Abstract

We measured the atmospheric propagation of ps THz pulses with a 0.4-THz bandwidth through a 910-m distance; the pulse delay corresponded to 255 pulses down the pulse train of the mode-locked ring laser excitation pulses. The complexity of the atmosphere requires the use of the complete theory of Essen and Froome to compare the measured time shifts due to both the dry atmosphere and water vapor with theoretical calculations. A new procedure involving the measurement of phase in the frequency domain is introduced and achieves comparable results for the calculated time shifts, compared to the previous direct measurements of time shifts. When the THz pulses were sequentially measured for a distance of 186 and 910 m at the same weather condition, the time variation due to atmospheric turbulence between the two pulses of the 910 m measurement was up to 4 times larger than that between the two pulses of the 186 m measurement. THz long path WVD studies are necessary to evaluate proposed applications in the atmosphere, such as communications and monitoring pollutants and dangerous gases.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
THz detection of small molecule vapors in the atmospheric transmission windows

Joseph S. Melinger, Yihong Yang, Mahboubeh Mandehgar, and D. Grischkowsky
Opt. Express 20(6) 6788-6807 (2012)

Measurement of the transmission of the atmosphere from 0.2 to 2 THz

Yihong Yang, Alisha Shutler, and D. Grischkowsky
Opt. Express 19(9) 8830-8838 (2011)

Propagation of ultrashort laser pulses through water

JianChao Li, Dennis R. Alexander, HaiFeng Zhang, Ufuk Parali, David W. Doerr, John Clark Bruce III, and Hao Wang
Opt. Express 15(4) 1939-1945 (2007)

References

  • View by:
  • |
  • |
  • |

  1. C. K. Walker, Terahertz Astronomy (CRC Press, 2015).
  2. M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).
  3. R. J. Foltynowicz, M. C. Wanke, and M. A. Mangan, “Atmospheric propagation of THz radiation,” Sandia National Lab., Sandia Rep. SAND2005–6389 (2005).
  4. R. Blundell, J. W. Barrett, H. Gibson, C. Gottleib, T. R. Hunter, R. Kimberk, S. Leiker, D. Marrone, D. Meledin, S. Paine, D. C. Papa, R. J. Plante, P. Riddle, M. J. Smith, T. K. Sridharan, C. E. Tong, R. W. Wilson, M. Diaz, L. Bronfman, J. May, A. Otarola, and S. J. E. Radford, “Prospects for terahertz radio astronomy from northern Chile”, in Thirteenth International Symposium on Space Terahertz Technology, Harvard U., 159–166 (2002).
  5. P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).
  6. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broad-band THz pulse transmission through the atmosphere,” IEEE Trans. THz Sci. Technol. 1, 264–273 (2011).
  7. V. B. Podobedov, D. F. Plusquellica, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109, 458–467 (2008).
  8. D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goytte, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transf. 127, 49–63 (2013).
  9. M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
    [PubMed]
  10. R. A. Cheville and D. Grischkowsky, “Foreign and self-Broadened rotational linewidths of high temperature water vapor,” J. Opt. Soc. Am. B 16(2), 317–322 (1999).
  11. T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X.-C. Zhan, “THz time-domain spectroscopy of atmosphere with different humidity,” Proc. SPIE 5070, 28–37 (2003).
  12. E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-Path THz-TDS Atmospheric Measurements between Buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).
  13. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonic Tech. Lett. 27(4), 383–386 (2015).
  14. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz Pulse Propagation in the Atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).
  15. Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express 19(9), 8830–8838 (2011).
    [PubMed]
  16. H. U. Sverdrup, “The humidity gradient over the sea surface,” J. Meteorol. 3(1), 1–8 (1946).
  17. International Telecommunication Union, “The radio refractive index: its formula and refractivity data,” Recommendation ITU-R P.453–12, (2016).
  18. E. K. Smith and S. Weintraub, “The constants in the equation for atmospheric refractive index at radio frequencies,” Proc. IRE, 1035–1037 (1953).
  19. L. Essen and K. D. Froome, “The refractive indices and dielectric constants of air and its principle constituents at 24,000 Mc/s,” Proc. Phys. Soc. B 64(10), 862–875 (1951).
  20. B. H. Sang and T.-I. Jeon, “Pressure-dependent refractive indices of gases by THz time-domain spectroscopy,” Opt. Express 24(25), 29040–29047 (2016).
    [PubMed]
  21. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Time domain measurement of the THz refractivity of water vapor,” Opt. Express 20(24), 26208–26218 (2012).
    [PubMed]

2016 (1)

2015 (2)

E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-Path THz-TDS Atmospheric Measurements between Buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonic Tech. Lett. 27(4), 383–386 (2015).

