Abstract

We have successfully designed and measured a unique polarisation splitting lens which focuses the orthogonal linear polarisations side-by-side in the lens focal plane. This concept can find application in situations where there is limited space for the beam splitters and focusing optics that are required for incoherent detectors.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device

Kevin J. Mitchell, Sergey Turtaev, Miles J. Padgett, Tomáš Čižmár, and David B. Phillips
Opt. Express 24(25) 29269-29282 (2016)

Reflective metasurface lens with an elongated needle-shaped focus

Mehdi Veysi, Caner Guclu, Ozdal Boyraz, and Filippo Capolino
J. Opt. Soc. Am. B 34(2) 374-382 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Savini, P. A. R. Ade, and J. Zhang, “A new artificial material approach for flat THz frequency lenses,” Opt. Express 20(23), 25766–25773 (2012).
    [Crossref] [PubMed]
  2. G. Pisano, M. W. Ng, F. Ozturk, B. Maffei, and V. Haynes, “Dielectrically embedded flat mesh lens for millimeter waves applications,” Appl. Opt. 52(11), 2218–2225 (2013).
    [Crossref] [PubMed]
  3. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  4. N. Marcuvitz, Electrical Engineers, Waveguide Handbook (McGraw-Hill, 1951).
  5. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
    [Crossref]
  6. S.-W. Lee, G. Zarrillo, and C.-L. Law, “Simple formulas for transmission through periodic metal grids or plates,” IEEE Trans. Antenn. Propag. 30(5), 904–909 (1982).
    [Crossref]
  7. J. Zhang, P. A. R. Ade, P. Mauskopf, L. Moncelsi, G. Savini, and N. Whitehouse, “New artificial dielectric metamaterial and its application as a terahertz antireflection coating,” Appl. Opt. 48(35), 6635–6642 (2009).
    [Crossref] [PubMed]
  8. T. Timusk and P. L. Richards, “Near millimeter wave bandpass filters,” Appl. Opt. 20(8), 1355–1360 (1981).
    [Crossref] [PubMed]
  9. G. Zarrillo and K. Aguiar, “Closed-form low frequency solutions for electromagnetic waves through a frequency selective surface,” IEEE Trans. Antenn. Propag. 35(12), 1406–1417 (1987).
    [Crossref]
  10. J. B. Caldwell, “Optical design with Wood lenses 1: infinite conjugate systems,” Appl. Opt. 31(13), 2317–2325 (1992).
    [Crossref] [PubMed]
  11. P. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, (2006).
  12. D. H. Martin and E. Puplett, “Polarised interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. 10(2), 105–109 (1970).
    [Crossref]
  13. M. D. Niemack, P. A. R. Ade, J. Aguirre, F. Barrientos, J. A. Beall, J. R. Bond, J. Britton et al. “ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Telescope,” https://arXiv:1006.5049 (2010).

2014 (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2009 (1)

1992 (1)

1987 (1)

G. Zarrillo and K. Aguiar, “Closed-form low frequency solutions for electromagnetic waves through a frequency selective surface,” IEEE Trans. Antenn. Propag. 35(12), 1406–1417 (1987).
[Crossref]

1982 (1)

S.-W. Lee, G. Zarrillo, and C.-L. Law, “Simple formulas for transmission through periodic metal grids or plates,” IEEE Trans. Antenn. Propag. 30(5), 904–909 (1982).
[Crossref]

1981 (1)

1970 (1)

D. H. Martin and E. Puplett, “Polarised interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. 10(2), 105–109 (1970).
[Crossref]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Ade, P. A. R.

Aguiar, K.

G. Zarrillo and K. Aguiar, “Closed-form low frequency solutions for electromagnetic waves through a frequency selective surface,” IEEE Trans. Antenn. Propag. 35(12), 1406–1417 (1987).
[Crossref]

Caldwell, J. B.

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Haynes, V.

Law, C.-L.

S.-W. Lee, G. Zarrillo, and C.-L. Law, “Simple formulas for transmission through periodic metal grids or plates,” IEEE Trans. Antenn. Propag. 30(5), 904–909 (1982).
[Crossref]

Lee, S.-W.

S.-W. Lee, G. Zarrillo, and C.-L. Law, “Simple formulas for transmission through periodic metal grids or plates,” IEEE Trans. Antenn. Propag. 30(5), 904–909 (1982).
[Crossref]

Maffei, B.

