Abstract

To model the carrier transport in organic light-emitting diodes (OLEDs) with random dopant effects in the emitting layer, two-dimensional simulation was used. By including the Gaussian shape density of states and field-dependent mobility in the Poisson and drift-diffusion solver, the carrier transport, trapping in the dopant state, and radiative recombination were accurately modeled. To examine the model, the current-voltage characteristics of organic light-emitting devices were compared. The host material in the emitting layer was 2,2-bis(1-phenyl-1H-benzo[d]imidazol-2-yl)biphenyl (BImBP), which was doped with bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic) at various concentrations. By including the random doping model, the trend of mobility was altered and the radiative efficiency fitted experimental values well.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improving working lifetime and efficiency of phosphor doped organic light-emitting diodes

Yunfei Li, Yuying Hao, Wenlian Li, Shuqing Yuan, Huihui Liu, Yanxia Cui, Hua Wang, Bingshe Xu, and Wei Huang
Opt. Express 21(14) 17020-17027 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987).
    [Crossref]
  2. J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
    [Crossref]
  3. G. Tan, R. Zhu, Y.-S. Tsai, K.-C. Lee, Z. Luo, Y.-Z. Lee, and S.-T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D: Appl. Phys. 49, 315101 (2016).
    [Crossref]
  4. P. Kordt, J. J. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 1955–1971 (2015).
    [Crossref]
  5. H. Bässler, “Charge transport in disordered organic photoconductors a Monte Carlo simulation study,” Phys. Status Solidi B 175, 15–56 (1993).
    [Crossref]
  6. R. Coehoorn and S. Van Mensfoort, “Effects of disorder on the current density and recombination profile in organic light-emitting diodes,” Phys. Rev. B 80, 085302 (2009).
    [Crossref]
  7. A. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, and P. A. Bobbert, “Ab initio charge-carrier mobility model for amorphous molecular semiconductors,” Phys. Rev. B 93, 195209 (2016).
    [Crossref]
  8. E. Knapp, R. Häusermann, H. Schwarzenbach, and B. Ruhstaller, “Numerical simulation of charge transport in disordered organic semiconductor devices,” J. Appl. Phys. 108, 054504 (2010).
    [Crossref]
  9. I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
    [Crossref]
  10. C.-C. Lee, M.-Y. Chang, P.-T. Huang, Y. C. Chen, Y. Chang, and S.-W. Liu, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” J. Appl. Phys. 101, 114501 (2007).
    [Crossref]
  11. C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 59, 400–407 (2012).
    [Crossref]
  12. C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, “Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes,” J. Appl. Phys. 113, 183104 (2013).
    [Crossref]
  13. C.-K. Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 61, 511–517 (2014).
    [Crossref]
  14. B. Movaghar, M. Grünewald, B. Ries, H. Bassler, and D. Würtz, “Diffusion and relaxation of energy in disordered organic and inorganic materials,” Phys. Rev. B 33, 5545 (1986).
    [Crossref]
  15. E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett. 80, 3838–3840 (2002).
    [Crossref]
  16. P. Blom, M. De Jong, and M. Van Munster, “Electric-field and temperature dependence of the hole mobility in poly (p-phenylene vinylene),” Phys. Rev. B 55, R656 (1997).
    [Crossref]
  17. M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Phys. Rev. B 57, 12964 (1998).
    [Crossref]
  18. J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E. M. Barea, and E. Palomares, “A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors,” Inorg. Chim. Acta 361, 684–698 (2008).
    [Crossref]
  19. M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide,” Org. Electron. 10, 932–938 (2009).
    [Crossref]
  20. A. Rostami and H. Soofi, “Modeling of effective host mobility for the simulation of polymeric host-guest light emitting diodes,” J. Lightwave Technol. 32, 959–965 (2014).
    [Crossref]
  21. Y. Olivier, V. Lemaur, J.-L. Brédas, and J. Cornil, “Charge hopping in organic semiconductors: Influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks,” J. Phys. Chem. A 110, 6356–6364 (2006).
    [Crossref] [PubMed]
  22. M. Bouhassoune, S. Van Mensfoort, P. Bobbert, and R. Coehoorn, “Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder,” Org. Electron. 10, 437–445 (2009).
    [Crossref]
  23. S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Appl. Phys. Lett. 83, 569–571 (2003).
    [Crossref]
  24. C.-H. Hsiao, Y.-H. Lan, P.-Y. Lee, T.-L. Chiu, and J.-H. Lee, “White organic light-emitting devices with ultra-high color stability over wide luminance range,” Org. Electron. 12, 547–555 (2011).
    [Crossref]
  25. D.-G. Ha, J.-J. Kim, and M. A. Baldo, “Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules,” Adv. Funct. Mater. 6, 045221 (2016).
  26. W.-Y. Wong and C.-L. Ho, “Functional metallophosphors for effective charge carrier injection/transport: new robust OLED materials with emerging applications,” J. Mater. Chem. 19, 4457–4482 (2009).
    [Crossref]
  27. U. Wolf, H. Bässler, P. Borsenberger, and W. Gruenbaum, “Hole trapping in molecularly doped polymers,” Chem. Phys. 222, 259–267 (1997).
    [Crossref]
  28. Y. Yimer, P. Bobbert, and R. Coehoorn, “Charge transport in disordered organic host–guest systems: effects of carrier density and electric field,” J. Phys.: Condens. Matter 20, 335204 (2008).
  29. I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
    [Crossref]
  30. A. Walker, A. Kambili, and S. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys.: Condens. Matter 14, 9825 (2002).
  31. W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett. 94, 206601 (2005).
    [Crossref] [PubMed]
  32. C. Tanase, E. Meijer, P. Blom, and D. De Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Phys. Rev. Lett. 91, 216601 (2003).
    [Crossref] [PubMed]
  33. V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chem. Rev. 107, 926–952 (2007).
    [Crossref] [PubMed]
  34. K.-Y. Ho, C.-K. Li, H.-J. Syu, Y. Lai, C.-F. Lin, and Y.-R. Wu, “Analysis of the PEDOT: PSS/Si nanowire hybrid solar cell with a tail state model,” J. Appl. Phys. 120, 215501 (2016).
    [Crossref]
  35. Y. Divayana and X. Sun, “Observation of excitonic quenching by long-range dipole-dipole interaction in sequentially doped organic phosphorescent host-guest system,” Phys. Rev. Lett. 99, 143003 (2007).
    [Crossref] [PubMed]
  36. Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101, 083505 (2012).
    [Crossref]
  37. E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
    [Crossref]
  38. N. Matsusue, Y. Suzuki, and H. Naito, “Charge carrier transport in neat thin films of phosphorescent iridium complexes,” Jpn. J. Appl. Phys. 44, 3691 (2005).
    [Crossref]
  39. C.-H. Hsiao, S.-W. Liu, C.-T. Chen, and J.-H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron. 11, 1500–1506 (2010).
    [Crossref]
  40. S. H. Rhee, K. bong Nam, C. S. Kim, M. Song, W. Cho, S.-H. Jin, and S. Y. Ryu, “Effect of electron mobility of the electron transport layer on fluorescent organic light-emitting diodes,” ECS Solid State Lett. 3, R19–R22 (2014).
    [Crossref]
  41. S. M. Menke and R. J. Holmes, “Exciton diffusion in organic photovoltaic cells,” Energy Environ. Sci. 7, 499–512 (2014).
    [Crossref]
  42. N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe 2 monolayers,” Phys. Rev. B 89, 125427 (2014).
    [Crossref]
  43. D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
    [Crossref] [PubMed]
  44. Y. Divayana and X. Sun, “Observation of excitonic quenching by long-range dipole-dipole interaction in sequentially doped organic phosphorescent host-guest system,” Phys. Rev. Lett. 99, 143003 (2007).
    [Crossref] [PubMed]
  45. O. V. Mikhnenko, P. W. Blom, and T.-Q. Nguyen, “Exciton diffusion in organic semiconductors,” Energy Environ. Sci. 8, 1867–1888 (2015).
    [Crossref]
  46. J.-J. Huang, M.-k. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou, and Y.-H. Hung, “Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device,” Org. Lett. 16, 5398–5401 (2014).
    [Crossref] [PubMed]
  47. T.-Y. Chu and O.-K. Song, “Hole mobility of N, N′-bis (naphthalen-1-yl)-N, N′-bis (phenyl) benzidine investigated by using space-charge-limited currents,” Appl. Phys. Lett. 90, 203512 (2007).
    [Crossref]
  48. M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151–154 (1998).
    [Crossref]
  49. E. B. Namdas, A. Ruseckas, I. D. Samuel, S.-C. Lo, and P. L. Burn, “Triplet exciton diffusion in fac-tris (2-phenylpyridine) iridium (iii)-cored electroluminescent dendrimers,” Appl. Phys. Lett. 86, 091104 (2005).
    [Crossref]

