Abstract

Optical remote sensing of phytoplankton draws on distinctive spectral features which can vary with both species and environmental conditions. Here, we present a set-up (Envilab) for growing phytoplankton under well-defined light, temperature and nutrient conditions. The custom-built light source enables creation of light with spectral composition similar to natural aquatic environments. Spectral tuning allows for light quality studies. Attenuation is monitored with a spectrometer in transmission mode. In combination with automated spectrophotometer and fluorimeter measurements, absorption and excitation-emission-fluorescence spectra are recorded. The set-up opens the door for systematic studies on phytoplankton optical properties and physiology.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On the discrimination of multiple phytoplankton groups from light absorption spectra of assemblages with mixed taxonomic composition and variable light conditions

Emanuele Organelli, Caterina Nuccio, Luigi Lazzara, Julia Uitz, Annick Bricaud, and Luca Massi
Appl. Opt. 56(14) 3952-3968 (2017)

Estimation of phytoplankton taxonomic groups in the Arctic Ocean using phytoplankton absorption properties: implication for ocean-color remote sensing

Hailong Zhang, Emmanuel Devred, Amane Fujiwara, Zhongfeng Qiu, and Xiaohan Liu
Opt. Express 26(24) 32280-32301 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Falkowski, “Ocean Science: The power of plankton,” Nature 483(7387), S17–S20 (2012).
    [Crossref] [PubMed]
  2. P. G. Falkowski, “The role of phytoplankton photosynthesis in global biogeochemical cycles,” Photosynth. Res. 39(3), 235–258 (1994).
    [Crossref] [PubMed]
  3. S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C. W. Brown, A. M. Ciotti, L. A. Clementson, S. E. Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T. S. Kostadinov, S. Lavender, H. Loisel, T. S. Moore, J. Morales, C. B. Mouw, A. Nair, D. Raitsos, C. Roesler, J. D. Shutler, H. M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from space,” in Reports of the International Ocean Colour Coordinating Group (IOCCG, 2014).
  4. I. Chorus and J. Bertram, “Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management,” E & FN Spon on behalf of the World Health Organization (1999).
  5. L. H. Pettersson and D. Pozdnyakov, Monitoring of Harmful Algal Bloom (Springer Science & Business Media, 2013).
  6. H. J. Gons, M. T. Auer, and S. W. Effler, “Meris satellite chlorophyll mapping of oligotrophic and eutrophic waters in the laurentian great lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
    [Crossref]
  7. L. Li and K. Song, “Chapter 8 - Bio-optical modeling of phycocyanin,“ in Bio-optical Modeling and Remote Sensing of Inland Waters, D. R. Mishra, I. Ogashawara, and A. A. Gitelson, eds. (Elsevier, 2017), pp. 233 – 262.
  8. M.-F. Racault, C. L. Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt, “Phytoplankton phenology in the global ocean,” Ecol. Indic. 14(1), 152–163 (2012).
    [Crossref]
  9. A. G. Dekker, “Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing,” Ph.D. thesis (1993).
  10. S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
    [Crossref]
  11. L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: An extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
    [Crossref]
  12. N. Tandeau de Marsac, “Occurrence and nature of chromatic adaptation in cyanobacteria,” J. Bacteriol. 130(1), 82–91 (1977).
    [PubMed]
  13. D. Stramski and A. Morel, “Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance,” Deep Sea Res. Part A 37(2), 245–266 (1990).
    [Crossref]
  14. R. MacColl, “Cyanobacterial phycobilisomes,” J. Struct. Biol. 124(2-3), 311–334 (1998).
    [Crossref] [PubMed]
  15. V. A. Lutz, S. Sathyendranath, E. J. H. Head, and W. K. W. Li, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23(6), 555–569 (2001).
    [Crossref]
  16. M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
    [Crossref] [PubMed]
  17. R. L. Carneiro, M. E. V. dos Santos, A. B. F. Pacheco, and S. M. F. O. Azevedo, “Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in cylindrospermopsis raciborskii (cyanobacteria),” J. Plankton Res. 31(5), 481–488 (2009).
    [Crossref]
  18. H. Xi, M. Hieronymi, R. Röttgers, H. Krasemann, and Z. Qiu, “Hyperspectral differentiation of phytoplankton taxonomic groups: A comparison between using remote sensing reflectance and absorption spectra,” Remote Sens. 7(11), 14781–14805 (2015).
    [Crossref]
  19. T. Parkin and T. Brock, “The effects of light quality on the growth of phototrophic bacteria in lakes,” Arch. Microbiol. 125(1-2), 19–27 (1980).
    [Crossref]
  20. N. Korbee, F. L. Figueroa, and J. Aguilera, “Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga porphyra leucosticta (bangiales, rhodophyta),” J. Photochem. Photobiol. B 80(2), 71–78 (2005).
    [Crossref] [PubMed]
  21. L. Nedbal, M. Trtílek, J. Cervený, O. Komárek, and H. B. Pakrasi, “A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics,” Biotechnol. Bioeng. 100(5), 902–910 (2008).
    [Crossref] [PubMed]
  22. C. L. Teo, M. Atta, A. Bukhari, M. Taisir, A. M. Yusuf, and A. Idris, “Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths,” Bioresour. Technol. 162, 38–44 (2014).
    [Crossref] [PubMed]
  23. C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
    [Crossref] [PubMed]
  24. T. Zavrel, M. A. Sinetova, D. Búzová, P. Literáková, and J. Cervený, “Characterization of a model cyanobacterium synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor,” Eng. Life Sci. 15(1), 122–132 (2015).
    [Crossref]
  25. S. von Hößlin, “Development and validation of an automated photobioreactor system for measuring absorption and fluorescence of phytoplankton“ Master’s thesis, Technische Universität München (2015).
  26. S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
    [Crossref]
  27. G. P. E. Steven, W. Brown, and C. Santana, “Development of a tunable LED-based colorimetric source,“ J. Res. Nat. Inst. Stand. Technol. 107 (2002).
  28. K. Fujiwara and A. Yano, “Controllable spectrum artificial sunlight source system using LEDs with 32 different peak wavelengths of 385-910 nm,” Bioelectromagnetics 32(3), 243–252 (2011).
    [Crossref] [PubMed]
  29. D. Kolberg, F. Schubert, N. Lontke, A. Zwigart, and D. Spinner, “Development of tunable close match LED solar simulator with extended spectral range to UV and IRm,” Energy Procedia 8, 100–105 (2011).
    [Crossref]
  30. A. M. Bazzi, Z. Klein, M. Sweeney, K. P. Kroeger, P. S. Shenoy, and P. T. Krein, “Solid-state solar simulator,” IEEE Trans. Ind. Appl. 48(4), 1195–1202 (2012).
    [Crossref]
  31. K. J. Linden, W. R. Neal, and H. B. Serreze, “Adjustable spectrum LED solar simulator,“ (2014).
  32. P. Lu, H. Yang, Y. Pei, J. Li, B. Xue, J. Wang, and J. Li, “Generation of solar spectrum by using LED,“ (2016).
  33. G. Zaid, S.-N. Park, S. Park, and D.-H. Lee, “Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source,” Appl. Opt. 49(35), 6772–6783 (2010).
    [Crossref] [PubMed]
  34. J.-M. Hirvonen, T. Poikonen, A. Vaskuri, P. Kärhä, and E. Ikonen, “Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter,” Meas. Sci. Technol. 24(11), 115201 (2013).
    [Crossref]
  35. Sinus 220 from Wavelabs Solar Metrology Systems GmbH, Freiburg, Germany, http://wavelabs.de/wp-content/uploads/Brochure_Wavelabs.pdf (accessed on 31st of August 2017).
  36. Ecocell from Ecoprogetti Srl, Padova, Italy, https://ecoprogetti.com/Catalogue2016.pdf (accessed on 31st of August 2017).
  37. LEDSim, TM from Aescusoft GmbH, Freiburg, Germany, http://www.aescusoft.com/sites/default/files/public/aes_ledsim_si.pdf (accessed on 31st of August 2017).
  38. F. Hundhausen, “Aufbau, Charakterisierung und Ansteuerung eines Beleuchtungs-Moduls zur Simulation variabler Unterwasser-Lichtspektren unter Verwendung von Hochleistungs-Leuchtdioden“ Bachelor thesis, Hochschule Esslingen (2015).
  39. P. Gege, “Analytic model for the direct and diffuse components of downwelling spectral irradiance in water,” Appl. Opt. 51(9), 1407–1419 (2012).
    [Crossref] [PubMed]
  40. P. Gege, Software WASI, version 4, http://www.ioccg.org/data/software.html (accessed on 17th of July 2017).
  41. Axenic Synechocystis sp. PCC 6803, Pasteur Culture Collection of Cyanobacteria (PCC), Catalogue information available online: https://brclims.pasteur.fr/crbip_catalogue/faces/resultatrecherche.xhtml (accessed on 17th of july 2017).
  42. Y. Yu, L. You, D. Liu, W. Hollinshead, Y. J. Tang, and F. Zhang, “Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory,” Mar. Drugs 11(8), 2894–2916 (2013).
    [Crossref] [PubMed]
  43. H. Xu, D. Vavilin, and W. Vermaas, “Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria,” Proc. Natl. Acad. Sci. U.S.A. 98(24), 14168–14173 (2001).
    [Crossref] [PubMed]
  44. G. Johnsen, A. Bricaud, N. Nelson, B. B. Preélin, and R. R. Bidigare, Phytoplankton Pigments: Characterization, Chemotaxonomy, and Application in Oceanography (Cambridge University, 2011).
  45. R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, “Generic assignments, strain histories and properties of pure cultures of cyanobacteria,” Microbiology 111(1), 1–61 (1979).
    [Crossref]
  46. J. Lakowicz, Principles of Fluorescence Spectroscopy (Springer US, 2013).
  47. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  48. S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res. 112(1), 13–30 (2012).
    [Crossref] [PubMed]
  49. P. Gege, “Chapter 2 - Radiative Transfer Theory for Inland Waters,” in Bio-optical Modeling and Remote Sensing of Inland Waters (Elsevier, 2017).
  50. M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal, “Colourful coexistence of red and green picocyanobacteria in lakes and seas,” Ecol. Lett. 10(4), 290–298 (2007).
    [Crossref] [PubMed]

