Abstract

We investigate parametrically amplified eight-wave mixing (PA-EWM). The double dressed PA-four-wave mixing (PA-FWM) is the superposition of one PA-FWM process, two different PA-six-wave mixing (PA-SWM) processes (PA-SWM1 and PA-SWM2 with external dressing field 776nm and 795nm, respectively) and one PA-EWM process. When the phases among FWM, SWM1, SWM2 and EWM change from 0 to π, the double dressed PA-FWM could gradually satisfy the pure enhancement (all 0), partial enhancement and suppression (mixture of 0 and π), or pure suppression condition (all π). The outcomes of the investigation can potentially contribute to the development of multi-channel quantum information processing and high dimensional stereoscopic imaging.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Parametric amplification of Rydberg six- and eight-wave mixing processes

Zhaoyang Zhang, Ji Guo, Bingling Gu, Ling Hao, Gaoguo Yang, Kun Wang, and Yanpeng Zhang
Photon. Res. 6(7) 713-720 (2018)

Optical bistablility in six-wave mixing parametrical amplification

Kangkang Li, Renan Bu, Dan Zhang, Xinghua Li, Mingyuan Wen, Tianhao Nan, and Yanpeng Zhang
Opt. Express 25(20) 23556-23566 (2017)

Observation of dressed odd-order multi-wave mixing in five-level atomic medium

Ning Li, Zhengyang Zhao, Haixia Chen, Peiying Li, Yueheng Li, Yan Zhao, Guozhen Zhou, Shuqiao Jia, and Yanpeng Zhang
Opt. Express 20(3) 1912-1929 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
    [PubMed]
  2. S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107(15), 153001 (2011).
    [PubMed]
  3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
  4. Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
    [PubMed]
  5. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
    [PubMed]
  6. N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
    [PubMed]
  7. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
    [PubMed]
  8. H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, and Y. Zhang, “Parametric amplification and cascaded-nonlinearity processes in common atomic system,” Sci. Rep. 3, 1885 (2013).
    [PubMed]
  9. Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed gain from the parametrically amplified four-wave mixing process in an atomic vapor,” Sci. Rep. 5, 15058 (2015).
    [PubMed]
  10. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
  11. L. Davidovich, “Sub-Poissonian processes in quantum optics,” Rev. Mod. Phys. 68, 127–173 (1996).
  12. A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009).
  13. C. Weedbrook, S. Pirandola, P. R. Garcia, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
  14. N. Cerf, G. Leuchs, and E. S. Polzik, Quantum Information with Continuous Variables of Atoms and Light (London: Imperial College Press,2007).
  15. R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3, 103 (2009).
  16. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
    [PubMed]
  17. L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
    [PubMed]
  18. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [PubMed]
  19. R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009).
    [PubMed]
  20. H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466(7306), 601–603 (2010).
    [PubMed]
  21. L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19 (2013).
  22. G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
    [PubMed]
  23. F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
    [PubMed]
  24. C. B. Li, Z. H. Jiang, Y. Q. Zhang, Z. Y. Zhang, F. Wen, H. X. Chen, Y. P. Zhang, and M. Xiao, “Controlled correlation and squeezing in Pr3+: Y2SiO5 to yield correlated light beams,” Phys. Rev. Appl. 7, 014023 (2017).

2017 (1)

C. B. Li, Z. H. Jiang, Y. Q. Zhang, Z. Y. Zhang, F. Wen, H. X. Chen, Y. P. Zhang, and M. Xiao, “Controlled correlation and squeezing in Pr3+: Y2SiO5 to yield correlated light beams,” Phys. Rev. Appl. 7, 014023 (2017).

2015 (1)

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed gain from the parametrically amplified four-wave mixing process in an atomic vapor,” Sci. Rep. 5, 15058 (2015).
[PubMed]

2014 (2)

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[PubMed]

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[PubMed]

2013 (2)

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19 (2013).