2016 (4)

G. Tan, R. Zhu, Y.-S. Tsai, K.-C. Lee, Z. Luo, Y.-Z. Lee, and S.-T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D: Appl. Phys. 49, 315101 (2016).
[Crossref]

A. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, and P. A. Bobbert, “Ab initio charge-carrier mobility model for amorphous molecular semiconductors,” Phys. Rev. B 93, 195209 (2016).
[Crossref]

D.-G. Ha, J.-J. Kim, and M. A. Baldo, “Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules,” Adv. Funct. Mater. 6, 045221 (2016).

K.-Y. Ho, C.-K. Li, H.-J. Syu, Y. Lai, C.-F. Lin, and Y.-R. Wu, “Analysis of the PEDOT: PSS/Si nanowire hybrid solar cell with a tail state model,” J. Appl. Phys. 120, 215501 (2016).
[Crossref]

2015 (2)

P. Kordt, J. J. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 1955–1971 (2015).
[Crossref]

O. V. Mikhnenko, P. W. Blom, and T.-Q. Nguyen, “Exciton diffusion in organic semiconductors,” Energy Environ. Sci. 8, 1867–1888 (2015).
[Crossref]

2014 (7)

J.-J. Huang, M.-k. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou, and Y.-H. Hung, “Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device,” Org. Lett. 16, 5398–5401 (2014).
[Crossref] [PubMed]

S. H. Rhee, K. bong Nam, C. S. Kim, M. Song, W. Cho, S.-H. Jin, and S. Y. Ryu, “Effect of electron mobility of the electron transport layer on fluorescent organic light-emitting diodes,” ECS Solid State Lett. 3, R19–R22 (2014).
[Crossref]

S. M. Menke and R. J. Holmes, “Exciton diffusion in organic photovoltaic cells,” Energy Environ. Sci. 7, 499–512 (2014).
[Crossref]

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe 2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

C.-K. Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 61, 511–517 (2014).
[Crossref]

A. Rostami and H. Soofi, “Modeling of effective host mobility for the simulation of polymeric host-guest light emitting diodes,” J. Lightwave Technol. 32, 959–965 (2014).
[Crossref]

2013 (1)

C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, “Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes,” J. Appl. Phys. 113, 183104 (2013).
[Crossref]

2012 (2)

C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 59, 400–407 (2012).
[Crossref]

Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101, 083505 (2012).
[Crossref]

2011 (2)

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

C.-H. Hsiao, Y.-H. Lan, P.-Y. Lee, T.-L. Chiu, and J.-H. Lee, “White organic light-emitting devices with ultra-high color stability over wide luminance range,” Org. Electron. 12, 547–555 (2011).
[Crossref]

2010 (4)

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

E. Knapp, R. Häusermann, H. Schwarzenbach, and B. Ruhstaller, “Numerical simulation of charge transport in disordered organic semiconductor devices,” J. Appl. Phys. 108, 054504 (2010).
[Crossref]

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

C.-H. Hsiao, S.-W. Liu, C.-T. Chen, and J.-H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron. 11, 1500–1506 (2010).
[Crossref]

2009 (4)

R. Coehoorn and S. Van Mensfoort, “Effects of disorder on the current density and recombination profile in organic light-emitting diodes,” Phys. Rev. B 80, 085302 (2009).
[Crossref]

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide,” Org. Electron. 10, 932–938 (2009).
[Crossref]

W.-Y. Wong and C.-L. Ho, “Functional metallophosphors for effective charge carrier injection/transport: new robust OLED materials with emerging applications,” J. Mater. Chem. 19, 4457–4482 (2009).
[Crossref]

M. Bouhassoune, S. Van Mensfoort, P. Bobbert, and R. Coehoorn, “Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder,” Org. Electron. 10, 437–445 (2009).
[Crossref]

2008 (2)

J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E. M. Barea, and E. Palomares, “A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors,” Inorg. Chim. Acta 361, 684–698 (2008).
[Crossref]

Y. Yimer, P. Bobbert, and R. Coehoorn, “Charge transport in disordered organic host–guest systems: effects of carrier density and electric field,” J. Phys.: Condens. Matter 20, 335204 (2008).

2007 (5)

Y. Divayana and X. Sun, “Observation of excitonic quenching by long-range dipole-dipole interaction in sequentially doped organic phosphorescent host-guest system,” Phys. Rev. Lett. 99, 143003 (2007).
[Crossref] [PubMed]

C.-C. Lee, M.-Y. Chang, P.-T. Huang, Y. C. Chen, Y. Chang, and S.-W. Liu, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” J. Appl. Phys. 101, 114501 (2007).
[Crossref]

V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chem. Rev. 107, 926–952 (2007).
[Crossref] [PubMed]

Y. Divayana and X. Sun, “Observation of excitonic quenching by long-range dipole-dipole interaction in sequentially doped organic phosphorescent host-guest system,” Phys. Rev. Lett. 99, 143003 (2007).
[Crossref] [PubMed]

T.-Y. Chu and O.-K. Song, “Hole mobility of N, N′-bis (naphthalen-1-yl)-N, N′-bis (phenyl) benzidine investigated by using space-charge-limited currents,” Appl. Phys. Lett. 90, 203512 (2007).
[Crossref]

2006 (1)

Y. Olivier, V. Lemaur, J.-L. Brédas, and J. Cornil, “Charge hopping in organic semiconductors: Influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks,” J. Phys. Chem. A 110, 6356–6364 (2006).
[Crossref] [PubMed]

2005 (3)

W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett. 94, 206601 (2005).
[Crossref] [PubMed]

E. B. Namdas, A. Ruseckas, I. D. Samuel, S.-C. Lo, and P. L. Burn, “Triplet exciton diffusion in fac-tris (2-phenylpyridine) iridium (iii)-cored electroluminescent dendrimers,” Appl. Phys. Lett. 86, 091104 (2005).
[Crossref]

N. Matsusue, Y. Suzuki, and H. Naito, “Charge carrier transport in neat thin films of phosphorescent iridium complexes,” Jpn. J. Appl. Phys. 44, 3691 (2005).
[Crossref]

2003 (2)

C. Tanase, E. Meijer, P. Blom, and D. De Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Phys. Rev. Lett. 91, 216601 (2003).
[Crossref] [PubMed]

S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Appl. Phys. Lett. 83, 569–571 (2003).
[Crossref]

2002 (2)

A. Walker, A. Kambili, and S. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys.: Condens. Matter 14, 9825 (2002).

E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett. 80, 3838–3840 (2002).
[Crossref]

1998 (2)

M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Phys. Rev. B 57, 12964 (1998).
[Crossref]

M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151–154 (1998).
[Crossref]

1997 (2)

P. Blom, M. De Jong, and M. Van Munster, “Electric-field and temperature dependence of the hole mobility in poly (p-phenylene vinylene),” Phys. Rev. B 55, R656 (1997).
[Crossref]

U. Wolf, H. Bässler, P. Borsenberger, and W. Gruenbaum, “Hole trapping in molecularly doped polymers,” Chem. Phys. 222, 259–267 (1997).
[Crossref]

1993 (1)

H. Bässler, “Charge transport in disordered organic photoconductors a Monte Carlo simulation study,” Phys. Status Solidi B 175, 15–56 (1993).
[Crossref]

1990 (1)

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

1987 (1)

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987).
[Crossref]

1986 (1)

B. Movaghar, M. Grünewald, B. Ries, H. Bassler, and D. Würtz, “Diffusion and relaxation of energy in disordered organic and inorganic materials,” Phys. Rev. B 33, 5545 (1986).
[Crossref]

Accorsi, G.

