Abstract

In this paper, we demonstrate the generation of high-power and spatially structured beams using vertical external cavity surface emitting lasers (VECSEL). At the fundamental wavelength, an intracavity mode-control element is first employed to generate a range of Hermite-Gaussian (HG) modes in a linear cavity. The same HG modes are then excited and frequency doubled in a V-cavity geometry to generate a rich variety of high-power spatially structured beams. The results compare well with our numerical modeling.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond high-power quantum dot vertical external cavity surface emitting laser

Martin Hoffmann, Oliver D. Sieber, Valentin J. Wittwer, Igor L. Krestnikov, Daniil A. Livshits, Yohan Barbarin, Thomas Südmeyer, and Ursula Keller
Opt. Express 19(9) 8108-8116 (2011)

High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser

William J. Alford, Thomas D. Raymond, and Andrew A. Allerman
J. Opt. Soc. Am. B 19(4) 663-666 (2002)

Multiwatt—power highly—coherent compact single—frequency tunable Vertical—External—Cavity—Surface—Emitting—Semiconductor—Laser

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache
Opt. Express 18(14) 14627-14636 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. G. Morton, J. E. Hastie, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “1W CW red VECSEL frequency-doubled to generate 60mW in the ultraviolet,” In Conference on Lasers and Electro-Optics, p. JWB16. Optical Society of America, 2006.
    [Crossref]
  2. J.-M. Hopkins, A. J. Maclean, D. Burns, E. Riis, N. Schulz, M. Rattunde, C. Manz, K. Köhler, and J. Wagner, “Tunable, single-frequency, diode-pumped 2.3 μm VECSEL,” Opt. Express 15(13), 8212–8217 (2007).
    [Crossref] [PubMed]
  3. M. L. Lukowski, C. Hessenius, and M. Fallahi, “Widely tunable high-power two-color VECSELs for new wavelength generation,” IEEE J. Sel. Top. Quantum Electron. 21(1), 432–439 (2015).
    [Crossref]
  4. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
    [Crossref]
  5. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
    [Crossref]
  6. C. Hessenius, P. Y. Guinet, M. Lukowski, J. Moloney, and M. Fallahi, “589-nm single-frequency VECSEL for sodium guidestar applications,” In Proc. SPIE, 8242, p. 82420E. 2012.
    [Crossref]
  7. L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technol. Lett. 19(8), 544–546 (2007).
    [Crossref]
  8. A. E. Siegman, “Hermite-Gaussian functions of complex argument as optical beam eigenfunctions,” J. Opt. Soc. Am. B 63(9), 1093 (1973).
    [Crossref]
  9. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  10. R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19(7), 427–429 (1994).
    [Crossref] [PubMed]
  11. S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
    [Crossref] [PubMed]
  12. D. Naidoo, F. Roux, I. Dudley, I. Litvin, B. Piccirillo, L. Marucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
    [Crossref]
  13. P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
    [Crossref] [PubMed]
  14. M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-mum bounce laser,” Opt. Express 15(12), 7616–7622 (2007).
    [Crossref] [PubMed]
  15. S. C. Chu, T. Ohtomo, and K. Otsuka, “Generation of doughnutlike vortex beam with tunable orbital angular momentum from lasers with controlled Hermite-Gaussian modes,” Appl. Opt. 47(14), 2583–2591 (2008).
    [Crossref] [PubMed]
  16. K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Beam-shaping single-mode VCSEL with a high-contrast grating mirror.” In Lasers and Electro-Optics (CLEO), 2016 Conference on, pp. 1–2. IEEE, 2016.
    [Crossref]
  17. K. Tanabe, X. Gu, A. Matsutani, and F. Koyama, “Vortex beam emitter laterally integrated with vertical cavity surface emitting laser.” In Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2015 11th Conference on, vol. 3, pp. 1–2. IEEE, 2015.
    [Crossref]
  18. H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11(5), 503–505 (1999).
    [Crossref]
  19. Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals,” Sci. Rep. 4(1), 5650 (2015).
    [Crossref] [PubMed]
  20. Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” JOSA B 32(3), 407–411 (2015).
    [Crossref]
  21. Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity,” Opt. Express 22(19), 23673–23678 (2014).
    [Crossref] [PubMed]
  22. T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, and M. Raizen, “A high frequency optical trap for atoms using Hermite-Gaussian beams,” Opt. Express 13(8), 2843–2851 (2005).
    [Crossref] [PubMed]
  23. C. Alpmann, C. Scholer, and C. Denz, “Elegant Gaussian beams for enhanced optical manipulation,” Appl. Phys. Lett. 106(24), 241102 (2015).
    [Crossref]
  24. A. P. Porfirev and R. V. Skidanov, “Optical trapping and manipulation of light-absorbing particles by means of a Hermite-Gaussian beam,” J. Opt. Technol. 82(9), 587 (2015).
    [Crossref]
  25. M. Ozkan, M. Wang, C. Ozcan, R. Flynn, A. Birbeck, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
    [Crossref]
  26. R. W. Boyd, Nonlinear Optics (Academic, Amsterdam, 2008, 3rd Ed.) Chap. 2.
  27. H.-F. Chou, C.-F. Lin, and S. Mou, “Comparisons of finite difference beam propagation methods for modeling second-order nonlinear effects,” J. Lightwave Technol. 17(8), 1481–1486 (1999).
    [Crossref]
  28. J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second-harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
    [Crossref]
  29. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  30. A. E. Siegman, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues, p. MQ1 (Optical Society of America, 1998).
  31. S. Saghafi and C. J. R. Shepard, “The beam propagation factor for higher-order Gaussian beams,” Opt. Commun. 153(4-6), 207–210 (1998).
    [Crossref]
  32. M. W. Beijersbergen, L. Allen, H. E. L. O. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
    [Crossref]