2015 (3)

L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: An extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
[Crossref]

H. Xi, M. Hieronymi, R. Röttgers, H. Krasemann, and Z. Qiu, “Hyperspectral differentiation of phytoplankton taxonomic groups: A comparison between using remote sensing reflectance and absorption spectra,” Remote Sens. 7(11), 14781–14805 (2015).
[Crossref]

T. Zavrel, M. A. Sinetova, D. Búzová, P. Literáková, and J. Cervený, “Characterization of a model cyanobacterium synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor,” Eng. Life Sci. 15(1), 122–132 (2015).
[Crossref]

2014 (1)

C. L. Teo, M. Atta, A. Bukhari, M. Taisir, A. M. Yusuf, and A. Idris, “Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths,” Bioresour. Technol. 162, 38–44 (2014).
[Crossref] [PubMed]

2013 (2)

J.-M. Hirvonen, T. Poikonen, A. Vaskuri, P. Kärhä, and E. Ikonen, “Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter,” Meas. Sci. Technol. 24(11), 115201 (2013).
[Crossref]

Y. Yu, L. You, D. Liu, W. Hollinshead, Y. J. Tang, and F. Zhang, “Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory,” Mar. Drugs 11(8), 2894–2916 (2013).
[Crossref] [PubMed]

2012 (5)

P. Gege, “Analytic model for the direct and diffuse components of downwelling spectral irradiance in water,” Appl. Opt. 51(9), 1407–1419 (2012).
[Crossref] [PubMed]

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res. 112(1), 13–30 (2012).
[Crossref] [PubMed]

A. M. Bazzi, Z. Klein, M. Sweeney, K. P. Kroeger, P. S. Shenoy, and P. T. Krein, “Solid-state solar simulator,” IEEE Trans. Ind. Appl. 48(4), 1195–1202 (2012).
[Crossref]

P. Falkowski, “Ocean Science: The power of plankton,” Nature 483(7387), S17–S20 (2012).
[Crossref] [PubMed]

M.-F. Racault, C. L. Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt, “Phytoplankton phenology in the global ocean,” Ecol. Indic. 14(1), 152–163 (2012).
[Crossref]