H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, and Y. Zhang, “Parametric amplification and cascaded-nonlinearity processes in common atomic system,” Sci. Rep. 3, 1885 (2013).
[PubMed]

2012 (2)

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
[PubMed]

C. Weedbrook, S. Pirandola, P. R. Garcia, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).

2011 (1)

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107(15), 153001 (2011).
[PubMed]

2010 (1)

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466(7306), 601–603 (2010).
[PubMed]

2009 (5)

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009).
[PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[PubMed]

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3, 103 (2009).

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[PubMed]

A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009).

2008 (1)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[PubMed]

2007 (1)

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[PubMed]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).

2004 (1)

H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
[PubMed]

1996 (1)

L. Davidovich, “Sub-Poissonian processes in quantum optics,” Rev. Mod. Phys. 68, 127–173 (1996).

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

1986 (1)

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[PubMed]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

Anderson, B.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[PubMed]

Ates, C.

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107(15), 153001 (2011).
[PubMed]

Borish, V.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[PubMed]

Boyer, V.

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009).
[PubMed]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[PubMed]

Brown, A. W.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[PubMed]

Camacho, R. M.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3, 103 (2009).

Cerf, N. J.

C. Weedbrook, S. Pirandola, P. R. Garcia, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).

Che, J.

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed gain from the parametrically amplified four-wave mixing process in an atomic vapor,” Sci. Rep. 5, 15058 (2015).
[PubMed]

Chen, H.

H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, and Y. Zhang, “Parametric amplification and cascaded-nonlinearity processes in common atomic system,” Sci. Rep. 3, 1885 (2013).
[PubMed]

Chen, H. X.

C. B. Li, Z. H. Jiang, Y. Q. Zhang, Z. Y. Zhang, F. Wen, H. X. Chen, Y. P. Zhang, and M. Xiao, “Controlled correlation and squeezing in Pr3+: Y2SiO5 to yield correlated light beams,” Phys. Rev. Appl. 7, 014023 (2017).

Cole, G. D.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[PubMed]

Corzo, N. V.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
[PubMed]

Davidovich, L.

L. Davidovich, “Sub-Poissonian processes in quantum optics,” Rev. Mod. Phys. 68, 127–173 (1996).

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

Fedrizzi, A.

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466(7306), 601–603 (2010).
[PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).

Garcia, P. R.

C. Weedbrook, S. Pirandola, P. R. Garcia, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).

Hall, J. L.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[PubMed]

Hamel, D. R.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19 (2013).

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466(7306), 601–603 (2010).
[PubMed]

Henkel, N.

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107(15), 153001 (2011).
[PubMed]

Hernandez, G.

H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
[PubMed]

Howell, J. C.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3, 103 (2009).

Hübel, H.

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466(7306), 601–603 (2010).
[PubMed]

Hudelist, F.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).

Jennewein, T.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19 (2013).

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466(7306), 601–603 (2010).
[PubMed]

Jiang, Z. H.

C. B. Li, Z. H. Jiang, Y. Q. Zhang, Z. Y. Zhang, F. Wen, H. X. Chen, Y. P. Zhang, and M. Xiao, “Controlled correlation and squeezing in Pr3+: Y2SiO5 to yield correlated light beams,” Phys. Rev. Appl. 7, 014023 (2017).

Jing, J.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[PubMed]

Jones, K. M.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
[PubMed]

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009).
[PubMed]

Kang, H.

H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
[PubMed]

Khadka, U.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[PubMed]

Kimble, H. J.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[PubMed]

Kong, J.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[PubMed]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Lapkiewicz, R.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[PubMed]

Lemos, G. B.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[PubMed]

Lett, P. D.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
[PubMed]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[PubMed]

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009).
[PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[PubMed]

Li, C.

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed gain from the parametrically amplified four-wave mixing process in an atomic vapor,” Sci. Rep. 5, 15058 (2015).
[PubMed]

H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, and Y. Zhang, “Parametric amplification and cascaded-nonlinearity processes in common atomic system,” Sci. Rep. 3, 1885 (2013).
[PubMed]

Li, C. B.