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

Andrienko, D.

P. Kordt, J. J. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 1955–1971 (2015).
[Crossref]

Badinski, A.

P. Kordt, J. J. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 1955–1971 (2015).
[Crossref]

Baldo, M. A.

D.-G. Ha, J.-J. Kim, and M. A. Baldo, “Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules,” Adv. Funct. Mater. 6, 045221 (2016).

M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151–154 (1998).
[Crossref]

Baranoff, E.

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

Barea, E. M.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E. M. Barea, and E. Palomares, “A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors,” Inorg. Chim. Acta 361, 684–698 (2008).
[Crossref]

Bassler, H.

B. Movaghar, M. Grünewald, B. Ries, H. Bassler, and D. Würtz, “Diffusion and relaxation of energy in disordered organic and inorganic materials,” Phys. Rev. B 33, 5545 (1986).
[Crossref]

Bässler, H.

U. Wolf, H. Bässler, P. Borsenberger, and W. Gruenbaum, “Hole trapping in molecularly doped polymers,” Chem. Phys. 222, 259–267 (1997).
[Crossref]

H. Bässler, “Charge transport in disordered organic photoconductors a Monte Carlo simulation study,” Phys. Status Solidi B 175, 15–56 (1993).
[Crossref]

Bisquert, J.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E. M. Barea, and E. Palomares, “A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors,” Inorg. Chim. Acta 361, 684–698 (2008).
[Crossref]

Blom, P.

W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett. 94, 206601 (2005).
[Crossref] [PubMed]

C. Tanase, E. Meijer, P. Blom, and D. De Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Phys. Rev. Lett. 91, 216601 (2003).
[Crossref] [PubMed]

E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett. 80, 3838–3840 (2002).
[Crossref]

P. Blom, M. De Jong, and M. Van Munster, “Electric-field and temperature dependence of the hole mobility in poly (p-phenylene vinylene),” Phys. Rev. B 55, R656 (1997).
[Crossref]

Blom, P. W.

O. V. Mikhnenko, P. W. Blom, and T.-Q. Nguyen, “Exciton diffusion in organic semiconductors,” Energy Environ. Sci. 8, 1867–1888 (2015).
[Crossref]

Bobbert, P.

M. Bouhassoune, S. Van Mensfoort, P. Bobbert, and R. Coehoorn, “Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder,” Org. Electron. 10, 437–445 (2009).
[Crossref]

Y. Yimer, P. Bobbert, and R. Coehoorn, “Charge transport in disordered organic host–guest systems: effects of carrier density and electric field,” J. Phys.: Condens. Matter 20, 335204 (2008).

W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett. 94, 206601 (2005).
[Crossref] [PubMed]

Bobbert, P. A.

A. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, and P. A. Bobbert, “Ab initio charge-carrier mobility model for amorphous molecular semiconductors,” Phys. Rev. B 93, 195209 (2016).
[Crossref]

bong Nam, K.

S. H. Rhee, K. bong Nam, C. S. Kim, M. Song, W. Cho, S.-H. Jin, and S. Y. Ryu, “Effect of electron mobility of the electron transport layer on fluorescent organic light-emitting diodes,” ECS Solid State Lett. 3, R19–R22 (2014).
[Crossref]

Borsenberger, P.

U. Wolf, H. Bässler, P. Borsenberger, and W. Gruenbaum, “Hole trapping in molecularly doped polymers,” Chem. Phys. 222, 259–267 (1997).
[Crossref]

Bouhassoune, M.

M. Bouhassoune, S. Van Mensfoort, P. Bobbert, and R. Coehoorn, “Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder,” Org. Electron. 10, 437–445 (2009).
[Crossref]

Bradley, D.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Brédas, J.-L.

V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chem. Rev. 107, 926–952 (2007).
[Crossref] [PubMed]

Y. Olivier, V. Lemaur, J.-L. Brédas, and J. Cornil, “Charge hopping in organic semiconductors: Influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks,” J. Phys. Chem. A 110, 6356–6364 (2006).
[Crossref] [PubMed]

Brézin, L.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Brown, A.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Burn, P. L.

E. B. Namdas, A. Ruseckas, I. D. Samuel, S.-C. Lo, and P. L. Burn, “Triplet exciton diffusion in fac-tris (2-phenylpyridine) iridium (iii)-cored electroluminescent dendrimers,” Appl. Phys. Lett. 86, 091104 (2005).
[Crossref]

Burns, P.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Burroughes, J.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Ceballos, F.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe 2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Chang, M.-Y.

C.-C. Lee, M.-Y. Chang, P.-T. Huang, Y. C. Chen, Y. Chang, and S.-W. Liu, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” J. Appl. Phys. 101, 114501 (2007).
[Crossref]

Chang, Y.

C.-C. Lee, M.-Y. Chang, P.-T. Huang, Y. C. Chen, Y. Chang, and S.-W. Liu, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” J. Appl. Phys. 101, 114501 (2007).
[Crossref]

Chen, C.-T.

C.-H. Hsiao, S.-W. Liu, C.-T. Chen, and J.-H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron. 11, 1500–1506 (2010).
[Crossref]

Chen, G.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Chen, Y. C.

C.-C. Lee, M.-Y. Chang, P.-T. Huang, Y. C. Chen, Y. Chang, and S.-W. Liu, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” J. Appl. Phys. 101, 114501 (2007).
[Crossref]

Chiu, T.-L.

J.-J. Huang, M.-k. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou, and Y.-H. Hung, “Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device,” Org. Lett. 16, 5398–5401 (2014).
[Crossref] [PubMed]

C.-H. Hsiao, Y.-H. Lan, P.-Y. Lee, T.-L. Chiu, and J.-H. Lee, “White organic light-emitting devices with ultra-high color stability over wide luminance range,” Org. Electron. 12, 547–555 (2011).
[Crossref]

Cho, W.

S. H. Rhee, K. bong Nam, C. S. Kim, M. Song, W. Cho, S.-H. Jin, and S. Y. Ryu, “Effect of electron mobility of the electron transport layer on fluorescent organic light-emitting diodes,” ECS Solid State Lett. 3, R19–R22 (2014).
[Crossref]

Chou, P.-T.

J.-J. Huang, M.-k. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou, and Y.-H. Hung, “Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device,” Org. Lett. 16, 5398–5401 (2014).
[Crossref] [PubMed]

Chu, T.-Y.

T.-Y. Chu and O.-K. Song, “Hole mobility of N, N′-bis (naphthalen-1-yl)-N, N′-bis (phenyl) benzidine investigated by using space-charge-limited currents,” Appl. Phys. Lett. 90, 203512 (2007).
[Crossref]

Chuang, Y.-T.