2011 (3)

K. Fujiwara and A. Yano, “Controllable spectrum artificial sunlight source system using LEDs with 32 different peak wavelengths of 385-910 nm,” Bioelectromagnetics 32(3), 243–252 (2011).
[Crossref] [PubMed]

D. Kolberg, F. Schubert, N. Lontke, A. Zwigart, and D. Spinner, “Development of tunable close match LED solar simulator with extended spectral range to UV and IRm,” Energy Procedia 8, 100–105 (2011).
[Crossref]

C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

R. L. Carneiro, M. E. V. dos Santos, A. B. F. Pacheco, and S. M. F. O. Azevedo, “Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in cylindrospermopsis raciborskii (cyanobacteria),” J. Plankton Res. 31(5), 481–488 (2009).
[Crossref]

2008 (2)

L. Nedbal, M. Trtílek, J. Cervený, O. Komárek, and H. B. Pakrasi, “A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics,” Biotechnol. Bioeng. 100(5), 902–910 (2008).
[Crossref] [PubMed]

H. J. Gons, M. T. Auer, and S. W. Effler, “Meris satellite chlorophyll mapping of oligotrophic and eutrophic waters in the laurentian great lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
[Crossref]

2007 (1)

M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal, “Colourful coexistence of red and green picocyanobacteria in lakes and seas,” Ecol. Lett. 10(4), 290–298 (2007).
[Crossref] [PubMed]

2005 (2)

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[Crossref]

N. Korbee, F. L. Figueroa, and J. Aguilera, “Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga porphyra leucosticta (bangiales, rhodophyta),” J. Photochem. Photobiol. B 80(2), 71–78 (2005).
[Crossref] [PubMed]

2004 (1)

M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
[Crossref] [PubMed]

2002 (1)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

2001 (2)

H. Xu, D. Vavilin, and W. Vermaas, “Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria,” Proc. Natl. Acad. Sci. U.S.A. 98(24), 14168–14173 (2001).
[Crossref] [PubMed]

V. A. Lutz, S. Sathyendranath, E. J. H. Head, and W. K. W. Li, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23(6), 555–569 (2001).
[Crossref]

1998 (1)

R. MacColl, “Cyanobacterial phycobilisomes,” J. Struct. Biol. 124(2-3), 311–334 (1998).
[Crossref] [PubMed]

1994 (1)

P. G. Falkowski, “The role of phytoplankton photosynthesis in global biogeochemical cycles,” Photosynth. Res. 39(3), 235–258 (1994).
[Crossref] [PubMed]

1990 (1)

D. Stramski and A. Morel, “Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance,” Deep Sea Res. Part A 37(2), 245–266 (1990).
[Crossref]

1980 (1)

T. Parkin and T. Brock, “The effects of light quality on the growth of phototrophic bacteria in lakes,” Arch. Microbiol. 125(1-2), 19–27 (1980).
[Crossref]

1979 (1)

R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, “Generic assignments, strain histories and properties of pure cultures of cyanobacteria,” Microbiology 111(1), 1–61 (1979).
[Crossref]

1977 (1)

N. Tandeau de Marsac, “Occurrence and nature of chromatic adaptation in cyanobacteria,” J. Bacteriol. 130(1), 82–91 (1977).
[PubMed]

Aguilera, J.

N. Korbee, F. L. Figueroa, and J. Aguilera, “Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga porphyra leucosticta (bangiales, rhodophyta),” J. Photochem. Photobiol. B 80(2), 71–78 (2005).
[Crossref] [PubMed]

Aisyah, R.

C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

Atta, M.

C. L. Teo, M. Atta, A. Bukhari, M. Taisir, A. M. Yusuf, and A. Idris, “Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths,” Bioresour. Technol. 162, 38–44 (2014).
[Crossref] [PubMed]

Auer, M. T.

H. J. Gons, M. T. Auer, and S. W. Effler, “Meris satellite chlorophyll mapping of oligotrophic and eutrophic waters in the laurentian great lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
[Crossref]

Azevedo, S. M. F. O.

R. L. Carneiro, M. E. V. dos Santos, A. B. F. Pacheco, and S. M. F. O. Azevedo, “Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in cylindrospermopsis raciborskii (cyanobacteria),” J. Plankton Res. 31(5), 481–488 (2009).
[Crossref]

Babin, M.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res. 112(1), 13–30 (2012).
[Crossref] [PubMed]

Bazzi, A. M.

A. M. Bazzi, Z. Klein, M. Sweeney, K. P. Kroeger, P. S. Shenoy, and P. T. Krein, “Solid-state solar simulator,” IEEE Trans. Ind. Appl. 48(4), 1195–1202 (2012).
[Crossref]

Brock, T.

T. Parkin and T. Brock, “The effects of light quality on the growth of phototrophic bacteria in lakes,” Arch. Microbiol. 125(1-2), 19–27 (1980).
[Crossref]

Buitenhuis, E.

M.-F. Racault, C. L. Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt, “Phytoplankton phenology in the global ocean,” Ecol. Indic. 14(1), 152–163 (2012).
[Crossref]

Bukhari, A.

C. L. Teo, M. Atta, A. Bukhari, M. Taisir, A. M. Yusuf, and A. Idris, “Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths,” Bioresour. Technol. 162, 38–44 (2014).
[Crossref] [PubMed]

Búzová, D.

T. Zavrel, M. A. Sinetova, D. Búzová, P. Literáková, and J. Cervený, “Characterization of a model cyanobacterium synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor,” Eng. Life Sci. 15(1), 122–132 (2015).
[Crossref]

Carneiro, R. L.

R. L. Carneiro, M. E. V. dos Santos, A. B. F. Pacheco, and S. M. F. O. Azevedo, “Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in cylindrospermopsis raciborskii (cyanobacteria),” J. Plankton Res. 31(5), 481–488 (2009).
[Crossref]

Cervený, J.

T. Zavrel, M. A. Sinetova, D. Búzová, P. Literáková, and J. Cervený, “Characterization of a model cyanobacterium synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor,” Eng. Life Sci. 15(1), 122–132 (2015).
[Crossref]

L. Nedbal, M. Trtílek, J. Cervený, O. Komárek, and H. B. Pakrasi, “A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics,” Biotechnol. Bioeng. 100(5), 902–910 (2008).
[Crossref] [PubMed]

Chang, J.-S.