2016 (2)

D. Naidoo, F. Roux, I. Dudley, I. Litvin, B. Piccirillo, L. Marucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

2015 (5)

Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals,” Sci. Rep. 4(1), 5650 (2015).
[Crossref] [PubMed]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” JOSA B 32(3), 407–411 (2015).
[Crossref]

M. L. Lukowski, C. Hessenius, and M. Fallahi, “Widely tunable high-power two-color VECSELs for new wavelength generation,” IEEE J. Sel. Top. Quantum Electron. 21(1), 432–439 (2015).
[Crossref]

C. Alpmann, C. Scholer, and C. Denz, “Elegant Gaussian beams for enhanced optical manipulation,” Appl. Phys. Lett. 106(24), 241102 (2015).
[Crossref]

A. P. Porfirev and R. V. Skidanov, “Optical trapping and manipulation of light-absorbing particles by means of a Hermite-Gaussian beam,” J. Opt. Technol. 82(9), 587 (2015).
[Crossref]

2014 (1)

2013 (1)

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

2012 (1)

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

2008 (1)

2007 (3)

2005 (1)

2003 (1)

M. Ozkan, M. Wang, C. Ozcan, R. Flynn, A. Birbeck, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

1999 (2)

H.-F. Chou, C.-F. Lin, and S. Mou, “Comparisons of finite difference beam propagation methods for modeling second-order nonlinear effects,” J. Lightwave Technol. 17(8), 1481–1486 (1999).
[Crossref]

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11(5), 503–505 (1999).
[Crossref]

1998 (1)

S. Saghafi and C. J. R. Shepard, “The beam propagation factor for higher-order Gaussian beams,” Opt. Commun. 153(4-6), 207–210 (1998).
[Crossref]

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

1994 (1)

1993 (1)

M. W. Beijersbergen, L. Allen, H. E. L. O. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1973 (1)

A. E. Siegman, “Hermite-Gaussian functions of complex argument as optical beam eigenfunctions,” J. Opt. Soc. Am. B 63(9), 1093 (1973).
[Crossref]

1971 (1)

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second-harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Allen, L.

