Abstract

Very short Type I and Type II Bragg gratings, on the order of 100 µm in length, are written through the protective polyimide coating of high NA and standard single mode silica optical fibers with infrared femtosecond pulses and a phase mask. By exploiting the transverse walk-off of apertured diffracted beams produced by the phase mask and a slit placed proximate the mask, complex grating structures are fabricated and characterized. These gratings are suitable for structural health monitoring based on acoustic measurements or localized high-temperature measurements.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond inscription of fiber Bragg gratings through the coating with a Low-NA lens

Aviran Halstuch, Avishay Shamir, and Amiel A. Ishaaya
Opt. Express 27(12) 16935-16944 (2019)

IR femtosecond pulsed laser-based fiber Bragg grating inscription in a photonic crystal fiber using a phase mask and a short focal length lens

Tigran Baghdasaryan, Thomas Geernart, Adriana Morana, Emmanuel Marin, Sylvain Girard, Mariusz Makara, Paweł Mergo, Hugo Thienpont, and Francis Berghmans
Opt. Express 26(11) 14741-14751 (2018)

Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask

Stephen J. Mihailov, Dan Grobnic, Christopher W. Smelser, Ping Lu, Robert B. Walker, and Huimin Ding
Opt. Mater. Express 1(4) 754-765 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37(34), 8120–8128 (1998).
    [Crossref] [PubMed]
  2. N. Takahashi, K. Yoshimura, and S. Takahashi, “Detection of ultrasonic mechanical vibration of a solid using fiber Bragg grating,” Jpn. J. Appl,” Phys. Part 1 39, 3134–3138 (2000).
  3. D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
    [Crossref]
  4. C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25(12), 125105 (2014).
    [Crossref]
  5. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref] [PubMed]
  6. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  7. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
    [Crossref]
  8. J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011).
    [Crossref] [PubMed]
  9. K. Chah, V. Voisin, D. Kinet, and C. Caucheteur, “Surface plasmon resonance in eccentric femtosecond-laser-induced fiber Bragg gratings,” Opt. Lett. 39(24), 6887–6890 (2014).
    [Crossref] [PubMed]
  10. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
    [Crossref] [PubMed]
  11. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
    [Crossref]
  12. D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
    [Crossref]
  13. S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
    [Crossref]
  14. M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39(12), 3646–3649 (2014).
    [Crossref] [PubMed]
  15. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [Crossref]
  16. K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
    [Crossref]
  17. P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” presented at 25th International Conference on Optical Fiber Sensors (2017), paper 103234M.
    [Crossref]
  18. R. J. Williams, R. G. Krämer, S. Nolte, and M. J. Withford, “Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique,” Opt. Lett. 38(11), 1918–1920 (2013).
    [Crossref] [PubMed]
  19. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
    [Crossref] [PubMed]
  20. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref] [PubMed]
  21. C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
    [Crossref] [PubMed]
  22. A. V. Dostovalov, A. A. Wolf, A. V. Parygin, V. E. Zyubin, and S. A. Babin, “Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule,” Opt. Express 24(15), 16232–16237 (2016).
    [Crossref] [PubMed]
  23. C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Nonlinear photoluminescence imaging applied to femtosecond laser manufacturing of fiber Bragg gratings,” Opt. Express 25(13), 14247–14259 (2017).
    [Crossref] [PubMed]
  24. O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59(3), 229–232 (1986).
    [Crossref]
  25. Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
    [Crossref]
  26. A. A. Maznev, T. F. Crimmins, and K. A. Nelson, “How to make femtosecond pulses overlap,” Opt. Lett. 23(17), 1378–1380 (1998).
    [Crossref] [PubMed]
  27. C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
    [Crossref] [PubMed]
  28. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
    [Crossref] [PubMed]
  29. M.-C. Wu and R. S. Rogowski, “Fabrication of self-apodized short-length fiber Bragg gratings,” Appl. Opt. 42(25), 5017–5023 (2003).
    [Crossref] [PubMed]
  30. J. W. Goodman, Introduction to Fourier optics, Roberts and Company Publishers, 2005, chapter 3.
  31. D. Grobnic, S. J. Mihailov, R. Lausten, and C. Hnatovsky, “High Temperature Stable Fiber Bragg Gratings (FBGs) Inscribed Through Polyimide Coating of Optical Fibers Using a Phase Mask,” Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), Sept. 5–8, 2016, Sydney, Australia, paper BM3B.2.
    [Crossref]
  32. C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel Phase Mask Apparatus for “Through the Jacket” Inscription of FBGs in Unloaded SMF-28 Fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (2010), paper BThD3.
  33. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
    [Crossref]