C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

Chen, C.-Y.

C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

De Jongh, F.

M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
[Crossref] [PubMed]

Deruelles, J.

R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, “Generic assignments, strain histories and properties of pure cultures of cyanobacteria,” Microbiology 111(1), 1–61 (1979).
[Crossref]

dos Santos, M. E. V.

R. L. Carneiro, M. E. V. dos Santos, A. B. F. Pacheco, and S. M. F. O. Azevedo, “Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in cylindrospermopsis raciborskii (cyanobacteria),” J. Plankton Res. 31(5), 481–488 (2009).
[Crossref]

Effler, S. W.

H. J. Gons, M. T. Auer, and S. W. Effler, “Meris satellite chlorophyll mapping of oligotrophic and eutrophic waters in the laurentian great lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
[Crossref]

Falkowski, P.

P. Falkowski, “Ocean Science: The power of plankton,” Nature 483(7387), S17–S20 (2012).
[Crossref] [PubMed]

Falkowski, P. G.

P. G. Falkowski, “The role of phytoplankton photosynthesis in global biogeochemical cycles,” Photosynth. Res. 39(3), 235–258 (1994).
[Crossref] [PubMed]

Figueroa, F. L.

N. Korbee, F. L. Figueroa, and J. Aguilera, “Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga porphyra leucosticta (bangiales, rhodophyta),” J. Photochem. Photobiol. B 80(2), 71–78 (2005).
[Crossref] [PubMed]

Fujiwara, K.

K. Fujiwara and A. Yano, “Controllable spectrum artificial sunlight source system using LEDs with 32 different peak wavelengths of 385-910 nm,” Bioelectromagnetics 32(3), 243–252 (2011).
[Crossref] [PubMed]

Gege, P.

Gerla, D.

M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
[Crossref] [PubMed]

Gons, H. J.

H. J. Gons, M. T. Auer, and S. W. Effler, “Meris satellite chlorophyll mapping of oligotrophic and eutrophic waters in the laurentian great lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
[Crossref]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[Crossref]

Haverkamp, T.

M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal, “Colourful coexistence of red and green picocyanobacteria in lakes and seas,” Ecol. Lett. 10(4), 290–298 (2007).
[Crossref] [PubMed]

Head, E. J. H.

V. A. Lutz, S. Sathyendranath, E. J. H. Head, and W. K. W. Li, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23(6), 555–569 (2001).
[Crossref]

Herdman, M.

R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, “Generic assignments, strain histories and properties of pure cultures of cyanobacteria,” Microbiology 111(1), 1–61 (1979).
[Crossref]

Hieronymi, M.

H. Xi, M. Hieronymi, R. Röttgers, H. Krasemann, and Z. Qiu, “Hyperspectral differentiation of phytoplankton taxonomic groups: A comparison between using remote sensing reflectance and absorption spectra,” Remote Sens. 7(11), 14781–14805 (2015).
[Crossref]

Hirvonen, J.-M.

J.-M. Hirvonen, T. Poikonen, A. Vaskuri, P. Kärhä, and E. Ikonen, “Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter,” Meas. Sci. Technol. 24(11), 115201 (2013).
[Crossref]

Hollinshead, W.

Y. Yu, L. You, D. Liu, W. Hollinshead, Y. J. Tang, and F. Zhang, “Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory,” Mar. Drugs 11(8), 2894–2916 (2013).
[Crossref] [PubMed]

Huisman, J.

M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal, “Colourful coexistence of red and green picocyanobacteria in lakes and seas,” Ecol. Lett. 10(4), 290–298 (2007).
[Crossref] [PubMed]

M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
[Crossref] [PubMed]

Huot, Y.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res. 112(1), 13–30 (2012).
[Crossref] [PubMed]

Ibelings, B. W.

M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
[Crossref] [PubMed]

Idris, A.

C. L. Teo, M. Atta, A. Bukhari, M. Taisir, A. M. Yusuf, and A. Idris, “Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths,” Bioresour. Technol. 162, 38–44 (2014).
[Crossref] [PubMed]

Ikonen, E.

J.-M. Hirvonen, T. Poikonen, A. Vaskuri, P. Kärhä, and E. Ikonen, “Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter,” Meas. Sci. Technol. 24(11), 115201 (2013).
[Crossref]

Kärhä, P.

J.-M. Hirvonen, T. Poikonen, A. Vaskuri, P. Kärhä, and E. Ikonen, “Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter,” Meas. Sci. Technol. 24(11), 115201 (2013).
[Crossref]

Klein, Z.

A. M. Bazzi, Z. Klein, M. Sweeney, K. P. Kroeger, P. S. Shenoy, and P. T. Krein, “Solid-state solar simulator,” IEEE Trans. Ind. Appl. 48(4), 1195–1202 (2012).
[Crossref]

Kolberg, D.

D. Kolberg, F. Schubert, N. Lontke, A. Zwigart, and D. Spinner, “Development of tunable close match LED solar simulator with extended spectral range to UV and IRm,” Energy Procedia 8, 100–105 (2011).
[Crossref]

Komárek, O.

L. Nedbal, M. Trtílek, J. Cervený, O. Komárek, and H. B. Pakrasi, “A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics,” Biotechnol. Bioeng. 100(5), 902–910 (2008).
[Crossref] [PubMed]

Korbee, N.

N. Korbee, F. L. Figueroa, and J. Aguilera, “Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga porphyra leucosticta (bangiales, rhodophyta),” J. Photochem. Photobiol. B 80(2), 71–78 (2005).
[Crossref] [PubMed]

Krasemann, H.

H. Xi, M. Hieronymi, R. Röttgers, H. Krasemann, and Z. Qiu, “Hyperspectral differentiation of phytoplankton taxonomic groups: A comparison between using remote sensing reflectance and absorption spectra,” Remote Sens. 7(11), 14781–14805 (2015).
[Crossref]

Krein, P. T.

A. M. Bazzi, Z. Klein, M. Sweeney, K. P. Kroeger, P. S. Shenoy, and P. T. Krein, “Solid-state solar simulator,” IEEE Trans. Ind. Appl. 48(4), 1195–1202 (2012).
[Crossref]

Kroeger, K. P.