M. W. Beijersbergen, L. Allen, H. E. L. O. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Alpmann, C.

C. Alpmann, C. Scholer, and C. Denz, “Elegant Gaussian beams for enhanced optical manipulation,” Appl. Phys. Lett. 106(24), 241102 (2015).
[Crossref]

Bedford, R.

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technol. Lett. 19(8), 544–546 (2007).
[Crossref]

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H. E. L. O. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Bengtsson, J.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11(5), 503–505 (1999).
[Crossref]

Birbeck, A.

M. Ozkan, M. Wang, C. Ozcan, R. Flynn, A. Birbeck, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Burger, L.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Burns, D.

Chou, H.-F.

Chu, S. C.

Chuu, C.

Dawson, M. D.

L. G. Morton, J. E. Hastie, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “1W CW red VECSEL frequency-doubled to generate 60mW in the ultraviolet,” In Conference on Lasers and Electro-Optics, p. JWB16. Optical Society of America, 2006.
[Crossref]

Denz, C.

C. Alpmann, C. Scholer, and C. Denz, “Elegant Gaussian beams for enhanced optical manipulation,” Appl. Phys. Lett. 106(24), 241102 (2015).
[Crossref]

Ding, D.-S.

Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals,” Sci. Rep. 4(1), 5650 (2015).
[Crossref] [PubMed]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” JOSA B 32(3), 407–411 (2015).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity,” Opt. Express 22(19), 23673–23678 (2014).
[Crossref] [PubMed]

Dudley, I.

D. Naidoo, F. Roux, I. Dudley, I. Litvin, B. Piccirillo, L. Marucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Esener, S.

M. Ozkan, M. Wang, C. Ozcan, R. Flynn, A. Birbeck, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Falk, J.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second-harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Fallahi, M.

M. L. Lukowski, C. Hessenius, and M. Fallahi, “Widely tunable high-power two-color VECSELs for new wavelength generation,” IEEE J. Sel. Top. Quantum Electron. 21(1), 432–439 (2015).
[Crossref]

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technol. Lett. 19(8), 544–546 (2007).
[Crossref]

C. Hessenius, P. Y. Guinet, M. Lukowski, J. Moloney, and M. Fallahi, “589-nm single-frequency VECSEL for sodium guidestar applications,” In Proc. SPIE, 8242, p. 82420E. 2012.
[Crossref]

Fan, L.

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technol. Lett. 19(8), 544–546 (2007).
[Crossref]

Feng, L.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Flynn, R.

M. Ozkan, M. Wang, C. Ozcan, R. Flynn, A. Birbeck, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Forbes, A.

D. Naidoo, F. Roux, I. Dudley, I. Litvin, B. Piccirillo, L. Marucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Ghisoni, M.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11(5), 503–505 (1999).
[Crossref]

Guinet, P. Y.

C. Hessenius, P. Y. Guinet, M. Lukowski, J. Moloney, and M. Fallahi, “589-nm single-frequency VECSEL for sodium guidestar applications,” In Proc. SPIE, 8242, p. 82420E. 2012.
[Crossref]

Guo, G.-C.

Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals,” Sci. Rep. 4(1), 5650 (2015).
[Crossref] [PubMed]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity,” Opt. Express 22(19), 23673–23678 (2014).
[Crossref] [PubMed]

Hader, J.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technol. Lett. 19(8), 544–546 (2007).
[Crossref]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Hall, D. G.

Hanssen, J.

Hastie, J. E.

L. G. Morton, J. E. Hastie, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “1W CW red VECSEL frequency-doubled to generate 60mW in the ultraviolet,” In Conference on Lasers and Electro-Optics, p. JWB16. Optical Society of America, 2006.
[Crossref]

Heinen, B.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Hessenius, C.