J.-J. Huang, M.-k. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou, and Y.-H. Hung, “Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device,” Org. Lett. 16, 5398–5401 (2014).
[Crossref] [PubMed]

Coehoorn, R.

A. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, and P. A. Bobbert, “Ab initio charge-carrier mobility model for amorphous molecular semiconductors,” Phys. Rev. B 93, 195209 (2016).
[Crossref]

R. Coehoorn and S. Van Mensfoort, “Effects of disorder on the current density and recombination profile in organic light-emitting diodes,” Phys. Rev. B 80, 085302 (2009).
[Crossref]

M. Bouhassoune, S. Van Mensfoort, P. Bobbert, and R. Coehoorn, “Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder,” Org. Electron. 10, 437–445 (2009).
[Crossref]

Y. Yimer, P. Bobbert, and R. Coehoorn, “Charge transport in disordered organic host–guest systems: effects of carrier density and electric field,” J. Phys.: Condens. Matter 20, 335204 (2008).

W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett. 94, 206601 (2005).
[Crossref] [PubMed]

Cornil, J.

V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chem. Rev. 107, 926–952 (2007).
[Crossref] [PubMed]

Y. Olivier, V. Lemaur, J.-L. Brédas, and J. Cornil, “Charge hopping in organic semiconductors: Influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks,” J. Phys. Chem. A 110, 6356–6364 (2006).
[Crossref] [PubMed]

Coropceanu, V.

V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chem. Rev. 107, 926–952 (2007).
[Crossref] [PubMed]

Cottaar, J.

W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett. 94, 206601 (2005).
[Crossref] [PubMed]

Cui, Q.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe 2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Curchod, B. F.

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

da Silva Filho, D. A.

V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chem. Rev. 107, 926–952 (2007).
[Crossref] [PubMed]

De Jong, M.

P. Blom, M. De Jong, and M. Van Munster, “Electric-field and temperature dependence of the hole mobility in poly (p-phenylene vinylene),” Phys. Rev. B 55, R656 (1997).
[Crossref]

De Leeuw, D.

W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett. 94, 206601 (2005).
[Crossref] [PubMed]

C. Tanase, E. Meijer, P. Blom, and D. De Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Phys. Rev. Lett. 91, 216601 (2003).
[Crossref] [PubMed]

E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett. 80, 3838–3840 (2002).
[Crossref]

Divayana, Y.

Y. Divayana and X. Sun, “Observation of excitonic quenching by long-range dipole-dipole interaction in sequentially doped organic phosphorescent host-guest system,” Phys. Rev. Lett. 99, 143003 (2007).
[Crossref] [PubMed]

Y. Divayana and X. Sun, “Observation of excitonic quenching by long-range dipole-dipole interaction in sequentially doped organic phosphorescent host-guest system,” Phys. Rev. Lett. 99, 143003 (2007).
[Crossref] [PubMed]

Fabregat-Santiago, F.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E. M. Barea, and E. Palomares, “A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors,” Inorg. Chim. Acta 361, 684–698 (2008).
[Crossref]

Forrest, S.

M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151–154 (1998).
[Crossref]

Friederich, P.

A. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, and P. A. Bobbert, “Ab initio charge-carrier mobility model for amorphous molecular semiconductors,” Phys. Rev. B 93, 195209 (2016).
[Crossref]

Friend, R.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Garcia-Belmonte, G.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E. M. Barea, and E. Palomares, “A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors,” Inorg. Chim. Acta 361, 684–698 (2008).
[Crossref]

GraÌLtzel, M.

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

Gruenbaum, W.

U. Wolf, H. Bässler, P. Borsenberger, and W. Gruenbaum, “Hole trapping in molecularly doped polymers,” Chem. Phys. 222, 259–267 (1997).
[Crossref]

Grünewald, M.

B. Movaghar, M. Grünewald, B. Ries, H. Bassler, and D. Würtz, “Diffusion and relaxation of energy in disordered organic and inorganic materials,” Phys. Rev. B 33, 5545 (1986).
[Crossref]

Ha, D.-G.

D.-G. Ha, J.-J. Kim, and M. A. Baldo, “Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules,” Adv. Funct. Mater. 6, 045221 (2016).

Hamwi, S.

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide,” Org. Electron. 10, 932–938 (2009).
[Crossref]

Harutyunyan, A. R.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Häusermann, R.

E. Knapp, R. Häusermann, H. Schwarzenbach, and B. Ruhstaller, “Numerical simulation of charge transport in disordered organic semiconductor devices,” J. Appl. Phys. 108, 054504 (2010).
[Crossref]

He, D.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe 2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Heinz, T. F.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Helwi, M. Al

P. Kordt, J. J. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 1955–1971 (2015).
[Crossref]

Ho, C.-L.

W.-Y. Wong and C.-L. Ho, “Functional metallophosphors for effective charge carrier injection/transport: new robust OLED materials with emerging applications,” J. Mater. Chem. 19, 4457–4482 (2009).
[Crossref]

Ho, K.-Y.

K.-Y. Ho, C.-K. Li, H.-J. Syu, Y. Lai, C.-F. Lin, and Y.-R. Wu, “Analysis of the PEDOT: PSS/Si nanowire hybrid solar cell with a tail state model,” J. Appl. Phys. 120, 215501 (2016).
[Crossref]

Holmes, A.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Holmes, R. J.

S. M. Menke and R. J. Holmes, “Exciton diffusion in organic photovoltaic cells,” Energy Environ. Sci. 7, 499–512 (2014).
[Crossref]

Hsiao, C.-H.

C.-H. Hsiao, Y.-H. Lan, P.-Y. Lee, T.-L. Chiu, and J.-H. Lee, “White organic light-emitting devices with ultra-high color stability over wide luminance range,” Org. Electron. 12, 547–555 (2011).
[Crossref]

C.-H. Hsiao, S.-W. Liu, C.-T. Chen, and J.-H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron. 11, 1500–1506 (2010).
[Crossref]

Hsu, T.-C.

C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, “Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes,” J. Appl. Phys. 113, 183104 (2013).
[Crossref]

Huang, J.-J.

J.-J. Huang, M.-k. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou, and Y.-H. Hung, “Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device,” Org. Lett. 16, 5398–5401 (2014).
[Crossref] [PubMed]

Huang, P.-T.

C.-C. Lee, M.-Y. Chang, P.-T. Huang, Y. C. Chen, Y. Chang, and S.-W. Liu, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” J. Appl. Phys. 101, 114501 (2007).
[Crossref]

Huisman, B.-H.

E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett. 80, 3838–3840 (2002).
[Crossref]

Hung, Y.-H.

J.-J. Huang, M.-k. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou, and Y.-H. Hung, “Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device,” Org. Lett. 16, 5398–5401 (2014).
[Crossref] [PubMed]

Iijima, T.

S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Appl. Phys. Lett. 83, 569–571 (2003).
[Crossref]

Jin, S.-H.

S. H. Rhee, K. bong Nam, C. S. Kim, M. Song, W. Cho, S.-H. Jin, and S. Y. Ryu, “Effect of electron mobility of the electron transport layer on fluorescent organic light-emitting diodes,” ECS Solid State Lett. 3, R19–R22 (2014).
[Crossref]

Kahn, A.

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide,” Org. Electron. 10, 932–938 (2009).
[Crossref]

Kambili, A.

A. Walker, A. Kambili, and S. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys.: Condens. Matter 14, 9825 (2002).

Kim, C. S.

S. H. Rhee, K. bong Nam, C. S. Kim, M. Song, W. Cho, S.-H. Jin, and S. Y. Ryu, “Effect of electron mobility of the electron transport layer on fluorescent organic light-emitting diodes,” ECS Solid State Lett. 3, R19–R22 (2014).
[Crossref]

Kim, J.-J.