2017 (2)

2016 (1)

2014 (3)

2013 (1)

2011 (1)

2010 (1)

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

2008 (2)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

2007 (1)

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

2006 (1)

2005 (2)

2004 (4)

2003 (3)

2000 (1)

N. Takahashi, K. Yoshimura, and S. Takahashi, “Detection of ultrasonic mechanical vibration of a solid using fiber Bragg grating,” Jpn. J. Appl,” Phys. Part 1 39, 3134–3138 (2000).

1998 (2)

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

1993 (2)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

1986 (1)

O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59(3), 229–232 (1986).
[Crossref]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Babin, S. A.

Barnes, M.

Becker, R. G.

Bennion, I.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
[Crossref] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37(34), 8120–8128 (1998).
[Crossref] [PubMed]

Bernier, M.

Betz, D. C.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[Crossref]

Bilodeau, F.

C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel Phase Mask Apparatus for “Through the Jacket” Inscription of FBGs in Unloaded SMF-28 Fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (2010), paper BThD3.

Bor, Z.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

Brooks, C.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25(12), 125105 (2014).
[Crossref]

Carrier, J.

Caucheteur, C.

Chah, K.

Coulas, D.

Crimmins, T. F.

Cuglietta, G.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

Culshaw, B.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[Crossref]

Dai, X.

Davis, C.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25(12), 125105 (2014).
[Crossref]

Ding, H.

Dostovalov, A. V.

Dubov, M.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Fisher, N. E.

Froggatt, M.

Gavrilov, L. R.

Gifford, D.

Graver, T.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

Grobnic, D.

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Nonlinear photoluminescence imaging applied to femtosecond laser manufacturing of fiber Bragg gratings,” Opt. Express 25(13), 14247–14259 (2017).
[Crossref] [PubMed]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel Phase Mask Apparatus for “Through the Jacket” Inscription of FBGs in Unloaded SMF-28 Fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (2010), paper BThD3.

Hand, J. W.

Hazim, H. A.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

Henderson, G.

Hilbert, M.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Hnatovsky, C.

Jackson, D. A.

Jovanovic, N.

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Khrushchev, I. Y.

Kinet, D.

Krämer, R. G.

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Lu, P.

Malo, B.

C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel Phase Mask Apparatus for “Through the Jacket” Inscription of FBGs in Unloaded SMF-28 Fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (2010), paper BThD3.

Marshall, G. D.

Martinez, A.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
[Crossref] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Martinez, O. E.

O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59(3), 229–232 (1986).
[Crossref]

Maznev, A. A.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Mendez, A.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

Mezentsev, V. K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Mihailov, S.

Mihailov, S. J.

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Nonlinear photoluminescence imaging applied to femtosecond laser manufacturing of fiber Bragg gratings,” Opt. Express 25(13), 14247–14259 (2017).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel Phase Mask Apparatus for “Through the Jacket” Inscription of FBGs in Unloaded SMF-28 Fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (2010), paper BThD3.

Mizrahi, V.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Mou, C.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Nelson, K. A.

Nolte, S.

Norman, P.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25(12), 125105 (2014).
[Crossref]

Pannell, C. N.

Parygin, A. V.

