Abstract

We report on the fabrication and transmission properties of free-standing single-layer and double-layer THz bandpass filters. These filters are fabricated on aluminum foils using femtosecond laser micro-machining. The aluminum foils are periodically patterned with cross apertures with a total area of 1.75×1.75 cm2, also known as frequency-selective surfaces. Their terahertz transmission properties were simulated using the FDTD method and measured using a time-domain terahertz spectroscopy system. The simulation results agree with the measurements results very well. The performance of single-layer bandpass filters is as good as the commercial equivalents on the market. The double-layer filters show extraordinary transmission peaks with changing spacing between the two layers. We show the contour map of the electric field distribution across the apertures, and ascribe the new transmission peaks to the interference and coupling of surface plasmon polaritons between the two layers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays

Lei Rao, Dongxiao Yang, Le Zhang, Tao Li, and Song Xia
Appl. Opt. 51(7) 912-916 (2012)

Flexible dual-band band-stop metamaterials filter for the terahertz region

Wang Junlin, Zhang Binzhen, Wang Xin, and Duan Junping
Opt. Mater. Express 7(5) 1656-1665 (2017)

Coherent control of phonon-polaritons in a terahertz resonator fabricated with femtosecond laser machining

David W. Ward, Jaime D. Beers, T. Feurer, Eric R. Statz, Nikolay S. Stoyanov, and Keith A. Nelson
Opt. Lett. 29(22) 2671-2673 (2004)

References

  • View by:
  • |
  • |
  • |

  1. B. You and J. Y. Lu, “Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide,” Opt. Express 24(16), 18013–18023 (2016).
    [Crossref] [PubMed]
  2. S. J. Oh, S. H. Kim, K. Jeong, Y. Park, Y. M. Huh, J. H. Son, and J. S. Suh, “Measurement depth enhancement in terahertz imaging of biological tissues,” Opt. Express 21(18), 21299–21305 (2013).
    [Crossref] [PubMed]
  3. S. Jia, X. Yu, H. Hu, J. Yu, P. Guan, F. Da Ros, M. Galili, T. Morioka, and L. K. Oxenløwe, “THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band,” Opt. Express 24(21), 23777–23783 (2016).
    [Crossref] [PubMed]
  4. Q. Yang, B. Deng, H. Wang, and Y. Qin, “Experimental research on imaging of precession targets with THz radar,” Electron. Lett. 52(25), 2059–2061 (2016).
    [Crossref]
  5. W. Li, D. Kuang, F. Fan, S. Chang, and L. Lin, “Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure,” Appl. Opt. 51(29), 7098–7102 (2012).
    [Crossref] [PubMed]
  6. S. H. Kim, E. S. Lee, Y. B. Ji, and T. I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18(2), 1289–1295 (2010).
    [Crossref] [PubMed]
  7. R. Ulrich, “Interference filters for the far infrared,” Appl. Opt. 7(10), 1987–1996 (1968).
    [Crossref] [PubMed]
  8. A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. P. A. Silva, “Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results,” Adv. Opt. Technol. 2012(7), 530512 (2012).
  9. S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev 2(1), 011303 (2015).
    [Crossref]
  10. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
    [Crossref]
  11. L. Rao, D. Yang, L. Zhang, T. Li, and S. Xia, “Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays,” Appl. Opt. 51(7), 912–916 (2012).
    [Crossref] [PubMed]
  12. A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Trans. Thz. Sci. Technol. 5(5), 761–769 (2015).
    [Crossref]
  13. S. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, “Graphene-based tunable metamaterial terahertz filters,” Appl. Phys. Lett. 105(9), 093105 (2014).
    [Crossref]
  14. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  15. M. Khodaee, M. Banakermani, and H. Baghban, “GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment,” Appl. Opt. 54(29), 8617–8624 (2015).
    [Crossref] [PubMed]
  16. D. Kim, S. Eo, S. Oh, and J. Jang, “Spurious resonance suppression for a THz single bandpass filter using lossy glass substrates,” Microw. Opt. Technol. Lett. 57(1), 58–60 (2015).
    [Crossref]
  17. S. Vegesna, Y. Zhu, A. Bernussi, and M. Saed, “Terahertz two-layer frequency selective surfaces with improved transmission characteristics,” IEEE Trans. Thz. Sci. Technol. 2(4), 441–448 (2012).
    [Crossref]
  18. Y. S. Lin, Y. Qian, F. Ma, Z. Liu, and P. Kropelnicki, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).
    [Crossref]
  19. Y. S. Im, H. K. Choi, and J. H. Park, “Design of double layer frequency selective surfaces with novel multiresonant elements for four-frequency bands,” Microw. Opt. Technol. Lett. 54(9), 2153–2157 (2012).
    [Crossref]
  20. M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microw. Theory Tech. 48(4), 712–718 (2000).
    [Crossref]
  21. D. D. Nolte, A. E. Lange, and P. L. Richards, “Far-infrared dichroic bandpass filters,” Appl. Opt. 24(10), 1541 (1985).
    [Crossref] [PubMed]
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref] [PubMed]
  23. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  24. F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
    [Crossref]
  25. J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
    [Crossref] [PubMed]
  26. G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(7), 61310J (2006).
  27. S. Sidorenko and O. J. Martin, “Resonant Tunneling of surface plasmon-polaritons,” Opt. Express 15(10), 6380–6388 (2007).
    [Crossref] [PubMed]