A. M. Bazzi, Z. Klein, M. Sweeney, K. P. Kroeger, P. S. Shenoy, and P. T. Krein, “Solid-state solar simulator,” IEEE Trans. Ind. Appl. 48(4), 1195–1202 (2012).
[Crossref]

Laamanen, M.

M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal, “Colourful coexistence of red and green picocyanobacteria in lakes and seas,” Ecol. Lett. 10(4), 290–298 (2007).
[Crossref] [PubMed]

Lee, D.-H.

Lee, D.-J.

C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

Li, J.

P. Lu, H. Yang, Y. Pei, J. Li, B. Xue, J. Wang, and J. Li, “Generation of solar spectrum by using LED,“ (2016).

P. Lu, H. Yang, Y. Pei, J. Li, B. Xue, J. Wang, and J. Li, “Generation of solar spectrum by using LED,“ (2016).

Li, L.

L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: An extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
[Crossref]

L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: An extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
[Crossref]

Li, W. K. W.

V. A. Lutz, S. Sathyendranath, E. J. H. Head, and W. K. W. Li, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23(6), 555–569 (2001).
[Crossref]

Linden, K. J.

K. J. Linden, W. R. Neal, and H. B. Serreze, “Adjustable spectrum LED solar simulator,“ (2014).

Literáková, P.

T. Zavrel, M. A. Sinetova, D. Búzová, P. Literáková, and J. Cervený, “Characterization of a model cyanobacterium synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor,” Eng. Life Sci. 15(1), 122–132 (2015).
[Crossref]

Liu, D.

Y. Yu, L. You, D. Liu, W. Hollinshead, Y. J. Tang, and F. Zhang, “Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory,” Mar. Drugs 11(8), 2894–2916 (2013).
[Crossref] [PubMed]

Lontke, N.

D. Kolberg, F. Schubert, N. Lontke, A. Zwigart, and D. Spinner, “Development of tunable close match LED solar simulator with extended spectral range to UV and IRm,” Energy Procedia 8, 100–105 (2011).
[Crossref]

Lu, P.

P. Lu, H. Yang, Y. Pei, J. Li, B. Xue, J. Wang, and J. Li, “Generation of solar spectrum by using LED,“ (2016).

Lutz, V. A.

V. A. Lutz, S. Sathyendranath, E. J. H. Head, and W. K. W. Li, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23(6), 555–569 (2001).
[Crossref]

MacColl, R.

R. MacColl, “Cyanobacterial phycobilisomes,” J. Struct. Biol. 124(2-3), 311–334 (1998).
[Crossref] [PubMed]

Metsamaa, L.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res. 112(1), 13–30 (2012).
[Crossref] [PubMed]

Morel, A.

D. Stramski and A. Morel, “Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance,” Deep Sea Res. Part A 37(2), 245–266 (1990).
[Crossref]

Muthu, S.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Neal, W. R.

K. J. Linden, W. R. Neal, and H. B. Serreze, “Adjustable spectrum LED solar simulator,“ (2014).

Nedbal, L.

L. Nedbal, M. Trtílek, J. Cervený, O. Komárek, and H. B. Pakrasi, “A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics,” Biotechnol. Bioeng. 100(5), 902–910 (2008).
[Crossref] [PubMed]

Pacheco, A. B. F.

R. L. Carneiro, M. E. V. dos Santos, A. B. F. Pacheco, and S. M. F. O. Azevedo, “Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in cylindrospermopsis raciborskii (cyanobacteria),” J. Plankton Res. 31(5), 481–488 (2009).
[Crossref]

Pakrasi, H. B.

L. Nedbal, M. Trtílek, J. Cervený, O. Komárek, and H. B. Pakrasi, “A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics,” Biotechnol. Bioeng. 100(5), 902–910 (2008).
[Crossref] [PubMed]

Park, S.

Park, S.-N.

Parkin, T.

T. Parkin and T. Brock, “The effects of light quality on the growth of phototrophic bacteria in lakes,” Arch. Microbiol. 125(1-2), 19–27 (1980).
[Crossref]

Pashley, M. D.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Pei, Y.

P. Lu, H. Yang, Y. Pei, J. Li, B. Xue, J. Wang, and J. Li, “Generation of solar spectrum by using LED,“ (2016).

Peters, S. W. M.

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[Crossref]

Pick, F. R.

M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal, “Colourful coexistence of red and green picocyanobacteria in lakes and seas,” Ecol. Lett. 10(4), 290–298 (2007).
[Crossref] [PubMed]

Platt, T.

M.-F. Racault, C. L. Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt, “Phytoplankton phenology in the global ocean,” Ecol. Indic. 14(1), 152–163 (2012).
[Crossref]

Poikonen, T.

J.-M. Hirvonen, T. Poikonen, A. Vaskuri, P. Kärhä, and E. Ikonen, “Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter,” Meas. Sci. Technol. 24(11), 115201 (2013).
[Crossref]

Qiu, Z.

H. Xi, M. Hieronymi, R. Röttgers, H. Krasemann, and Z. Qiu, “Hyperspectral differentiation of phytoplankton taxonomic groups: A comparison between using remote sensing reflectance and absorption spectra,” Remote Sens. 7(11), 14781–14805 (2015).
[Crossref]

Quéré, C. L.

M.-F. Racault, C. L. Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt, “Phytoplankton phenology in the global ocean,” Ecol. Indic. 14(1), 152–163 (2012).
[Crossref]

Racault, M.-F.

M.-F. Racault, C. L. Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt, “Phytoplankton phenology in the global ocean,” Ecol. Indic. 14(1), 152–163 (2012).
[Crossref]

Rijkeboer, M.

M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
[Crossref] [PubMed]

Rippka, R.

R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, “Generic assignments, strain histories and properties of pure cultures of cyanobacteria,” Microbiology 111(1), 1–61 (1979).
[Crossref]

Röttgers, R.

H. Xi, M. Hieronymi, R. Röttgers, H. Krasemann, and Z. Qiu, “Hyperspectral differentiation of phytoplankton taxonomic groups: A comparison between using remote sensing reflectance and absorption spectra,” Remote Sens. 7(11), 14781–14805 (2015).
[Crossref]

Sathyendranath, S.