D.-G. Ha, J.-J. Kim, and M. A. Baldo, “Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules,” Adv. Funct. Mater. 6, 045221 (2016).

Kita, H.

S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Appl. Phys. Lett. 83, 569–571 (2003).
[Crossref]

Klapwijk, T.

E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett. 80, 3838–3840 (2002).
[Crossref]

Knapp, E.

E. Knapp, R. Häusermann, H. Schwarzenbach, and B. Ruhstaller, “Numerical simulation of charge transport in disordered organic semiconductor devices,” J. Appl. Phys. 108, 054504 (2010).
[Crossref]

Kordt, P.

P. Kordt, J. J. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 1955–1971 (2015).
[Crossref]

Kowalsky, W.

P. Kordt, J. J. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 1955–1971 (2015).
[Crossref]

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide,” Org. Electron. 10, 932–938 (2009).
[Crossref]

Kröger, M.

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide,” Org. Electron. 10, 932–938 (2009).
[Crossref]

Kumar, N.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe 2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Lai, Y.

K.-Y. Ho, C.-K. Li, H.-J. Syu, Y. Lai, C.-F. Lin, and Y.-R. Wu, “Analysis of the PEDOT: PSS/Si nanowire hybrid solar cell with a tail state model,” J. Appl. Phys. 120, 215501 (2016).
[Crossref]

Lan, Y.-H.

C.-H. Hsiao, Y.-H. Lan, P.-Y. Lee, T.-L. Chiu, and J.-H. Lee, “White organic light-emitting devices with ultra-high color stability over wide luminance range,” Org. Electron. 12, 547–555 (2011).
[Crossref]

Lee, C.-C.

C.-C. Lee, M.-Y. Chang, P.-T. Huang, Y. C. Chen, Y. Chang, and S.-W. Liu, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” J. Appl. Phys. 101, 114501 (2007).
[Crossref]

Lee, J.-H.

C.-H. Hsiao, Y.-H. Lan, P.-Y. Lee, T.-L. Chiu, and J.-H. Lee, “White organic light-emitting devices with ultra-high color stability over wide luminance range,” Org. Electron. 12, 547–555 (2011).
[Crossref]

C.-H. Hsiao, S.-W. Liu, C.-T. Chen, and J.-H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron. 11, 1500–1506 (2010).
[Crossref]

Lee, K.-C.

G. Tan, R. Zhu, Y.-S. Tsai, K.-C. Lee, Z. Luo, Y.-Z. Lee, and S.-T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D: Appl. Phys. 49, 315101 (2016).
[Crossref]

Lee, P.-Y.

C.-H. Hsiao, Y.-H. Lan, P.-Y. Lee, T.-L. Chiu, and J.-H. Lee, “White organic light-emitting devices with ultra-high color stability over wide luminance range,” Org. Electron. 12, 547–555 (2011).
[Crossref]

Lee, Y.-Z.

G. Tan, R. Zhu, Y.-S. Tsai, K.-C. Lee, Z. Luo, Y.-Z. Lee, and S.-T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D: Appl. Phys. 49, 315101 (2016).
[Crossref]

Lemaur, V.

Y. Olivier, V. Lemaur, J.-L. Brédas, and J. Cornil, “Charge hopping in organic semiconductors: Influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks,” J. Phys. Chem. A 110, 6356–6364 (2006).
[Crossref] [PubMed]

Lennartz, C.

P. Kordt, J. J. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 1955–1971 (2015).
[Crossref]

Leung, M.-k.

J.-J. Huang, M.-k. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou, and Y.-H. Hung, “Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device,” Org. Lett. 16, 5398–5401 (2014).
[Crossref] [PubMed]

Li, C.-K.

K.-Y. Ho, C.-K. Li, H.-J. Syu, Y. Lai, C.-F. Lin, and Y.-R. Wu, “Analysis of the PEDOT: PSS/Si nanowire hybrid solar cell with a tail state model,” J. Appl. Phys. 120, 215501 (2016).
[Crossref]

C.-K. Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 61, 511–517 (2014).
[Crossref]

C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, “Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes,” J. Appl. Phys. 113, 183104 (2013).
[Crossref]

C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 59, 400–407 (2012).
[Crossref]

Lin, C.-F.

K.-Y. Ho, C.-K. Li, H.-J. Syu, Y. Lai, C.-F. Lin, and Y.-R. Wu, “Analysis of the PEDOT: PSS/Si nanowire hybrid solar cell with a tail state model,” J. Appl. Phys. 120, 215501 (2016).
[Crossref]

Liu, A.-S.

C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, “Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes,” J. Appl. Phys. 113, 183104 (2013).
[Crossref]

Liu, F.

A. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, and P. A. Bobbert, “Ab initio charge-carrier mobility model for amorphous molecular semiconductors,” Phys. Rev. B 93, 195209 (2016).
[Crossref]

Liu, S.-W.

C.-H. Hsiao, S.-W. Liu, C.-T. Chen, and J.-H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron. 11, 1500–1506 (2010).
[Crossref]

C.-C. Lee, M.-Y. Chang, P.-T. Huang, Y. C. Chen, Y. Chang, and S.-W. Liu, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” J. Appl. Phys. 101, 114501 (2007).
[Crossref]

Lo, S.-C.

E. B. Namdas, A. Ruseckas, I. D. Samuel, S.-C. Lo, and P. L. Burn, “Triplet exciton diffusion in fac-tris (2-phenylpyridine) iridium (iii)-cored electroluminescent dendrimers,” Appl. Phys. Lett. 86, 091104 (2005).
[Crossref]

Luo, Z.

G. Tan, R. Zhu, Y.-S. Tsai, K.-C. Lee, Z. Luo, Y.-Z. Lee, and S.-T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D: Appl. Phys. 49, 315101 (2016).
[Crossref]

Mackay, K.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Marks, R.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Martin, S.

A. Walker, A. Kambili, and S. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys.: Condens. Matter 14, 9825 (2002).

Massé, A.

A. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, and P. A. Bobbert, “Ab initio charge-carrier mobility model for amorphous molecular semiconductors,” Phys. Rev. B 93, 195209 (2016).
[Crossref]

Matsusue, N.

N. Matsusue, Y. Suzuki, and H. Naito, “Charge carrier transport in neat thin films of phosphorescent iridium complexes,” Jpn. J. Appl. Phys. 44, 3691 (2005).
[Crossref]

Matters, M.

M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Phys. Rev. B 57, 12964 (1998).
[Crossref]

May, F.

P. Kordt, J. J. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 1955–1971 (2015).
[Crossref]

Meijer, E.

C. Tanase, E. Meijer, P. Blom, and D. De Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Phys. Rev. Lett. 91, 216601 (2003).
[Crossref] [PubMed]

E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett. 80, 3838–3840 (2002).
[Crossref]

Menke, S. M.

S. M. Menke and R. J. Holmes, “Exciton diffusion in organic photovoltaic cells,” Energy Environ. Sci. 7, 499–512 (2014).
[Crossref]

Meyer, J.

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide,” Org. Electron. 10, 932–938 (2009).
[Crossref]

Michels, M.

W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett. 94, 206601 (2005).
[Crossref] [PubMed]

Mikhnenko, O. V.

O. V. Mikhnenko, P. W. Blom, and T.-Q. Nguyen, “Exciton diffusion in organic semiconductors,” Energy Environ. Sci. 8, 1867–1888 (2015).
[Crossref]

Monti, F.

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

Mora-Sero, I.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E. M. Barea, and E. Palomares, “A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors,” Inorg. Chim. Acta 361, 684–698 (2008).
[Crossref]

Movaghar, B.