2016 (3)

2015 (5)

M. Khodaee, M. Banakermani, and H. Baghban, “GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment,” Appl. Opt. 54(29), 8617–8624 (2015).
[Crossref] [PubMed]

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev 2(1), 011303 (2015).
[Crossref]

A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Trans. Thz. Sci. Technol. 5(5), 761–769 (2015).
[Crossref]

D. Kim, S. Eo, S. Oh, and J. Jang, “Spurious resonance suppression for a THz single bandpass filter using lossy glass substrates,” Microw. Opt. Technol. Lett. 57(1), 58–60 (2015).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref] [PubMed]

2014 (1)

S. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, “Graphene-based tunable metamaterial terahertz filters,” Appl. Phys. Lett. 105(9), 093105 (2014).
[Crossref]

2013 (3)

2012 (5)

L. Rao, D. Yang, L. Zhang, T. Li, and S. Xia, “Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays,” Appl. Opt. 51(7), 912–916 (2012).
[Crossref] [PubMed]

W. Li, D. Kuang, F. Fan, S. Chang, and L. Lin, “Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure,” Appl. Opt. 51(29), 7098–7102 (2012).
[Crossref] [PubMed]

Y. S. Im, H. K. Choi, and J. H. Park, “Design of double layer frequency selective surfaces with novel multiresonant elements for four-frequency bands,” Microw. Opt. Technol. Lett. 54(9), 2153–2157 (2012).
[Crossref]

S. Vegesna, Y. Zhu, A. Bernussi, and M. Saed, “Terahertz two-layer frequency selective surfaces with improved transmission characteristics,” IEEE Trans. Thz. Sci. Technol. 2(4), 441–448 (2012).
[Crossref]

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. P. A. Silva, “Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results,” Adv. Opt. Technol. 2012(7), 530512 (2012).

2010 (1)

2009 (1)

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

2007 (1)

2006 (1)

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(7), 61310J (2006).

2005 (1)

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2000 (1)

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microw. Theory Tech. 48(4), 712–718 (2000).
[Crossref]

1985 (1)

1983 (1)

1968 (1)

Abbott, D.

A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Trans. Thz. Sci. Technol. 5(5), 761–769 (2015).
[Crossref]

Alexander, R. W.

Alexanian, A.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microw. Theory Tech. 48(4), 712–718 (2000).
[Crossref]

Alloschery, O.

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(7), 61310J (2006).

Al-Sarawi, S. F.

A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Trans. Thz. Sci. Technol. 5(5), 761–769 (2015).
[Crossref]

Andryieuski, A.

Arezoomandan, S.

S. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, “Graphene-based tunable metamaterial terahertz filters,” Appl. Phys. Lett. 105(9), 093105 (2014).
[Crossref]

Baghban, H.

Banakermani, M.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bernussi, A.

S. Vegesna, Y. Zhu, A. Bernussi, and M. Saed, “Terahertz two-layer frequency selective surfaces with improved transmission characteristics,” IEEE Trans. Thz. Sci. Technol. 2(4), 441–448 (2012).
[Crossref]

Bhaskaran, M.

A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Trans. Thz. Sci. Technol. 5(5), 761–769 (2015).
[Crossref]

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev 2(1), 011303 (2015).
[Crossref]

Chang, S.

Choi, H. K.