2013 (1)

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goytte, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transf. 127, 49–63 (2013).

2012 (2)

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz Pulse Propagation in the Atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Time domain measurement of the THz refractivity of water vapor,” Opt. Express 20(24), 26208–26218 (2012).
[PubMed]

2011 (2)

Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express 19(9), 8830–8838 (2011).
[PubMed]

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broad-band THz pulse transmission through the atmosphere,” IEEE Trans. THz Sci. Technol. 1, 264–273 (2011).

2008 (2)

V. B. Podobedov, D. F. Plusquellica, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109, 458–467 (2008).

P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).

2004 (1)

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

2003 (1)

T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X.-C. Zhan, “THz time-domain spectroscopy of atmosphere with different humidity,” Proc. SPIE 5070, 28–37 (2003).

1999 (1)

1989 (1)

1951 (1)

L. Essen and K. D. Froome, “The refractive indices and dielectric constants of air and its principle constituents at 24,000 Mc/s,” Proc. Phys. Soc. B 64(10), 862–875 (1951).

1946 (1)

H. U. Sverdrup, “The humidity gradient over the sea surface,” J. Meteorol. 3(1), 1–8 (1946).

Al-Douseri, F.

T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X.-C. Zhan, “THz time-domain spectroscopy of atmosphere with different humidity,” Proc. SPIE 5070, 28–37 (2003).

Baron, P.

P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).

Cheville, R. A.

Essen, L.

L. Essen and K. D. Froome, “The refractive indices and dielectric constants of air and its principle constituents at 24,000 Mc/s,” Proc. Phys. Soc. B 64(10), 862–875 (1951).

Exter, M.

Fattinger, C.

Fitch, M. J.

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Fraser, G. T.

V. B. Podobedov, D. F. Plusquellica, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109, 458–467 (2008).

Froome, K. D.

L. Essen and K. D. Froome, “The refractive indices and dielectric constants of air and its principle constituents at 24,000 Mc/s,” Proc. Phys. Soc. B 64(10), 862–875 (1951).

Giles, R. H.

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goytte, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transf. 127, 49–63 (2013).

Goytte, T. M.

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goytte, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transf. 127, 49–63 (2013).

Grischkowsky, D.

E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-Path THz-TDS Atmospheric Measurements between Buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonic Tech. Lett. 27(4), 383–386 (2015).

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz Pulse Propagation in the Atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Time domain measurement of the THz refractivity of water vapor,” Opt. Express 20(24), 26208–26218 (2012).
[PubMed]

Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express 19(9), 8830–8838 (2011).
[PubMed]

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broad-band THz pulse transmission through the atmosphere,” IEEE Trans. THz Sci. Technol. 1, 264–273 (2011).

R. A. Cheville and D. Grischkowsky, “Foreign and self-Broadened rotational linewidths of high temperature water vapor,” J. Opt. Soc. Am. B 16(2), 317–322 (1999).

M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
[PubMed]

Hideo, S.

P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).

Hu, Y.

T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X.-C. Zhan, “THz time-domain spectroscopy of atmosphere with different humidity,” Proc. SPIE 5070, 28–37 (2003).

Jeon, T.-I.

B. H. Sang and T.-I. Jeon, “Pressure-dependent refractive indices of gases by THz time-domain spectroscopy,” Opt. Express 24(25), 29040–29047 (2016).
[PubMed]

E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-Path THz-TDS Atmospheric Measurements between Buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).

Kazutoshi, S.

P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).

Kodai, S.

P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).

Liu, H.

T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X.-C. Zhan, “THz time-domain spectroscopy of atmosphere with different humidity,” Proc. SPIE 5070, 28–37 (2003).

Ma, Q.

V. B. Podobedov, D. F. Plusquellica, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109, 458–467 (2008).

Mandehgar, M.

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonic Tech. Lett. 27(4), 383–386 (2015).

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Time domain measurement of the THz refractivity of water vapor,” Opt. Express 20(24), 26208–26218 (2012).
[PubMed]

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz Pulse Propagation in the Atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broad-band THz pulse transmission through the atmosphere,” IEEE Trans. THz Sci. Technol. 1, 264–273 (2011).

Mendrok, J.

P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).

Moon, E.-B.

E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-Path THz-TDS Atmospheric Measurements between Buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).

Osiander, R.

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Plusquellica, D. F.

V. B. Podobedov, D. F. Plusquellica, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109, 458–467 (2008).

Podobedov, V. B.