C. B. Li, Z. H. Jiang, Y. Q. Zhang, Z. Y. Zhang, F. Wen, H. X. Chen, Y. P. Zhang, and M. Xiao, “Controlled correlation and squeezing in Pr3+: Y2SiO5 to yield correlated light beams,” Phys. Rev. Appl. 7, 014023 (2017).

Liu, C.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[PubMed]

Lloyd, S.

C. Weedbrook, S. Pirandola, P. R. Garcia, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).

Lvovsky, A. I.

A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009).

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).

Marino, A. M.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
[PubMed]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[PubMed]

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009).
[PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Ou, Z. Y.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[PubMed]

Pirandola, S.

C. Weedbrook, S. Pirandola, P. R. Garcia, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

Pohl, T.

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107(15), 153001 (2011).
[PubMed]

Pooser, R. C.

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009).
[PubMed]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[PubMed]

Ralph, T. C.

C. Weedbrook, S. Pirandola, P. R. Garcia, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).

Ramelow, S.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[PubMed]

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466(7306), 601–603 (2010).
[PubMed]

Raymer, M. G.

A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009).

Resch, K. J.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19 (2013).

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466(7306), 601–603 (2010).
[PubMed]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Sevinçli, S.

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107(15), 153001 (2011).
[PubMed]

Shalm, L. K.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19 (2013).

Shapiro, J. H.

C. Weedbrook, S. Pirandola, P. R. Garcia, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Simon, C.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19 (2013).

Tian, Y.

H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, and Y. Zhang, “Parametric amplification and cascaded-nonlinearity processes in common atomic system,” Sci. Rep. 3, 1885 (2013).
[PubMed]

Vudyasetu, P. K.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3, 103 (2009).

Weedbrook, C.

C. Weedbrook, S. Pirandola, P. R. Garcia, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Wen, F.

C. B. Li, Z. H. Jiang, Y. Q. Zhang, Z. Y. Zhang, F. Wen, H. X. Chen, Y. P. Zhang, and M. Xiao, “Controlled correlation and squeezing in Pr3+: Y2SiO5 to yield correlated light beams,” Phys. Rev. Appl. 7, 014023 (2017).

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed gain from the parametrically amplified four-wave mixing process in an atomic vapor,” Sci. Rep. 5, 15058 (2015).
[PubMed]

Wu, H.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[PubMed]

Wu, L. A.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[PubMed]

Xiao, M.

C. B. Li, Z. H. Jiang, Y. Q. Zhang, Z. Y. Zhang, F. Wen, H. X. Chen, Y. P. Zhang, and M. Xiao, “Controlled correlation and squeezing in Pr3+: Y2SiO5 to yield correlated light beams,” Phys. Rev. Appl. 7, 014023 (2017).

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed gain from the parametrically amplified four-wave mixing process in an atomic vapor,” Sci. Rep. 5, 15058 (2015).
[PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[PubMed]

Yan, Z.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19 (2013).

Zeilinger, A.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Zhang, D.

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed gain from the parametrically amplified four-wave mixing process in an atomic vapor,” Sci. Rep. 5, 15058 (2015).
[PubMed]

Zhang, W.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[PubMed]

Zhang, X.

H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, and Y. Zhang, “Parametric amplification and cascaded-nonlinearity processes in common atomic system,” Sci. Rep. 3, 1885 (2013).
[PubMed]

Zhang, Y.

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed gain from the parametrically amplified four-wave mixing process in an atomic vapor,” Sci. Rep. 5, 15058 (2015).
[PubMed]

H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, and Y. Zhang, “Parametric amplification and cascaded-nonlinearity processes in common atomic system,” Sci. Rep. 3, 1885 (2013).
[PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[PubMed]

Zhang, Y. P.

C. B. Li, Z. H. Jiang, Y. Q. Zhang, Z. Y. Zhang, F. Wen, H. X. Chen, Y. P. Zhang, and M. Xiao, “Controlled correlation and squeezing in Pr3+: Y2SiO5 to yield correlated light beams,” Phys. Rev. Appl. 7, 014023 (2017).