Racz, B.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

Rajic, N.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25(12), 125105 (2014).
[Crossref]

Ramos, R. T.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Robertson, D.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25(12), 125105 (2014).
[Crossref]

Rogowski, R. S.

Rosalie, C.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25(12), 125105 (2014).
[Crossref]

Smelser, C.

Smelser, C. W.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel Phase Mask Apparatus for “Through the Jacket” Inscription of FBGs in Unloaded SMF-28 Fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (2010), paper BThD3.

Soller, B.

Staszewski, W. J.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[Crossref]

Steel, M. J.

Szabo, G.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

Takahashi, N.

N. Takahashi, K. Yoshimura, and S. Takahashi, “Detection of ultrasonic mechanical vibration of a solid using fiber Bragg grating,” Jpn. J. Appl,” Phys. Part 1 39, 3134–3138 (2000).

Takahashi, S.

N. Takahashi, K. Yoshimura, and S. Takahashi, “Detection of ultrasonic mechanical vibration of a solid using fiber Bragg grating,” Jpn. J. Appl,” Phys. Part 1 39, 3134–3138 (2000).

Thomas, J.

Thursby, G.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[Crossref]

Trépanier, F.

Tünnermann, A.

Unruh, J.

Vallée, R.

Voisin, V.

Walker, R. B.

Webb, D. J.

Williams, R. J.

Withford, M. J.

Wolf, A. A.

Wolfe, M.

Wu, M.-C.

Yoshimura, K.

N. Takahashi, K. Yoshimura, and S. Takahashi, “Detection of ultrasonic mechanical vibration of a solid using fiber Bragg grating,” Jpn. J. Appl,” Phys. Part 1 39, 3134–3138 (2000).

Zhang, L.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37(34), 8120–8128 (1998).
[Crossref] [PubMed]

Zhou, K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Zyubin, V. E.

Appl. Opt. (2)

Electron. Lett. (3)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25(12), 125105 (2014).
[Crossref]

Opt. Commun. (2)

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59(3), 229–232 (1986).
[Crossref]

Opt. Eng. (1)

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

Opt. Express (5)

Opt. Lett. (9)

K. Chah, V. Voisin, D. Kinet, and C. Caucheteur, “Surface plasmon resonance in eccentric femtosecond-laser-induced fiber Bragg gratings,” Opt. Lett. 39(24), 6887–6890 (2014).
[Crossref] [PubMed]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
[Crossref] [PubMed]

M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39(12), 3646–3649 (2014).
[Crossref] [PubMed]

R. J. Williams, R. G. Krämer, S. Nolte, and M. J. Withford, “Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique,” Opt. Lett. 38(11), 1918–1920 (2013).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

A. A. Maznev, T. F. Crimmins, and K. A. Nelson, “How to make femtosecond pulses overlap,” Opt. Lett. 23(17), 1378–1380 (1998).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

Phys. Part 1 (1)

N. Takahashi, K. Yoshimura, and S. Takahashi, “Detection of ultrasonic mechanical vibration of a solid using fiber Bragg grating,” Jpn. J. Appl,” Phys. Part 1 39, 3134–3138 (2000).

Smart Mater. Struct. (1)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[Crossref]

Other (4)

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” presented at 25th International Conference on Optical Fiber Sensors (2017), paper 103234M.
[Crossref]

J. W. Goodman, Introduction to Fourier optics, Roberts and Company Publishers, 2005, chapter 3.

D. Grobnic, S. J. Mihailov, R. Lausten, and C. Hnatovsky, “High Temperature Stable Fiber Bragg Gratings (FBGs) Inscribed Through Polyimide Coating of Optical Fibers Using a Phase Mask,” Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), Sept. 5–8, 2016, Sydney, Australia, paper BM3B.2.
[Crossref]