B. Movaghar, M. Grünewald, B. Ries, H. Bassler, and D. Würtz, “Diffusion and relaxation of energy in disordered organic and inorganic materials,” Phys. Rev. B 33, 5545 (1986).
[Crossref]

Naito, H.

N. Matsusue, Y. Suzuki, and H. Naito, “Charge carrier transport in neat thin films of phosphorescent iridium complexes,” Jpn. J. Appl. Phys. 44, 3691 (2005).
[Crossref]

Namdas, E. B.

E. B. Namdas, A. Ruseckas, I. D. Samuel, S.-C. Lo, and P. L. Burn, “Triplet exciton diffusion in fac-tris (2-phenylpyridine) iridium (iii)-cored electroluminescent dendrimers,” Appl. Phys. Lett. 86, 091104 (2005).
[Crossref]

Nazeeruddin, M. K.

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

Nguyen, T.-Q.

O. V. Mikhnenko, P. W. Blom, and T.-Q. Nguyen, “Exciton diffusion in organic semiconductors,” Energy Environ. Sci. 8, 1867–1888 (2015).
[Crossref]

Nitsche, R.

A. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, and P. A. Bobbert, “Ab initio charge-carrier mobility model for amorphous molecular semiconductors,” Phys. Rev. B 93, 195209 (2016).
[Crossref]

O’brien, D.

M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151–154 (1998).
[Crossref]

Oh, J.-S.

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

Olivier, Y.

V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chem. Rev. 107, 926–952 (2007).
[Crossref] [PubMed]

Y. Olivier, V. Lemaur, J.-L. Brédas, and J. Cornil, “Charge hopping in organic semiconductors: Influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks,” J. Phys. Chem. A 110, 6356–6364 (2006).
[Crossref] [PubMed]

Palomares, E.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E. M. Barea, and E. Palomares, “A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors,” Inorg. Chim. Acta 361, 684–698 (2008).
[Crossref]

Park, I.-S.

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

Park, S.-R.

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

Pasveer, W.

W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett. 94, 206601 (2005).
[Crossref] [PubMed]

Rao, Y.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Reider, G. A.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Rhee, S. H.

S. H. Rhee, K. bong Nam, C. S. Kim, M. Song, W. Cho, S.-H. Jin, and S. Y. Ryu, “Effect of electron mobility of the electron transport layer on fluorescent organic light-emitting diodes,” ECS Solid State Lett. 3, R19–R22 (2014).
[Crossref]

Riedl, T.

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide,” Org. Electron. 10, 932–938 (2009).
[Crossref]

Ries, B.

B. Movaghar, M. Grünewald, B. Ries, H. Bassler, and D. Würtz, “Diffusion and relaxation of energy in disordered organic and inorganic materials,” Phys. Rev. B 33, 5545 (1986).
[Crossref]

Rosmeulen, M.

C.-K. Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 61, 511–517 (2014).
[Crossref]

Rostami, A.

Rothlisberger, U.

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

Ruhstaller, B.

E. Knapp, R. Häusermann, H. Schwarzenbach, and B. Ruhstaller, “Numerical simulation of charge transport in disordered organic semiconductor devices,” J. Appl. Phys. 108, 054504 (2010).
[Crossref]

Ruseckas, A.

E. B. Namdas, A. Ruseckas, I. D. Samuel, S.-C. Lo, and P. L. Burn, “Triplet exciton diffusion in fac-tris (2-phenylpyridine) iridium (iii)-cored electroluminescent dendrimers,” Appl. Phys. Lett. 86, 091104 (2005).
[Crossref]

Ryu, S. Y.

S. H. Rhee, K. bong Nam, C. S. Kim, M. Song, W. Cho, S.-H. Jin, and S. Y. Ryu, “Effect of electron mobility of the electron transport layer on fluorescent organic light-emitting diodes,” ECS Solid State Lett. 3, R19–R22 (2014).
[Crossref]

Samuel, I. D.

E. B. Namdas, A. Ruseckas, I. D. Samuel, S.-C. Lo, and P. L. Burn, “Triplet exciton diffusion in fac-tris (2-phenylpyridine) iridium (iii)-cored electroluminescent dendrimers,” Appl. Phys. Lett. 86, 091104 (2005).
[Crossref]

Sato, F.

S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Appl. Phys. Lett. 83, 569–571 (2003).
[Crossref]

Schwarzenbach, H.

E. Knapp, R. Häusermann, H. Schwarzenbach, and B. Ruhstaller, “Numerical simulation of charge transport in disordered organic semiconductor devices,” J. Appl. Phys. 108, 054504 (2010).
[Crossref]

Scopelliti, R.

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

Shen, Y.-J.

C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, “Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes,” J. Appl. Phys. 113, 183104 (2013).
[Crossref]

Shin, D.-Y.

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

Shivaraman, R.

Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101, 083505 (2012).
[Crossref]

Shoustikov, A.

M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151–154 (1998).
[Crossref]

Sibley, S.

M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151–154 (1998).
[Crossref]

Silbey, R.

V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chem. Rev. 107, 926–952 (2007).
[Crossref] [PubMed]

Simoen, E.

C.-K. Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 61, 511–517 (2014).
[Crossref]

Song, M.

S. H. Rhee, K. bong Nam, C. S. Kim, M. Song, W. Cho, S.-H. Jin, and S. Y. Ryu, “Effect of electron mobility of the electron transport layer on fluorescent organic light-emitting diodes,” ECS Solid State Lett. 3, R19–R22 (2014).
[Crossref]

Song, O.-K.

T.-Y. Chu and O.-K. Song, “Hole mobility of N, N′-bis (naphthalen-1-yl)-N, N′-bis (phenyl) benzidine investigated by using space-charge-limited currents,” Appl. Phys. Lett. 90, 203512 (2007).
[Crossref]

Song, W.-J.

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

Soofi, H.

Speck, J. S.

Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101, 083505 (2012).
[Crossref]

Steimer, F.

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

Sun, D.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Sun, X.

Y. Divayana and X. Sun, “Observation of excitonic quenching by long-range dipole-dipole interaction in sequentially doped organic phosphorescent host-guest system,” Phys. Rev. Lett. 99, 143003 (2007).
[Crossref] [PubMed]

Y. Divayana and X. Sun, “Observation of excitonic quenching by long-range dipole-dipole interaction in sequentially doped organic phosphorescent host-guest system,” Phys. Rev. Lett. 99, 143003 (2007).
[Crossref] [PubMed]

Suzuki, Y.

N. Matsusue, Y. Suzuki, and H. Naito, “Charge carrier transport in neat thin films of phosphorescent iridium complexes,” Jpn. J. Appl. Phys. 44, 3691 (2005).
[Crossref]

Suzuri, Y.

S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Appl. Phys. Lett. 83, 569–571 (2003).
[Crossref]

Symalla, F.

A. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, and P. A. Bobbert, “Ab initio charge-carrier mobility model for amorphous molecular semiconductors,” Phys. Rev. B 93, 195209 (2016).
[Crossref]

Syu, H.-J.

K.-Y. Ho, C.-K. Li, H.-J. Syu, Y. Lai, C.-F. Lin, and Y.-R. Wu, “Analysis of the PEDOT: PSS/Si nanowire hybrid solar cell with a tail state model,” J. Appl. Phys. 120, 215501 (2016).
[Crossref]

Tan, G.

G. Tan, R. Zhu, Y.-S. Tsai, K.-C. Lee, Z. Luo, Y.-Z. Lee, and S.-T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D: Appl. Phys. 49, 315101 (2016).
[Crossref]

Tanase, C.

W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett. 94, 206601 (2005).
[Crossref] [PubMed]

C. Tanase, E. Meijer, P. Blom, and D. De Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Phys. Rev. Lett. 91, 216601 (2003).
[Crossref] [PubMed]

E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett. 80, 3838–3840 (2002).
[Crossref]

Tang, C. W.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987).
[Crossref]

Tavernelli, I.