M. L. Lukowski, C. Hessenius, and M. Fallahi, “Widely tunable high-power two-color VECSELs for new wavelength generation,” IEEE J. Sel. Top. Quantum Electron. 21(1), 432–439 (2015).
[Crossref]

C. Hessenius, P. Y. Guinet, M. Lukowski, J. Moloney, and M. Fallahi, “589-nm single-frequency VECSEL for sodium guidestar applications,” In Proc. SPIE, 8242, p. 82420E. 2012.
[Crossref]

Hitz, C. B.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second-harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Hopkins, J.-M.

Itoh, M.

Jiang, Y.-K.

Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals,” Sci. Rep. 4(1), 5650 (2015).
[Crossref] [PubMed]

Jordan, R. H.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Koch, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Koch, S. W.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technol. Lett. 19(8), 544–546 (2007).
[Crossref]

Köhler, K.

Krysa, A. B.

L. G. Morton, J. E. Hastie, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “1W CW red VECSEL frequency-doubled to generate 60mW in the ultraviolet,” In Conference on Lasers and Electro-Optics, p. JWB16. Optical Society of America, 2006.
[Crossref]

Kunert, B.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Larsson, A.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11(5), 503–505 (1999).
[Crossref]

Li, Y.

Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals,” Sci. Rep. 4(1), 5650 (2015).
[Crossref] [PubMed]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” JOSA B 32(3), 407–411 (2015).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity,” Opt. Express 22(19), 23673–23678 (2014).
[Crossref] [PubMed]

Lin, C.-F.

Litchinitser, N. M.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Litvin, I.

D. Naidoo, F. Roux, I. Dudley, I. Litvin, B. Piccirillo, L. Marucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Longhi, S.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Lukowski, M.

C. Hessenius, P. Y. Guinet, M. Lukowski, J. Moloney, and M. Fallahi, “589-nm single-frequency VECSEL for sodium guidestar applications,” In Proc. SPIE, 8242, p. 82420E. 2012.
[Crossref]

Lukowski, M. L.

M. L. Lukowski, C. Hessenius, and M. Fallahi, “Widely tunable high-power two-color VECSELs for new wavelength generation,” IEEE J. Sel. Top. Quantum Electron. 21(1), 432–439 (2015).
[Crossref]

Maclean, A. J.

Manz, C.

Martinsson, H.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11(5), 503–505 (1999).
[Crossref]

Marucci, L.

D. Naidoo, F. Roux, I. Dudley, I. Litvin, B. Piccirillo, L. Marucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Meyrath, T.

Miao, P.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Moloney, J.

C. Hessenius, P. Y. Guinet, M. Lukowski, J. Moloney, and M. Fallahi, “589-nm single-frequency VECSEL for sodium guidestar applications,” In Proc. SPIE, 8242, p. 82420E. 2012.
[Crossref]

Moloney, J. V.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technol. Lett. 19(8), 544–546 (2007).
[Crossref]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Morton, L. G.

L. G. Morton, J. E. Hastie, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “1W CW red VECSEL frequency-doubled to generate 60mW in the ultraviolet,” In Conference on Lasers and Electro-Optics, p. JWB16. Optical Society of America, 2006.
[Crossref]

Mou, S.

Murray, J. T.

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technol. Lett. 19(8), 544–546 (2007).
[Crossref]

Naidoo, D.

D. Naidoo, F. Roux, I. Dudley, I. Litvin, B. Piccirillo, L. Marucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Ngcobo, S.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Ohtomo, T.

Okida, M.

Omatsu, T.

Otsuka, K.

Ozcan, C.

M. Ozkan, M. Wang, C. Ozcan, R. Flynn, A. Birbeck, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Ozkan, M.

M. Ozkan, M. Wang, C. Ozcan, R. Flynn, A. Birbeck, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Piccirillo, B.

D. Naidoo, F. Roux, I. Dudley, I. Litvin, B. Piccirillo, L. Marucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Porfirev, A. P.