Zhang, Y. Q.

C. B. Li, Z. H. Jiang, Y. Q. Zhang, Z. Y. Zhang, F. Wen, H. X. Chen, Y. P. Zhang, and M. Xiao, “Controlled correlation and squeezing in Pr3+: Y2SiO5 to yield correlated light beams,” Phys. Rev. Appl. 7, 014023 (2017).

Zhang, Z.

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed gain from the parametrically amplified four-wave mixing process in an atomic vapor,” Sci. Rep. 5, 15058 (2015).
[PubMed]

H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, and Y. Zhang, “Parametric amplification and cascaded-nonlinearity processes in common atomic system,” Sci. Rep. 3, 1885 (2013).
[PubMed]

Zhang, Z. Y.

C. B. Li, Z. H. Jiang, Y. Q. Zhang, Z. Y. Zhang, F. Wen, H. X. Chen, Y. P. Zhang, and M. Xiao, “Controlled correlation and squeezing in Pr3+: Y2SiO5 to yield correlated light beams,” Phys. Rev. Appl. 7, 014023 (2017).

Zheng, H.

H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, and Y. Zhang, “Parametric amplification and cascaded-nonlinearity processes in common atomic system,” Sci. Rep. 3, 1885 (2013).
[PubMed]

Zhu, Y.

H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
[PubMed]

Nat. Commun. (1)

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[PubMed]

Nat. Photonics (1)

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3, 103 (2009).

Nat. Phys. (1)

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19 (2013).

Nature (3)

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[PubMed]

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466(7306), 601–603 (2010).
[PubMed]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[PubMed]

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

Phys. Rev. Appl. (1)

C. B. Li, Z. H. Jiang, Y. Q. Zhang, Z. Y. Zhang, F. Wen, H. X. Chen, Y. P. Zhang, and M. Xiao, “Controlled correlation and squeezing in Pr3+: Y2SiO5 to yield correlated light beams,” Phys. Rev. Appl. 7, 014023 (2017).

Phys. Rev. Lett. (8)

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009).
[PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[PubMed]

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
[PubMed]

H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
[PubMed]

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107(15), 153001 (2011).
[PubMed]

Rev. Mod. Phys. (4)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).

L. Davidovich, “Sub-Poissonian processes in quantum optics,” Rev. Mod. Phys. 68, 127–173 (1996).

A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009).

C. Weedbrook, S. Pirandola, P. R. Garcia, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).

Sci. Rep. (2)

H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, and Y. Zhang, “Parametric amplification and cascaded-nonlinearity processes in common atomic system,” Sci. Rep. 3, 1885 (2013).
[PubMed]

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed gain from the parametrically amplified four-wave mixing process in an atomic vapor,” Sci. Rep. 5, 15058 (2015).
[PubMed]

Science (1)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[PubMed]

Other (1)

