ) c | k γ | ,
m γ = q c q v + μ , k v = k c k γ c o s θ γ .

Metrics