Y. S. Im, H. K. Choi, and J. H. Park, “Design of double layer frequency selective surfaces with novel multiresonant elements for four-frequency bands,” Microw. Opt. Technol. Lett. 54(9), 2153–2157 (2012).
[Crossref]

Chowdhury, D. R.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev 2(1), 011303 (2015).
[Crossref]

Cui, T. J.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref] [PubMed]

Da Ros, F.

de Lesegno, B. V.

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(7), 61310J (2006).

Deng, B.

Q. Yang, B. Deng, H. Wang, and Y. Qin, “Experimental research on imaging of precession targets with THz radar,” Electron. Lett. 52(25), 2059–2061 (2016).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ebrahimi, A.

A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Trans. Thz. Sci. Technol. 5(5), 761–769 (2015).
[Crossref]

Eo, S.

D. Kim, S. Eo, S. Oh, and J. Jang, “Spurious resonance suppression for a THz single bandpass filter using lossy glass substrates,” Microw. Opt. Technol. Lett. 57(1), 58–60 (2015).
[Crossref]

Fan, F.

Galili, M.

García-Meca, C.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Gay, G.

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(7), 61310J (2006).

Gobbi, A. L.

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. P. A. Silva, “Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results,” Adv. Opt. Technol. 2012(7), 530512 (2012).

Grossman, E. N.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microw. Theory Tech. 48(4), 712–718 (2000).
[Crossref]

Guan, P.

Gutruf, P.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev 2(1), 011303 (2015).
[Crossref]

Hangyo, M.

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[Crossref]

Hu, H.

Huh, Y. M.

Im, Y. S.

Y. S. Im, H. K. Choi, and J. H. Park, “Design of double layer frequency selective surfaces with novel multiresonant elements for four-frequency bands,” Microw. Opt. Technol. Lett. 54(9), 2153–2157 (2012).
[Crossref]

Jang, J.

D. Kim, S. Eo, S. Oh, and J. Jang, “Spurious resonance suppression for a THz single bandpass filter using lossy glass substrates,” Microw. Opt. Technol. Lett. 57(1), 58–60 (2015).
[Crossref]

Jeon, T. I.

Jeong, K.

Ji, Y. B.

Jia, S.

Khodaee, M.

Kim, D.

D. Kim, S. Eo, S. Oh, and J. Jang, “Spurious resonance suppression for a THz single bandpass filter using lossy glass substrates,” Microw. Opt. Technol. Lett. 57(1), 58–60 (2015).
[Crossref]

Kim, S. H.

Kropelnicki, P.

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, and P. Kropelnicki, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).
[Crossref]

Kuang, D.

Lange, A. E.

Lavrinenko, A. V.

Lee, E. S.

Lezec, H. J.

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(7), 61310J (2006).

Li, T.

Li, W.

Lin, L.

Lin, Y. S.

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, and P. Kropelnicki, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).
[Crossref]

Liu, S.

S. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, “Graphene-based tunable metamaterial terahertz filters,” Appl. Phys. Lett. 105(9), 093105 (2014).
[Crossref]

Liu, Z.

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, and P. Kropelnicki, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).
[Crossref]

Long, L. L.

Lu, J. Y.

Ma, F.

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, and P. Kropelnicki, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).
[Crossref]

MacDonald, M. E.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microw. Theory Tech. 48(4), 712–718 (2000).
[Crossref]

Martí, J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Martin, O. J.

Martínez, A.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Melo, A. M.

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. P. A. Silva, “Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results,” Adv. Opt. Technol. 2012(7), 530512 (2012).

Miyamaru, F.

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[Crossref]

Morioka, T.

Nahata, A.

S. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, “Graphene-based tunable metamaterial terahertz filters,” Appl. Phys. Lett. 105(9), 093105 (2014).
[Crossref]

Nili, H.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev 2(1), 011303 (2015).
[Crossref]

Nirantar, S.

A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Trans. Thz. Sci. Technol. 5(5), 761–769 (2015).
[Crossref]

Nolte, D. D.

O’Dwyer, C.

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(7), 61310J (2006).

Oh, S.

D. Kim, S. Eo, S. Oh, and J. Jang, “Spurious resonance suppression for a THz single bandpass filter using lossy glass substrates,” Microw. Opt. Technol. Lett. 57(1), 58–60 (2015).
[Crossref]

Oh, S. J.

Ordal, M. A.

Ortuño, R.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Oxenløwe, L. K.