N. Cerf, G. Leuchs, and E. S. Polzik, Quantum Information with Continuous Variables of Atoms and Light (London: Imperial College Press,2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a1) Spatial beams alignment of the PA-FWM, PA-SWM and PA-EWM processes; I: isolator: WP; λ/2 wave plate: PBS: polarization beam splitter; M: mirror; BHD: balanced homodyne detector. (a2) Phase-matching geometrical diagram. (b) Energy-level diagram for the inverted-Y configuration in 85Rb vapor. (c1) The dressing filed E3 splits |2> state to |G2 ± >. (c2) the dressing filed E4 splits |1> (|0>) state to |G1 ± > (|G0 ± >).
Fig. 2
Fig. 2 Measured intensities of signal with dressing field E3 at different detuning Δ3 in probe and corresponding conjugate channel. (a) With the pump beam E1 of 780.2345nm, the intensity evolutions of Stokes in probe channel by increasing Δ3. (b) Anti-Stokes signal in probe channel. (c) Anti-Stokes signal in conjugate channel corresponding to (a). (d) Stokes signal conjugate channel corresponding to (b). From bottom to top, the detuning of E3 is changed from 0 to 0.7GHz. (a1), (b1), (c1) and (d1) represent the intensity of signal obtained under the condition when E3 is off.
Fig. 3
Fig. 3 Measured intensities of signal with dressing field E4 at different detuning Δ4 in probe and corresponding conjugate channel. (a) With the pump beam E1 of 780.2345nm, the intensity evolutions of Stokes in probe channel by increasing Δ4. (b) Anti-Stokes signal in probe channel. (c) Anti-Stokes signal in conjugate channel corresponding to (a). (d) Stokes signal conjugate channel corresponding to (b). From bottom to top, the detuning of E4 is changed from –1.30 to 1.56GHz. (a1), (b1), (c1) and (d1) represent the intensity of signal obtained under the condition when E4 is off.
Fig. 4
Fig. 4 Measured Stokes signal of 85Rb F = 3 (a) and anti-Stokes signal of 85Rb F = 2 (b) in the probe channel. (c) (d) are same as (b) (a), respectively, but in in conjugate channel. (a1), (b1), (c1) and (d1) are the gain peaks with no dressing field; (a2), (b2), (c2) and (d2) with E3 on; (a3), (b3), (c3) and (d3) with E4 on; (a4), (b4), (c4) and (d4) are the gain peaks with both E3 and E4 on.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ρ 21(S) (3) =i G 1 2 G aS / d 21 d 01 d 21 ,
ρ 20(aS) (3) =i G 1 2 G S / d 20 d 10 d 20 .
ρ 21 (S) (3) =i G 1 2 G aS / d 21D d 01 d 21 ,
ρ 20 (aS) (3) =i G 1 2 G S / d 20D d 10 d 20 .
ρ 21 (S) (3) =i G 1 2 G aS / d 21 d 01D d 21 ,
ρ 20 (aS) (3) =i G 1 2 G S / d 20 d 10D d 20 .
ρ 21 (S) (3) =i G 1 2 G aS / d 21D d 01D d 21 ,
ρ 20 (aS) (3) =i G 1 2 G S / d 20D d 10D d 20 .
ρ 21(S) (3) = ρ 21(S) (3) + ρ 21(S) (5) + ρ 21(S) (5) +( G 3 2 G 4 2 / d 01 d 21 d 31 d 41 ) ρ 21(S) (3) = ρ 21(S) (3) + ρ 21(S) (5) + ρ 21(S) (5) + ρ 21(S) (7) ,
ρ 20(aS) (3) = ρ 20(aS) (3) + ρ 20(aS) (5) + ρ 20(aS) (5) +( G 3 2 G 4 2 / d 10 d 20 d 30 d 40 ) ρ 20(aS) (3) = ρ 20(aS) (3) + ρ 20(aS) (5) + ρ 20(aS) (5) + ρ 20(aS) (7) .
N a = a ^ out + a ^ out = g D a ^ in + a ^ in +( g D 1) ,
N b = b ^ out + b ^ out =( g D 1) a ^ in + a ^ in + g D .
| ρ S (3) + ρ S (5) + ρ S (5) + ρ S (7) |= [ A 2 + C 2 + E 2 + J 2 +2ACcos(Δ φ 1 )+2AEcos(Δ φ 2 ) +2AJcos(Δ φ 3 )+2CEcos(Δ φ 4 ) +2CJcos(Δ φ 5 )+2EJcos(Δ φ 6 ) ] 1/2 =| ρ S (3) |+| ρ S (5) |+| ρ S (5) |+| ρ S (7) | .
N aDD = a ^ D + a ^ D = a ^ 4 + a ^ 4 ± a ^ 6 + a ^ 6 ± a ^ 6 + a ^ 6 ± a ^ 8 + a ^ 8 ,
N bDD = b ^ D + b ^ D = b ^ 4 + b ^ 4 ± b ^ 6 + b ^ 6 ± b ^ 6 + b ^ 6 ± b ^ 8 + b ^ 8 .

Metrics