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

Thompson, M.

M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151–154 (1998).
[Crossref]

Tokito, S.

S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Appl. Phys. Lett. 83, 569–571 (2003).
[Crossref]

Tsai, Y.-S.

G. Tan, R. Zhu, Y.-S. Tsai, K.-C. Lee, Z. Luo, Y.-Z. Lee, and S.-T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D: Appl. Phys. 49, 315101 (2016).
[Crossref]

Tsuzuki, T.

S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Appl. Phys. Lett. 83, 569–571 (2003).
[Crossref]

van der Holst, J. J.

P. Kordt, J. J. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 1955–1971 (2015).
[Crossref]

Van Mensfoort, S.

R. Coehoorn and S. Van Mensfoort, “Effects of disorder on the current density and recombination profile in organic light-emitting diodes,” Phys. Rev. B 80, 085302 (2009).
[Crossref]

M. Bouhassoune, S. Van Mensfoort, P. Bobbert, and R. Coehoorn, “Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder,” Org. Electron. 10, 437–445 (2009).
[Crossref]

Van Munster, M.

P. Blom, M. De Jong, and M. Van Munster, “Electric-field and temperature dependence of the hole mobility in poly (p-phenylene vinylene),” Phys. Rev. B 55, R656 (1997).
[Crossref]

Van Veenendaal, E.

E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett. 80, 3838–3840 (2002).
[Crossref]

VanSlyke, S. A.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987).
[Crossref]

Vissenberg, M.

M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Phys. Rev. B 57, 12964 (1998).
[Crossref]

Walker, A.

A. Walker, A. Kambili, and S. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys.: Condens. Matter 14, 9825 (2002).

Wang, K.-C.

Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101, 083505 (2012).
[Crossref]

Wang, Y.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe 2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Wenzel, W.

A. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, and P. A. Bobbert, “Ab initio charge-carrier mobility model for amorphous molecular semiconductors,” Phys. Rev. B 93, 195209 (2016).
[Crossref]

Wolf, U.

U. Wolf, H. Bässler, P. Borsenberger, and W. Gruenbaum, “Hole trapping in molecularly doped polymers,” Chem. Phys. 222, 259–267 (1997).
[Crossref]

Wong, W.-Y.

W.-Y. Wong and C.-L. Ho, “Functional metallophosphors for effective charge carrier injection/transport: new robust OLED materials with emerging applications,” J. Mater. Chem. 19, 4457–4482 (2009).
[Crossref]

Wu, S.-T.

G. Tan, R. Zhu, Y.-S. Tsai, K.-C. Lee, Z. Luo, Y.-Z. Lee, and S.-T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D: Appl. Phys. 49, 315101 (2016).
[Crossref]

Wu, Y.-R.

K.-Y. Ho, C.-K. Li, H.-J. Syu, Y. Lai, C.-F. Lin, and Y.-R. Wu, “Analysis of the PEDOT: PSS/Si nanowire hybrid solar cell with a tail state model,” J. Appl. Phys. 120, 215501 (2016).
[Crossref]

C.-K. Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 61, 511–517 (2014).
[Crossref]

C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, “Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes,” J. Appl. Phys. 113, 183104 (2013).
[Crossref]

C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 59, 400–407 (2012).
[Crossref]

Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101, 083505 (2012).
[Crossref]

Würtz, D.

B. Movaghar, M. Grünewald, B. Ries, H. Bassler, and D. Würtz, “Diffusion and relaxation of energy in disordered organic and inorganic materials,” Phys. Rev. B 33, 5545 (1986).
[Crossref]

Yang, H.-C.

C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, “Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes,” J. Appl. Phys. 113, 183104 (2013).
[Crossref]

Yimer, Y.

Y. Yimer, P. Bobbert, and R. Coehoorn, “Charge transport in disordered organic host–guest systems: effects of carrier density and electric field,” J. Phys.: Condens. Matter 20, 335204 (2008).

Yoon, J.-H.

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

You, Y.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151–154 (1998).
[Crossref]

Zhao, H.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe 2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Zhu, R.

G. Tan, R. Zhu, Y.-S. Tsai, K.-C. Lee, Z. Luo, Y.-Z. Lee, and S.-T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D: Appl. Phys. 49, 315101 (2016).
[Crossref]

Adv. Funct. Mater. (2)

P. Kordt, J. J. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 1955–1971 (2015).
[Crossref]

D.-G. Ha, J.-J. Kim, and M. A. Baldo, “Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules,” Adv. Funct. Mater. 6, 045221 (2016).

Appl. Phys. Lett. (6)

S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Appl. Phys. Lett. 83, 569–571 (2003).
[Crossref]

Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101, 083505 (2012).
[Crossref]

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987).
[Crossref]

E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett. 80, 3838–3840 (2002).
[Crossref]

T.-Y. Chu and O.-K. Song, “Hole mobility of N, N′-bis (naphthalen-1-yl)-N, N′-bis (phenyl) benzidine investigated by using space-charge-limited currents,” Appl. Phys. Lett. 90, 203512 (2007).
[Crossref]

E. B. Namdas, A. Ruseckas, I. D. Samuel, S.-C. Lo, and P. L. Burn, “Triplet exciton diffusion in fac-tris (2-phenylpyridine) iridium (iii)-cored electroluminescent dendrimers,” Appl. Phys. Lett. 86, 091104 (2005).
[Crossref]

Chem. Phys. (1)

U. Wolf, H. Bässler, P. Borsenberger, and W. Gruenbaum, “Hole trapping in molecularly doped polymers,” Chem. Phys. 222, 259–267 (1997).
[Crossref]

Chem. Rev. (1)

V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chem. Rev. 107, 926–952 (2007).
[Crossref] [PubMed]

ECS Solid State Lett. (1)

S. H. Rhee, K. bong Nam, C. S. Kim, M. Song, W. Cho, S.-H. Jin, and S. Y. Ryu, “Effect of electron mobility of the electron transport layer on fluorescent organic light-emitting diodes,” ECS Solid State Lett. 3, R19–R22 (2014).
[Crossref]

Energy Environ. Sci. (2)

S. M. Menke and R. J. Holmes, “Exciton diffusion in organic photovoltaic cells,” Energy Environ. Sci. 7, 499–512 (2014).
[Crossref]

O. V. Mikhnenko, P. W. Blom, and T.-Q. Nguyen, “Exciton diffusion in organic semiconductors,” Energy Environ. Sci. 8, 1867–1888 (2015).
[Crossref]

IEEE Trans. Electron Dev. (2)

C.-K. Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 61, 511–517 (2014).
[Crossref]

C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron Dev. 59, 400–407 (2012).
[Crossref]

Inorg. Chem. (1)

E. Baranoff, B. F. Curchod, F. Monti, F. Steimer, G. Accorsi, I. Tavernelli, U. Rothlisberger, R. Scopelliti, M. GraÌĹtzel, and M. K. Nazeeruddin, “Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium (III) Complexes,” Inorg. Chem. 51, 799–811 (2011).
[Crossref]

Inorg. Chim. Acta (1)

J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E. M. Barea, and E. Palomares, “A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors,” Inorg. Chim. Acta 361, 684–698 (2008).
[Crossref]

J. Appl. Phys. (4)

C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, “Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes,” J. Appl. Phys. 113, 183104 (2013).
[Crossref]

C.-C. Lee, M.-Y. Chang, P.-T. Huang, Y. C. Chen, Y. Chang, and S.-W. Liu, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” J. Appl. Phys. 101, 114501 (2007).
[Crossref]

E. Knapp, R. Häusermann, H. Schwarzenbach, and B. Ruhstaller, “Numerical simulation of charge transport in disordered organic semiconductor devices,” J. Appl. Phys. 108, 054504 (2010).
[Crossref]