V. B. Podobedov, D. F. Plusquellica, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109, 458–467 (2008).

Sang, B. H.

Satoshi, O.

P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).

Shutler, A.

Siegrist, K. E.

V. B. Podobedov, D. F. Plusquellica, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109, 458–467 (2008).

Slingerland, E. J.

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goytte, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transf. 127, 49–63 (2013).

Slocum, D. M.

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goytte, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transf. 127, 49–63 (2013).

Smith, E. K.

E. K. Smith and S. Weintraub, “The constants in the equation for atmospheric refractive index at radio frequencies,” Proc. IRE, 1035–1037 (1953).

Sverdrup, H. U.

H. U. Sverdrup, “The humidity gradient over the sea surface,” J. Meteorol. 3(1), 1–8 (1946).

Takanasa, S.

P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).

Tipping, R. H.

V. B. Podobedov, D. F. Plusquellica, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109, 458–467 (2008).

Urban, J.

P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).

Weintraub, S.

E. K. Smith and S. Weintraub, “The constants in the equation for atmospheric refractive index at radio frequencies,” Proc. IRE, 1035–1037 (1953).

Xu, J.

T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X.-C. Zhan, “THz time-domain spectroscopy of atmosphere with different humidity,” Proc. SPIE 5070, 28–37 (2003).

Yang, Y.

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonic Tech. Lett. 27(4), 383–386 (2015).

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz Pulse Propagation in the Atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Time domain measurement of the THz refractivity of water vapor,” Opt. Express 20(24), 26208–26218 (2012).
[PubMed]

Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express 19(9), 8830–8838 (2011).
[PubMed]

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broad-band THz pulse transmission through the atmosphere,” IEEE Trans. THz Sci. Technol. 1, 264–273 (2011).

Yasuko, K.

P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).

Yuan, T.

T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X.-C. Zhan, “THz time-domain spectroscopy of atmosphere with different humidity,” Proc. SPIE 5070, 28–37 (2003).

Zhan, X.-C.

T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X.-C. Zhan, “THz time-domain spectroscopy of atmosphere with different humidity,” Proc. SPIE 5070, 28–37 (2003).

IEEE Photonic Tech. Lett. (1)

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonic Tech. Lett. 27(4), 383–386 (2015).

IEEE Trans. Terahertz Sci. Technol. (1)

E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-Path THz-TDS Atmospheric Measurements between Buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).

IEEE Trans. THz Sci. Technol. (2)

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz Pulse Propagation in the Atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broad-band THz pulse transmission through the atmosphere,” IEEE Trans. THz Sci. Technol. 1, 264–273 (2011).

J. Meteorol. (1)

H. U. Sverdrup, “The humidity gradient over the sea surface,” J. Meteorol. 3(1), 1–8 (1946).

J. Nat. Inst. Inf. Commun. Tech. (1)

P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takanasa, S. Kazutoshi, S. Kodai, S. Hideo, and J. Urban, “Model for atmospheric terahertz radiation analysis and simulation,” J. Nat. Inst. Inf. Commun. Tech. 55(1), 109–121 (2008).

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (2)

V. B. Podobedov, D. F. Plusquellica, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109, 458–467 (2008).

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goytte, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transf. 127, 49–63 (2013).

Johns Hopkins APL Tech. Dig. (1)

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Opt. Express (3)

Opt. Lett. (1)

Proc. Phys. Soc. B (1)

L. Essen and K. D. Froome, “The refractive indices and dielectric constants of air and its principle constituents at 24,000 Mc/s,” Proc. Phys. Soc. B 64(10), 862–875 (1951).

Proc. SPIE (1)

T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X.-C. Zhan, “THz time-domain spectroscopy of atmosphere with different humidity,” Proc. SPIE 5070, 28–37 (2003).

Other (5)

R. J. Foltynowicz, M. C. Wanke, and M. A. Mangan, “Atmospheric propagation of THz radiation,” Sandia National Lab., Sandia Rep. SAND2005–6389 (2005).

R. Blundell, J. W. Barrett, H. Gibson, C. Gottleib, T. R. Hunter, R. Kimberk, S. Leiker, D. Marrone, D. Meledin, S. Paine, D. C. Papa, R. J. Plante, P. Riddle, M. J. Smith, T. K. Sridharan, C. E. Tong, R. W. Wilson, M. Diaz, L. Bronfman, J. May, A. Otarola, and S. J. E. Radford, “Prospects for terahertz radio astronomy from northern Chile”, in Thirteenth International Symposium on Space Terahertz Technology, Harvard U., 159–166 (2002).