M.-F. Racault, C. L. Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt, “Phytoplankton phenology in the global ocean,” Ecol. Indic. 14(1), 152–163 (2012).
[Crossref]

V. A. Lutz, S. Sathyendranath, E. J. H. Head, and W. K. W. Li, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23(6), 555–569 (2001).
[Crossref]

Schubert, F.

D. Kolberg, F. Schubert, N. Lontke, A. Zwigart, and D. Spinner, “Development of tunable close match LED solar simulator with extended spectral range to UV and IRm,” Energy Procedia 8, 100–105 (2011).
[Crossref]

Schuurmans, F. J. P.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Seppälä, J.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res. 112(1), 13–30 (2012).
[Crossref] [PubMed]

Serreze, H. B.

K. J. Linden, W. R. Neal, and H. B. Serreze, “Adjustable spectrum LED solar simulator,“ (2014).

Shenoy, P. S.

A. M. Bazzi, Z. Klein, M. Sweeney, K. P. Kroeger, P. S. Shenoy, and P. T. Krein, “Solid-state solar simulator,” IEEE Trans. Ind. Appl. 48(4), 1195–1202 (2012).
[Crossref]

Simis, S. G. H.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res. 112(1), 13–30 (2012).
[Crossref] [PubMed]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[Crossref]

Sinetova, M. A.

T. Zavrel, M. A. Sinetova, D. Búzová, P. Literáková, and J. Cervený, “Characterization of a model cyanobacterium synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor,” Eng. Life Sci. 15(1), 122–132 (2015).
[Crossref]

Song, K.

L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: An extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
[Crossref]

Spinner, D.

D. Kolberg, F. Schubert, N. Lontke, A. Zwigart, and D. Spinner, “Development of tunable close match LED solar simulator with extended spectral range to UV and IRm,” Energy Procedia 8, 100–105 (2011).
[Crossref]

Stal, L. J.

M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal, “Colourful coexistence of red and green picocyanobacteria in lakes and seas,” Ecol. Lett. 10(4), 290–298 (2007).
[Crossref] [PubMed]

M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
[Crossref] [PubMed]

Stanier, R. Y.

R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, “Generic assignments, strain histories and properties of pure cultures of cyanobacteria,” Microbiology 111(1), 1–61 (1979).
[Crossref]

Stomp, M.

M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal, “Colourful coexistence of red and green picocyanobacteria in lakes and seas,” Ecol. Lett. 10(4), 290–298 (2007).
[Crossref] [PubMed]

M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
[Crossref] [PubMed]

Stramski, D.

D. Stramski and A. Morel, “Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance,” Deep Sea Res. Part A 37(2), 245–266 (1990).
[Crossref]

Sweeney, M.

A. M. Bazzi, Z. Klein, M. Sweeney, K. P. Kroeger, P. S. Shenoy, and P. T. Krein, “Solid-state solar simulator,” IEEE Trans. Ind. Appl. 48(4), 1195–1202 (2012).
[Crossref]

Taisir, M.

C. L. Teo, M. Atta, A. Bukhari, M. Taisir, A. M. Yusuf, and A. Idris, “Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths,” Bioresour. Technol. 162, 38–44 (2014).
[Crossref] [PubMed]

Tandeau de Marsac, N.

N. Tandeau de Marsac, “Occurrence and nature of chromatic adaptation in cyanobacteria,” J. Bacteriol. 130(1), 82–91 (1977).
[PubMed]

Tang, Y. J.

Y. Yu, L. You, D. Liu, W. Hollinshead, Y. J. Tang, and F. Zhang, “Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory,” Mar. Drugs 11(8), 2894–2916 (2013).
[Crossref] [PubMed]

Teo, C. L.

C. L. Teo, M. Atta, A. Bukhari, M. Taisir, A. M. Yusuf, and A. Idris, “Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths,” Bioresour. Technol. 162, 38–44 (2014).
[Crossref] [PubMed]

Trtílek, M.

L. Nedbal, M. Trtílek, J. Cervený, O. Komárek, and H. B. Pakrasi, “A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics,” Biotechnol. Bioeng. 100(5), 902–910 (2008).
[Crossref] [PubMed]

Vaskuri, A.

J.-M. Hirvonen, T. Poikonen, A. Vaskuri, P. Kärhä, and E. Ikonen, “Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter,” Meas. Sci. Technol. 24(11), 115201 (2013).
[Crossref]

Vavilin, D.

H. Xu, D. Vavilin, and W. Vermaas, “Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria,” Proc. Natl. Acad. Sci. U.S.A. 98(24), 14168–14173 (2001).
[Crossref] [PubMed]

Veraart, A. J.

M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
[Crossref] [PubMed]

Vermaas, W.

H. Xu, D. Vavilin, and W. Vermaas, “Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria,” Proc. Natl. Acad. Sci. U.S.A. 98(24), 14168–14173 (2001).
[Crossref] [PubMed]

Vörös, L.

M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal, “Colourful coexistence of red and green picocyanobacteria in lakes and seas,” Ecol. Lett. 10(4), 290–298 (2007).
[Crossref] [PubMed]

Wang, J.

P. Lu, H. Yang, Y. Pei, J. Li, B. Xue, J. Wang, and J. Li, “Generation of solar spectrum by using LED,“ (2016).

Waterbury, J. B.

R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, “Generic assignments, strain histories and properties of pure cultures of cyanobacteria,” Microbiology 111(1), 1–61 (1979).
[Crossref]

Wollenzien, U. I.

M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
[Crossref] [PubMed]

Xi, H.

H. Xi, M. Hieronymi, R. Röttgers, H. Krasemann, and Z. Qiu, “Hyperspectral differentiation of phytoplankton taxonomic groups: A comparison between using remote sensing reflectance and absorption spectra,” Remote Sens. 7(11), 14781–14805 (2015).
[Crossref]

Xu, H.

H. Xu, D. Vavilin, and W. Vermaas, “Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria,” Proc. Natl. Acad. Sci. U.S.A. 98(24), 14168–14173 (2001).
[Crossref] [PubMed]

Xue, B.

P. Lu, H. Yang, Y. Pei, J. Li, B. Xue, J. Wang, and J. Li, “Generation of solar spectrum by using LED,“ (2016).

Yang, H.