Raizen, M.

Rattunde, M.

Riis, E.

Roberts, J. S.

L. G. Morton, J. E. Hastie, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “1W CW red VECSEL frequency-doubled to generate 60mW in the ultraviolet,” In Conference on Lasers and Electro-Optics, p. JWB16. Optical Society of America, 2006.
[Crossref]

Roux, F.

D. Naidoo, F. Roux, I. Dudley, I. Litvin, B. Piccirillo, L. Marucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Saghafi, S.

S. Saghafi and C. J. R. Shepard, “The beam propagation factor for higher-order Gaussian beams,” Opt. Commun. 153(4-6), 207–210 (1998).
[Crossref]

Scholer, C.

C. Alpmann, C. Scholer, and C. Denz, “Elegant Gaussian beams for enhanced optical manipulation,” Appl. Phys. Lett. 106(24), 241102 (2015).
[Crossref]

Schreck, F.

Schulz, N.

Shepard, C. J. R.

S. Saghafi and C. J. R. Shepard, “The beam propagation factor for higher-order Gaussian beams,” Opt. Commun. 153(4-6), 207–210 (1998).
[Crossref]

Shi, B.-S.

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” JOSA B 32(3), 407–411 (2015).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals,” Sci. Rep. 4(1), 5650 (2015).
[Crossref] [PubMed]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity,” Opt. Express 22(19), 23673–23678 (2014).
[Crossref] [PubMed]

Shi, S.

Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals,” Sci. Rep. 4(1), 5650 (2015).
[Crossref] [PubMed]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity,” Opt. Express 22(19), 23673–23678 (2014).
[Crossref] [PubMed]

Siegman, A. E.

A. E. Siegman, “Hermite-Gaussian functions of complex argument as optical beam eigenfunctions,” J. Opt. Soc. Am. B 63(9), 1093 (1973).
[Crossref]

Skidanov, R. V.

Sparenberg, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Stolz, W.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technol. Lett. 19(8), 544–546 (2007).
[Crossref]

Sun, J.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Van der Veen, H. E. L. O.

M. W. Beijersbergen, L. Allen, H. E. L. O. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

Wagner, J.

Walasik, W.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Wang, M.

M. Ozkan, M. Wang, C. Ozcan, R. Flynn, A. Birbeck, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Wang, T.-L.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Weber, A.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Woerdman, J. P.

M. W. Beijersbergen, L. Allen, H. E. L. O. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Yarborough, J. M.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second-harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Yatagai, T.

Zakharian, A. R.

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technol. Lett. 19(8), 544–546 (2007).
[Crossref]

Zhang, W.

Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals,” Sci. Rep. 4(1), 5650 (2015).
[Crossref] [PubMed]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity,” Opt. Express 22(19), 23673–23678 (2014).
[Crossref] [PubMed]

Zhang, Z.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Zhou, Z.-Y.

Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals,” Sci. Rep. 4(1), 5650 (2015).
[Crossref] [PubMed]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” JOSA B 32(3), 407–411 (2015).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity,” Opt. Express 22(19), 23673–23678 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. Alpmann, C. Scholer, and C. Denz, “Elegant Gaussian beams for enhanced optical manipulation,” Appl. Phys. Lett. 106(24), 241102 (2015).
[Crossref]

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second-harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Biomed. Microdevices (1)

M. Ozkan, M. Wang, C. Ozcan, R. Flynn, A. Birbeck, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Electron. Lett. (1)

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. L. Lukowski, C. Hessenius, and M. Fallahi, “Widely tunable high-power two-color VECSELs for new wavelength generation,” IEEE J. Sel. Top. Quantum Electron. 21(1), 432–439 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technol. Lett. 19(8), 544–546 (2007).
[Crossref]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11(5), 503–505 (1999).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