Martin, D. H.

D. H. Martin and E. Puplett, “Polarised interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. 10(2), 105–109 (1970).
[Crossref]

Mauskopf, P.

Moncelsi, L.

Ng, M. W.

Ozturk, F.

Pisano, G.

Puplett, E.

D. H. Martin and E. Puplett, “Polarised interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. 10(2), 105–109 (1970).
[Crossref]

Richards, P. L.

Savini, G.

Timusk, T.

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Whitehouse, N.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Zarrillo, G.

G. Zarrillo and K. Aguiar, “Closed-form low frequency solutions for electromagnetic waves through a frequency selective surface,” IEEE Trans. Antenn. Propag. 35(12), 1406–1417 (1987).
[Crossref]

S.-W. Lee, G. Zarrillo, and C.-L. Law, “Simple formulas for transmission through periodic metal grids or plates,” IEEE Trans. Antenn. Propag. 30(5), 904–909 (1982).
[Crossref]

Zhang, J.

Appl. Opt. (4)

IEEE Trans. Antenn. Propag. (2)

G. Zarrillo and K. Aguiar, “Closed-form low frequency solutions for electromagnetic waves through a frequency selective surface,” IEEE Trans. Antenn. Propag. 35(12), 1406–1417 (1987).
[Crossref]

S.-W. Lee, G. Zarrillo, and C.-L. Law, “Simple formulas for transmission through periodic metal grids or plates,” IEEE Trans. Antenn. Propag. 30(5), 904–909 (1982).
[Crossref]

Infrared Phys. (2)

D. H. Martin and E. Puplett, “Polarised interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. 10(2), 105–109 (1970).
[Crossref]

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Other (3)

N. Marcuvitz, Electrical Engineers, Waveguide Handbook (McGraw-Hill, 1951).

P. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, (2006).

M. D. Niemack, P. A. R. Ade, J. Aguirre, F. Barrientos, J. A. Beall, J. R. Bond, J. Britton et al. “ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Telescope,” https://arXiv:1006.5049 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 a) The rectangular unit cell used for designing the pol-lens. b) Example of complete artificial dielectric mesh stack.
Fig. 2
Fig. 2 Typical spectral response of the structure in Fig. 1. g = 200 µm, spacing = 100 µm, ax/g = 0.05, ay/g = 0.35. The red curve corresponds to x Polarisation and the green is y polarisation. For comparison, the fringe pattern expected for a material with uniform refractive index is shown by the dashed curves respectively.
Fig. 3
Fig. 3 Parameter space of available refractive index values for one polarisation.
Fig. 4
Fig. 4 a) The black line represents the combinations of (a/g)x and (a/g)y that lead to a constant index. b) The line shows the range of index vales that are possible for the orthogonal polarisation with same pairs of values.
Fig. 5
Fig. 5 a) Parameter space realized using a TL b) Interpolated parameter space from HFSS simulations.
Fig. 6
Fig. 6 a) Radial distribution of refractive index for one polarisation. b) The combined refractive index distributions for both polarisations. The physical device boundary is highlighted in blue.
Fig. 7
Fig. 7 Maps showing the spatial variation in a/g over the area of the lens for each axis.
Fig. 8
Fig. 8 Image of the pol-lens as built with a zoomed in portion shown.
Fig. 9
Fig. 9 Experimental setup for measuring the spectral spatial response of the Pol-lens. The output PE lens in a re-imaging telescope at the output of a FT spectrometer is replaced by the pol-lens for comparative measurements. Beam cuts through the final focus are made by scanning the detector transversely across the beam.
Fig. 10
Fig. 10 Cross section of beam profiles for both polarisations at 150 GHz. Vertical polarisation red curve, Horizontal polarisation green curve.
Fig. 11
Fig. 11 The orthogonal beam scans at 200 GHz are shifted and overlaid to show the symmetry between the polarisations outputs. Vertical polarisation is red triangles, Horizontal are green inverted triangles. The profile of the polyethylene lens used as a reference is also shown in blue circles. In addition the diffraction model beam cuts are given for the pol-lens red curve and for the PE lens blue dashed curve.
Fig. 12
Fig. 12 Comparison of measured on-axis intensity ratio pol-lens/PE lens (blue curve, with a best fit given by blue dash-dotted curve) and the diffraction model power calculations (red dash curve).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n(r)= n 0 r 2 2df .

Metrics