P. Lu, H. Yang, Y. Pei, J. Li, B. Xue, J. Wang, and J. Li, “Generation of solar spectrum by using LED,“ (2016).

Yano, A.

K. Fujiwara and A. Yano, “Controllable spectrum artificial sunlight source system using LEDs with 32 different peak wavelengths of 385-910 nm,” Bioelectromagnetics 32(3), 243–252 (2011).
[Crossref] [PubMed]

Yeh, K.-L.

C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

You, L.

Y. Yu, L. You, D. Liu, W. Hollinshead, Y. J. Tang, and F. Zhang, “Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory,” Mar. Drugs 11(8), 2894–2916 (2013).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, L. You, D. Liu, W. Hollinshead, Y. J. Tang, and F. Zhang, “Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory,” Mar. Drugs 11(8), 2894–2916 (2013).
[Crossref] [PubMed]

Yusuf, A. M.

C. L. Teo, M. Atta, A. Bukhari, M. Taisir, A. M. Yusuf, and A. Idris, “Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths,” Bioresour. Technol. 162, 38–44 (2014).
[Crossref] [PubMed]

Zaid, G.

Zavrel, T.

T. Zavrel, M. A. Sinetova, D. Búzová, P. Literáková, and J. Cervený, “Characterization of a model cyanobacterium synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor,” Eng. Life Sci. 15(1), 122–132 (2015).
[Crossref]

Zhang, F.

Y. Yu, L. You, D. Liu, W. Hollinshead, Y. J. Tang, and F. Zhang, “Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory,” Mar. Drugs 11(8), 2894–2916 (2013).
[Crossref] [PubMed]

Zwigart, A.

D. Kolberg, F. Schubert, N. Lontke, A. Zwigart, and D. Spinner, “Development of tunable close match LED solar simulator with extended spectral range to UV and IRm,” Energy Procedia 8, 100–105 (2011).
[Crossref]

Appl. Opt. (2)

Arch. Microbiol. (1)

T. Parkin and T. Brock, “The effects of light quality on the growth of phototrophic bacteria in lakes,” Arch. Microbiol. 125(1-2), 19–27 (1980).
[Crossref]

Bioelectromagnetics (1)

K. Fujiwara and A. Yano, “Controllable spectrum artificial sunlight source system using LEDs with 32 different peak wavelengths of 385-910 nm,” Bioelectromagnetics 32(3), 243–252 (2011).
[Crossref] [PubMed]

Bioresour. Technol. (2)

C. L. Teo, M. Atta, A. Bukhari, M. Taisir, A. M. Yusuf, and A. Idris, “Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths,” Bioresour. Technol. 162, 38–44 (2014).
[Crossref] [PubMed]

C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

Biotechnol. Bioeng. (1)

L. Nedbal, M. Trtílek, J. Cervený, O. Komárek, and H. B. Pakrasi, “A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics,” Biotechnol. Bioeng. 100(5), 902–910 (2008).
[Crossref] [PubMed]

Deep Sea Res. Part A (1)

D. Stramski and A. Morel, “Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance,” Deep Sea Res. Part A 37(2), 245–266 (1990).
[Crossref]

Ecol. Indic. (1)

M.-F. Racault, C. L. Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt, “Phytoplankton phenology in the global ocean,” Ecol. Indic. 14(1), 152–163 (2012).
[Crossref]

Ecol. Lett. (1)

M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal, “Colourful coexistence of red and green picocyanobacteria in lakes and seas,” Ecol. Lett. 10(4), 290–298 (2007).
[Crossref] [PubMed]

Energy Procedia (1)

D. Kolberg, F. Schubert, N. Lontke, A. Zwigart, and D. Spinner, “Development of tunable close match LED solar simulator with extended spectral range to UV and IRm,” Energy Procedia 8, 100–105 (2011).
[Crossref]

Eng. Life Sci. (1)

T. Zavrel, M. A. Sinetova, D. Búzová, P. Literáková, and J. Cervený, “Characterization of a model cyanobacterium synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor,” Eng. Life Sci. 15(1), 122–132 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

IEEE Trans. Ind. Appl. (1)

A. M. Bazzi, Z. Klein, M. Sweeney, K. P. Kroeger, P. S. Shenoy, and P. T. Krein, “Solid-state solar simulator,” IEEE Trans. Ind. Appl. 48(4), 1195–1202 (2012).
[Crossref]

J. Bacteriol. (1)

N. Tandeau de Marsac, “Occurrence and nature of chromatic adaptation in cyanobacteria,” J. Bacteriol. 130(1), 82–91 (1977).
[PubMed]

J. Photochem. Photobiol. B (1)

N. Korbee, F. L. Figueroa, and J. Aguilera, “Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga porphyra leucosticta (bangiales, rhodophyta),” J. Photochem. Photobiol. B 80(2), 71–78 (2005).
[Crossref] [PubMed]

J. Plankton Res. (2)

V. A. Lutz, S. Sathyendranath, E. J. H. Head, and W. K. W. Li, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23(6), 555–569 (2001).
[Crossref]

R. L. Carneiro, M. E. V. dos Santos, A. B. F. Pacheco, and S. M. F. O. Azevedo, “Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in cylindrospermopsis raciborskii (cyanobacteria),” J. Plankton Res. 31(5), 481–488 (2009).
[Crossref]

J. Struct. Biol. (1)

R. MacColl, “Cyanobacterial phycobilisomes,” J. Struct. Biol. 124(2-3), 311–334 (1998).
[Crossref] [PubMed]

Limnol. Oceanogr. (1)

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[Crossref]

Mar. Drugs (1)

Y. Yu, L. You, D. Liu, W. Hollinshead, Y. J. Tang, and F. Zhang, “Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory,” Mar. Drugs 11(8), 2894–2916 (2013).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

J.-M. Hirvonen, T. Poikonen, A. Vaskuri, P. Kärhä, and E. Ikonen, “Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter,” Meas. Sci. Technol. 24(11), 115201 (2013).
[Crossref]

Microbiology (1)

R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, “Generic assignments, strain histories and properties of pure cultures of cyanobacteria,” Microbiology 111(1), 1–61 (1979).
[Crossref]

Nature (2)