C. K. Walker, Terahertz Astronomy (CRC Press, 2015).

International Telecommunication Union, “The radio refractive index: its formula and refractivity data,” Recommendation ITU-R P.453–12, (2016).

E. K. Smith and S. Weintraub, “The constants in the equation for atmospheric refractive index at radio frequencies,” Proc. IRE, 1035–1037 (1953).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of long-path setup. The red line represents the outgoing THz beam. The black line represents the reflected incoming beam. (b) Photograph of the THz beam path and the surrounding environment. The inset photograph shows the retro-reflector mirrors for 910 m on the concrete block.
Fig. 2
Fig. 2 Comparison of the three THz pulses: (a) reference pulse, (b) output pulse through the 186-m path, and (c) output pulse through the 910-m path. (d) Corresponding amplitude spectrum of the THz pulses. The spectra of the 186-m and 910-m pulse magnified by three and ten times on the vertical scale, respectively.
Fig. 3
Fig. 3 (a) Transmittance around 0.183 and 0.325 THz for the 186-m output measurement with different WVD. (b) Transmission coefficient at 0.183 and 0.325 THz absorption lines according to the water vapor density. The dots indicate the minimum points of the transmittance. The solid lines indicate the fitted curve for the dots.
Fig. 4
Fig. 4 (a) Measured 910-m output THz pulses showing their different time shift for WVD values of 2.0, 8.8, and 13.3 g/m3. (b) Corresponding amplitude of spectra for the pulses.
Fig. 5
Fig. 5 Phase shifts of the measured 186 m and 910 m pulses with different WVD at 0.25 THz (vertical dashed line). This measurement requires that the associated time domain pulses were all measured from the same starting position, as shown in Fig. 4(a). As can be seen in the Figures, the reference WVD curves are converging to their zero WVD curves, which are shown as the dashed lines, below the 1.7 g/m3 curve for Fig. 5(a) and below the 1.6 g/m3 for Fig. 5(b). The lowest and highest WVDs are indicated by the arrows. (a) 186 m pulses. (b) 910 m pulses.
Fig. 6
Fig. 6 Comparison the time shift by phase shift measurement (circles and dashed lines) and time-delay measurement (dots and solid lines). The solid and dashed lines indicate fitted line for measurements. (a) 186 m measurement. (b) 910 m measurement.
Fig. 7
Fig. 7 Measured time-delay between the output THz pulses used in Table 1 and 2 and one of the THz pulses with the lowest WVD. (a) Propagation length of 186 m. (b) propagation length of 910 m.
Fig. 8
Fig. 8 Time shift of theoretical calculations (Δttot, Δtdry, and Δtwater) and experimental measurement (ΔttotMeas) for different WVDs. The solid lines indicate the fitted lines for the circles. These results were converted to g/m3. The top three arrows indicate the calculated data in Table 1 and 2. The lowest arrows indicate the measured data by time-delay of Fig. 7. The yellow areas indicate the correction time shift for ΔtwaterMeas. (a) Propagation length of 186 m. (b) propagation length of 910 m; Comparison of before (ΔttotMeas) and after (ΔtwaterMeas) correction of measured time shift. (c) Propagation length of 186 m. (d) propagation length of 910 m
Fig. 9
Fig. 9 Over-lapped, sequentially measured first (red) and second (blue) THz pulses. The insert figure shows the expanded pulses from 10 to 22 ps: (a) 186-m measurement, (b) 910-m measurement, and (c) Measured time variation. The black and red lines indicate the comparisons between the first and the second THz pulses for the 186- and 910-m measurements, respectively. The dots indicate the time variation at each maximum and minimum point of the pulses.

Tables (4)

Tables Icon

Table 1 Calculated refractivity and time shift for 186 m measurement: Humidity: 56.7%, Temperature: 20.3 °C, WVD: 10.2 mmHg (10.1 g/m3), and air pressure: 760.9 mmHg

Tables Icon

Table 2 Calculated refractivity and time shift for 910 m measurement: Hum: 63.5%, Tem: 18.5 °C, WVD: 10.18 mmHg (10.1 g/m3), and air pressure: 760.9 mmHg

Tables Icon

Table 3 Comparison of time shifts and correction ratio for outdoor measurement

Tables Icon

Table 4 Weather conditions outside of the buildings for the 186- and the 910-m-long path, for the measurements shown in Figs. 9(a) and 9(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

(n1) 10 6 = K 1 p d T + K 2 e T + K 3 e T 2
(n1) 10 6 = 103.49 T p 1 + 177.4 T p 2 + 86.26 T (1+ 5748 T ) p 3

Metrics