A. E. Siegman, “Hermite-Gaussian functions of complex argument as optical beam eigenfunctions,” J. Opt. Soc. Am. B 63(9), 1093 (1973).
[Crossref]

J. Opt. Technol. (1)

JOSA B (1)

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” JOSA B 32(3), 407–411 (2015).
[Crossref]

Nat. Commun. (1)

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Naidoo, F. Roux, I. Dudley, I. Litvin, B. Piccirillo, L. Marucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Opt. Commun. (2)

S. Saghafi and C. J. R. Shepard, “The beam propagation factor for higher-order Gaussian beams,” Opt. Commun. 153(4-6), 207–210 (1998).
[Crossref]

M. W. Beijersbergen, L. Allen, H. E. L. O. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Sci. Rep. (1)

Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals,” Sci. Rep. 4(1), 5650 (2015).
[Crossref] [PubMed]

Science (1)

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Other (6)

K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Beam-shaping single-mode VCSEL with a high-contrast grating mirror.” In Lasers and Electro-Optics (CLEO), 2016 Conference on, pp. 1–2. IEEE, 2016.
[Crossref]

K. Tanabe, X. Gu, A. Matsutani, and F. Koyama, “Vortex beam emitter laterally integrated with vertical cavity surface emitting laser.” In Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2015 11th Conference on, vol. 3, pp. 1–2. IEEE, 2015.
[Crossref]

L. G. Morton, J. E. Hastie, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “1W CW red VECSEL frequency-doubled to generate 60mW in the ultraviolet,” In Conference on Lasers and Electro-Optics, p. JWB16. Optical Society of America, 2006.
[Crossref]

C. Hessenius, P. Y. Guinet, M. Lukowski, J. Moloney, and M. Fallahi, “589-nm single-frequency VECSEL for sodium guidestar applications,” In Proc. SPIE, 8242, p. 82420E. 2012.
[Crossref]

A. E. Siegman, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues, p. MQ1 (Optical Society of America, 1998).

R. W. Boyd, Nonlinear Optics (Academic, Amsterdam, 2008, 3rd Ed.) Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the VECSEL setup for fundamental operation.
Fig. 2
Fig. 2 Intensity profiles of the (a) fundamental Gaussian mode along with the (b) HG01, (c) HG10 and (d) HG11 transverse modes.
Fig. 3
Fig. 3 (a) Output power characteristics for beams with various HG transverse profiles; (b) the lasing wavelength maintained for all the cases.
Fig. 4
Fig. 4 The schematic of the green VECSEL setup for second harmonic generation.
Fig. 5
Fig. 5 Simulation results as a function of the scaled phase-mismatch for a fundamental HG02 beam: (a) second-harmonic power relative to the fundamental power, (b) second-harmonic intensity profile and (c) the effective mode index.
Fig. 6
Fig. 6 Simulation results as a function of d for a fundamental H G 01 beam: (a) second-harmonic power relative to the fundamental power, (b) second-harmonic intensity profile and (c) the effective mode index.
Fig. 7
Fig. 7 Captured images of SHG green structured beams with HG01-like, HG02, HG11-like and HG22 intensity profiles.
Fig. 8
Fig. 8 (a) Output power characteristics for green structured beams with various HG and HG-like transverse profiles; (b) the lasing wavelength maintained of green beams.
Fig. 9
Fig. 9 The simulation results corresponding to Fig. 7. (a) HG01-like, (b) HG02, (c) HG11-like and (d) HG22.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

±( A 2 z +δ A 2 x )= 1 2 k 2 T 2 A 2 + i ω 2 2 d eff k 2 c 2 A 1 2 e iΔkz
A 1 ( x,y )= A 0 H n ( x 2 w 0   ) H m ( y 2 w 0   ) e ( x 2 + y 2   )/ w 0 2
P 2 ( x ) H m 2 ( x 2 w 0   ) e 2 x 2 / w 0 2 k= a k H k ( x w 0 ) e 2 x 2 / w 0 2

Metrics