M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien, and L. J. Stal, “Adaptive divergence in pigment composition promotes phytoplankton biodiversity,” Nature 432(7013), 104–107 (2004).
[Crossref] [PubMed]

P. Falkowski, “Ocean Science: The power of plankton,” Nature 483(7387), S17–S20 (2012).
[Crossref] [PubMed]

Photosynth. Res. (2)

P. G. Falkowski, “The role of phytoplankton photosynthesis in global biogeochemical cycles,” Photosynth. Res. 39(3), 235–258 (1994).
[Crossref] [PubMed]

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res. 112(1), 13–30 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Xu, D. Vavilin, and W. Vermaas, “Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria,” Proc. Natl. Acad. Sci. U.S.A. 98(24), 14168–14173 (2001).
[Crossref] [PubMed]

Remote Sens. (1)

H. Xi, M. Hieronymi, R. Röttgers, H. Krasemann, and Z. Qiu, “Hyperspectral differentiation of phytoplankton taxonomic groups: A comparison between using remote sensing reflectance and absorption spectra,” Remote Sens. 7(11), 14781–14805 (2015).
[Crossref]

Remote Sens. Environ. (2)

L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: An extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
[Crossref]

H. J. Gons, M. T. Auer, and S. W. Effler, “Meris satellite chlorophyll mapping of oligotrophic and eutrophic waters in the laurentian great lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
[Crossref]

Other (19)

L. Li and K. Song, “Chapter 8 - Bio-optical modeling of phycocyanin,“ in Bio-optical Modeling and Remote Sensing of Inland Waters, D. R. Mishra, I. Ogashawara, and A. A. Gitelson, eds. (Elsevier, 2017), pp. 233 – 262.

A. G. Dekker, “Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing,” Ph.D. thesis (1993).

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C. W. Brown, A. M. Ciotti, L. A. Clementson, S. E. Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T. S. Kostadinov, S. Lavender, H. Loisel, T. S. Moore, J. Morales, C. B. Mouw, A. Nair, D. Raitsos, C. Roesler, J. D. Shutler, H. M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from space,” in Reports of the International Ocean Colour Coordinating Group (IOCCG, 2014).

I. Chorus and J. Bertram, “Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management,” E & FN Spon on behalf of the World Health Organization (1999).

L. H. Pettersson and D. Pozdnyakov, Monitoring of Harmful Algal Bloom (Springer Science & Business Media, 2013).

Sinus 220 from Wavelabs Solar Metrology Systems GmbH, Freiburg, Germany, http://wavelabs.de/wp-content/uploads/Brochure_Wavelabs.pdf (accessed on 31st of August 2017).

Ecocell from Ecoprogetti Srl, Padova, Italy, https://ecoprogetti.com/Catalogue2016.pdf (accessed on 31st of August 2017).

LEDSim, TM from Aescusoft GmbH, Freiburg, Germany, http://www.aescusoft.com/sites/default/files/public/aes_ledsim_si.pdf (accessed on 31st of August 2017).

F. Hundhausen, “Aufbau, Charakterisierung und Ansteuerung eines Beleuchtungs-Moduls zur Simulation variabler Unterwasser-Lichtspektren unter Verwendung von Hochleistungs-Leuchtdioden“ Bachelor thesis, Hochschule Esslingen (2015).

K. J. Linden, W. R. Neal, and H. B. Serreze, “Adjustable spectrum LED solar simulator,“ (2014).

P. Lu, H. Yang, Y. Pei, J. Li, B. Xue, J. Wang, and J. Li, “Generation of solar spectrum by using LED,“ (2016).

S. von Hößlin, “Development and validation of an automated photobioreactor system for measuring absorption and fluorescence of phytoplankton“ Master’s thesis, Technische Universität München (2015).

G. Johnsen, A. Bricaud, N. Nelson, B. B. Preélin, and R. R. Bidigare, Phytoplankton Pigments: Characterization, Chemotaxonomy, and Application in Oceanography (Cambridge University, 2011).

J. Lakowicz, Principles of Fluorescence Spectroscopy (Springer US, 2013).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

G. P. E. Steven, W. Brown, and C. Santana, “Development of a tunable LED-based colorimetric source,“ J. Res. Nat. Inst. Stand. Technol. 107 (2002).

P. Gege, Software WASI, version 4, http://www.ioccg.org/data/software.html (accessed on 17th of July 2017).

Axenic Synechocystis sp. PCC 6803, Pasteur Culture Collection of Cyanobacteria (PCC), Catalogue information available online: https://brclims.pasteur.fr/crbip_catalogue/faces/resultatrecherche.xhtml (accessed on 17th of july 2017).

P. Gege, “Chapter 2 - Radiative Transfer Theory for Inland Waters,” in Bio-optical Modeling and Remote Sensing of Inland Waters (Elsevier, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic sketch of the measurement set-up (modified from [25]).
Fig. 2
Fig. 2 (a) Schematic sketch of LED light source; (b) Scheme of bioreactor assembly in explosion view; area of glass windows match illumination area of multispectral light source (modified from [25,38]).
Fig. 3
Fig. 3 Calculated (black solid line) and simulated (grey circles) downwelling irradiance spectra for different ambient light scenarios under a sun zenith angle of 40°: (a) at water surface (sensor depth = 0 m), (b) with high CDOM concentration at 1 m depth (aCDOM = 2 m−1) and (c) at 3 m water depth. Colored lines reflect individual LED spectra.
Fig. 4
Fig. 4 (a) Growth of Synechocystis sp. (PCC 6803) monitored through the reactor windows; transmission was measured ten times during day every 15 minutes over a period of ~6.3 days leading to the depicted 3540 spectra. (b) Absorption spectra during automated dilution of a PCC 6803 culture; inset: corresponding concentration factor vs. absorption at 673 nm.
Fig. 5
Fig. 5 (a) Excitation-mission spectrum of Synechocystis sp. (PCC6803) after blank subtraction. The dashed line indicates the excitation spectrum at 680 nm emission. (b) Excitation spectrum at 680 nm for PCC 6803 at different dilution steps. The inset indicates linear decrease of fluorescence intensity at 620 nm excitation and 680 nm emission with dilution.

Tables (1)

Tables Icon

Table 1 Technical specifications of the LED light source.

Metrics