K.-Y. Ho, C.-K. Li, H.-J. Syu, Y. Lai, C.-F. Lin, and Y.-R. Wu, “Analysis of the PEDOT: PSS/Si nanowire hybrid solar cell with a tail state model,” J. Appl. Phys. 120, 215501 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

W.-Y. Wong and C.-L. Ho, “Functional metallophosphors for effective charge carrier injection/transport: new robust OLED materials with emerging applications,” J. Mater. Chem. 19, 4457–4482 (2009).
[Crossref]

J. Phys. Chem. A (1)

Y. Olivier, V. Lemaur, J.-L. Brédas, and J. Cornil, “Charge hopping in organic semiconductors: Influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks,” J. Phys. Chem. A 110, 6356–6364 (2006).
[Crossref] [PubMed]

J. Phys. D: Appl. Phys. (1)

G. Tan, R. Zhu, Y.-S. Tsai, K.-C. Lee, Z. Luo, Y.-Z. Lee, and S.-T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D: Appl. Phys. 49, 315101 (2016).
[Crossref]

J. Phys.: Condens. Matter (2)

Y. Yimer, P. Bobbert, and R. Coehoorn, “Charge transport in disordered organic host–guest systems: effects of carrier density and electric field,” J. Phys.: Condens. Matter 20, 335204 (2008).

A. Walker, A. Kambili, and S. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys.: Condens. Matter 14, 9825 (2002).

Jpn. J. Appl. Phys. (1)

N. Matsusue, Y. Suzuki, and H. Naito, “Charge carrier transport in neat thin films of phosphorescent iridium complexes,” Jpn. J. Appl. Phys. 44, 3691 (2005).
[Crossref]

Nano Lett. (1)

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Nature (2)

M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151–154 (1998).
[Crossref]

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Org. Electron. (6)

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

C.-H. Hsiao, S.-W. Liu, C.-T. Chen, and J.-H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron. 11, 1500–1506 (2010).
[Crossref]

I.-S. Park, S.-R. Park, D.-Y. Shin, J.-S. Oh, W.-J. Song, and J.-H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Org. Electron. 11, 218–226 (2010).
[Crossref]

M. Bouhassoune, S. Van Mensfoort, P. Bobbert, and R. Coehoorn, “Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder,” Org. Electron. 10, 437–445 (2009).
[Crossref]

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide,” Org. Electron. 10, 932–938 (2009).
[Crossref]

C.-H. Hsiao, Y.-H. Lan, P.-Y. Lee, T.-L. Chiu, and J.-H. Lee, “White organic light-emitting devices with ultra-high color stability over wide luminance range,” Org. Electron. 12, 547–555 (2011).
[Crossref]

Org. Lett. (1)

J.-J. Huang, M.-k. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou, and Y.-H. Hung, “Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device,” Org. Lett. 16, 5398–5401 (2014).
[Crossref] [PubMed]

Phys. Rev. B (6)

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe 2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

R. Coehoorn and S. Van Mensfoort, “Effects of disorder on the current density and recombination profile in organic light-emitting diodes,” Phys. Rev. B 80, 085302 (2009).
[Crossref]

A. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, and P. A. Bobbert, “Ab initio charge-carrier mobility model for amorphous molecular semiconductors,” Phys. Rev. B 93, 195209 (2016).
[Crossref]

B. Movaghar, M. Grünewald, B. Ries, H. Bassler, and D. Würtz, “Diffusion and relaxation of energy in disordered organic and inorganic materials,” Phys. Rev. B 33, 5545 (1986).
[Crossref]

P. Blom, M. De Jong, and M. Van Munster, “Electric-field and temperature dependence of the hole mobility in poly (p-phenylene vinylene),” Phys. Rev. B 55, R656 (1997).
[Crossref]

M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Phys. Rev. B 57, 12964 (1998).
[Crossref]

Phys. Rev. Lett. (4)

W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett. 94, 206601 (2005).
[Crossref] [PubMed]

C. Tanase, E. Meijer, P. Blom, and D. De Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Phys. Rev. Lett. 91, 216601 (2003).
[Crossref] [PubMed]

Y. Divayana and X. Sun, “Observation of excitonic quenching by long-range dipole-dipole interaction in sequentially doped organic phosphorescent host-guest system,” Phys. Rev. Lett. 99, 143003 (2007).
[Crossref] [PubMed]

Y. Divayana and X. Sun, “Observation of excitonic quenching by long-range dipole-dipole interaction in sequentially doped organic phosphorescent host-guest system,” Phys. Rev. Lett. 99, 143003 (2007).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

H. Bässler, “Charge transport in disordered organic photoconductors a Monte Carlo simulation study,” Phys. Status Solidi B 175, 15–56 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Illustration of DOS in an organic material. Ndos is the traditional three-dimensional DOS in semiconductor model. Ndos,tail is the actual DOS in organic materials. (b) Energy level diagram of OLED used in this study. (c) Energy level diagram of the electron-only device (EOD) for BImBP. (b) Chemical structures of NPB, mCP, TAZ, BImBP, and FIrpic.
Fig. 2
Fig. 2 Distribution of FIrpic composition with (a) one sub-domain, (b) two sub-domains, (c) four sub-domains, and (d) six sub-domains.
Fig. 3
Fig. 3 Current densities with different seeding maps used at (a) 3.0 V and (b) 11.0 V. The blue dots represent the current densities in each seeding map and the dashed black lines represent the average current density. The red lines are the errors of the average current densities calculated based on the different numbers of seeding maps used.
Fig. 4
Fig. 4 LUMO distribution with 12% FIrpic in (a) one sub-domain and (b) six sub-domains. (c) Simulated results for the dependence of the mobility on FIrpic concentration with different number of sub-domains at 3 × 105 V/cm. (d) Illustration of the random method for six sub-domains.
Fig. 5
Fig. 5 (a) J–V curve fitting results with 0% and 12% FIrpic. (b) J–V curve fitting results with 9% and 15% FIrpic.
Fig. 6
Fig. 6 Exciton distributions for (a) 12%, (b) 15% FIrpic at 6.0 V, and (c) 12% FIrpic at 10.0 V. In each figure, EML is between the two white dashed lines.
Fig. 7
Fig. 7 Normalized QE of fitting results for (a) 12% and (b) 15% FIrpic.

Tables (2)

Tables Icon

Table 1 Simulation parameters of the electron-only device (EOD) and the whole devices.

Tables Icon

Table 2 Setting of the exciton diffusion parameters.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

( ε φ ) = n ( x , y ) p ( x , y ) + n t r a p ( x , y ) ,
J n ( x , y ) = q μ n n ( x , y ) E f n ( x , y ) ,
J p ( x , y ) = q μ p p ( x , y ) E f p ( x , y ) ,
J n , p ( x , y ) = ± q ( f S R H + B 0 n ( x , y ) p ( x , y ) ) ,
f S R H = n p n i 2 τ n ( p + n i e E i E t r a p k B T ) + τ p ( n + n i e E t r a p E i k B T ) ,
N t a i l , d o s ( E ) = N t a i l 1 σ t a i l 2 π exp [ ( E E t a i l ) 2 2 σ t a i l 2 ]
n = N t a i l , d o s ( E ) × f e ( E ) d E ,
N t r a p , d o s ( E ) = N t r a p 1 σ t r a p 2 π exp [ ( E E t r a p ) 2 2 σ t r a p 2 ] ,
μ = μ 0 × exp ( β F )
d n e x d t = D e x 2 n e x n e x τ γ n e x 2 + G ,
1 τ = K r + K n r
J r a d = q × n e x ( x , y ) × K r ( x , y ) d r

Metrics