C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel Phase Mask Apparatus for “Through the Jacket” Inscription of FBGs in Unloaded SMF-28 Fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (2010), paper BThD3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Interference of ultrashort pulses after a phase mask that produces only the 0th and 1st diffraction orders. (a) A complex Talbot-like interference pattern formed near the phase mask (M) when the distance L from M is small. (b) Transverse (ΔT) and longitudinal (ΔL) walk-offs become pronounced as L is increased. The pulse phase fronts are schematically depicted with blue lines.
Fig. 2
Fig. 2 Intensity profile of a Fresnel diffraction pattern formed after a 1.07 μm-pitch phase mask. The macroscopic intensity profile is depicted in blue. The black line shows regions where the d/2-spaced interference fringes are located. The intensity profile of the incident pulse at the phase mask is in red. In our simulation, w = 3.5 mm, s = 0.7 mm, D = 5 mm, L = 0.5 mm, and λ = 800 nm. The 0th diffraction order is assumed to be fully suppressed.
Fig. 3
Fig. 3 A schematic of the FBG inscription setup based on a slit-apertured femtosecond laser beam with a central wavelength λ = 800 nm. The intensity distribution after the phase mask M is visualized using direct imaging (DI) at λ = 800 nm. The fiber alignment is performed using nonlinear photoluminescence microscopy (NPM) at λ1 ~400 nm [21]. Characterization of the resultant FBGs is performed using dark-field microscopy (DFM) at λ2 = 637 nm [21].
Fig. 4
Fig. 4 Effects of the transverse walk-off on the focal light intensity distribution of a slit-apertured fs-beam in the 1st diffraction order. (a) shows the measured xy-intensity in the middle of the region where the + 1 and −1 diffraction orders overlap. (b) shows the measured xy-intensity at the left edge of the region in (a). The scale along the x-axis, y-axis, and the x-axis in the pertinent plots in (a) and (b) is the same.
Fig. 5
Fig. 5 Controlling the overlap of diffracted fs-pulses after the mask using the transverse walk-off effect. Blue lines are the induced nonlinear photoluminescence originating from the interaction of the infrared fs-pulses with the core of the polyimide-coated Fibercore SM1500(9/125)P optical fiber.
Fig. 6
Fig. 6 A Type I FBG for high-frequency acoustic sensing written inside the high-Germanium content polyimide-coated fiber from Fibercore. (a) An optical image of a Type I FBG. DFM reveals the position and extent (~300 μm) of the grating. (b) The reflection and transmission spectra of the grating in (a). (c) The thermal stability curve of the grating in (a) at 150 °C.
Fig. 7
Fig. 7 A Type II FBGs for high-temperature sensing written inside the single mode polyimide-coated fiber from Fibercore. (a) A Fabry-Perot cavity formed by two Type II FBGs with the same period. The DFM image shows the separation and extent of the two FBGs. The reflection spectrum of the cavity (i.e., right panel of (a)) is in blue, the spectrum of the left FBG is in red. (b) A temperature sensor array formed by two Type II FBGs with different periods. The reflection spectrum of the sensor is in the right panel.
Fig. 8
Fig. 8 Temperature sensing based on the Fabry-Perot cavity (F-P) shown in Fig. 7(a). (a) The shift of the F-P Bragg wavelength with temperature during annealing up to 1000 °C. (b) The spectrum of the F-P cavity at room temperature (blue trace) and at to 1030 °C (red trace).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ T =2L tan( θ ).
I GO ( x,y )=C  G 2 ( x ) G 2 ( y ).
I G ( x,y )=0.5 C  ( G( x Δ T /2 )+G( x+ Δ T /2 ) ) 2 cos 2 ( 2πx/d ) G 2 ( y ).
F( x )= s s G( x' ) e iπ Dλ ( xx' ) 2 dx'.
I F ( x,y )=0.5 C 1 | F( x Δ T /2 )+F(x+ Δ T /2) | 2 cos 2 ( 2πx/d ) G 2 ( y ).
F( x Δ T /2 ) F * (x+ Δ T /2)+F ( x Δ T /2 ) * F(x+ Δ T /2)0.
Δv= c/2 n eff l.

Metrics