Pan, B. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref] [PubMed]

Park, J. H.

Y. S. Im, H. K. Choi, and J. H. Park, “Design of double layer frequency selective surfaces with novel multiresonant elements for four-frequency bands,” Microw. Opt. Technol. Lett. 54(9), 2153–2157 (2012).
[Crossref]

Park, Y.

Piazzetta, M. H. O.

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. P. A. Silva, “Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results,” Adv. Opt. Technol. 2012(7), 530512 (2012).

Popovic, Z.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microw. Theory Tech. 48(4), 712–718 (2000).
[Crossref]

Qian, Y.

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, and P. Kropelnicki, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).
[Crossref]

Qin, Y.

Q. Yang, B. Deng, H. Wang, and Y. Qin, “Experimental research on imaging of precession targets with THz radar,” Electron. Lett. 52(25), 2059–2061 (2016).
[Crossref]

Rao, L.

Ren, J.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref] [PubMed]

Richards, P. L.

Rodríguez-Fortuño, F. J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Saed, M.

S. Vegesna, Y. Zhu, A. Bernussi, and M. Saed, “Terahertz two-layer frequency selective surfaces with improved transmission characteristics,” IEEE Trans. Thz. Sci. Technol. 2(4), 441–448 (2012).
[Crossref]

Sensale-Rodriguez, B.

S. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, “Graphene-based tunable metamaterial terahertz filters,” Appl. Phys. Lett. 105(9), 093105 (2014).
[Crossref]

Shah, C. M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev 2(1), 011303 (2015).
[Crossref]

Sidorenko, S.

Silva, A. M. P. A.

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. P. A. Silva, “Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results,” Adv. Opt. Technol. 2012(7), 530512 (2012).

Son, J. H.

Sriram, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev 2(1), 011303 (2015).
[Crossref]

A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Trans. Thz. Sci. Technol. 5(5), 761–769 (2015).
[Crossref]

Suh, J. S.

Ulrich, R.

Vegesna, S.

S. Vegesna, Y. Zhu, A. Bernussi, and M. Saed, “Terahertz two-layer frequency selective surfaces with improved transmission characteristics,” IEEE Trans. Thz. Sci. Technol. 2(4), 441–448 (2012).
[Crossref]

Walia, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev 2(1), 011303 (2015).
[Crossref]

Wang, H.

Q. Yang, B. Deng, H. Wang, and Y. Qin, “Experimental research on imaging of precession targets with THz radar,” Electron. Lett. 52(25), 2059–2061 (2016).
[Crossref]

Ward, C. A.

Weiner, J.

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(7), 61310J (2006).

Withayachumnankul, W.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev 2(1), 011303 (2015).
[Crossref]

A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Trans. Thz. Sci. Technol. 5(5), 761–769 (2015).
[Crossref]

Xia, S.

Yang, D.

Yang, Q.

Q. Yang, B. Deng, H. Wang, and Y. Qin, “Experimental research on imaging of precession targets with THz radar,” Electron. Lett. 52(25), 2059–2061 (2016).
[Crossref]

Yang, S.

S. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, “Graphene-based tunable metamaterial terahertz filters,” Appl. Phys. Lett. 105(9), 093105 (2014).
[Crossref]

Yin, J. Y.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref] [PubMed]

York, R. A.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microw. Theory Tech. 48(4), 712–718 (2000).
[Crossref]

You, B.

Yu, J.

Yu, X.

Zhang, H. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref] [PubMed]

Zhang, L.

Zhu, Y.

S. Vegesna, Y. Zhu, A. Bernussi, and M. Saed, “Terahertz two-layer frequency selective surfaces with improved transmission characteristics,” IEEE Trans. Thz. Sci. Technol. 2(4), 441–448 (2012).
[Crossref]

Adv. Opt. Technol. (1)

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. P. A. Silva, “Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results,” Adv. Opt. Technol. 2012(7), 530512 (2012).

Appl. Opt. (6)

Appl. Phys. Lett. (2)

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, and P. Kropelnicki, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).
[Crossref]

S. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, “Graphene-based tunable metamaterial terahertz filters,” Appl. Phys. Lett. 105(9), 093105 (2014).
[Crossref]

Appl. Phys. Rev (1)

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev 2(1), 011303 (2015).
[Crossref]

Electron. Lett. (1)

Q. Yang, B. Deng, H. Wang, and Y. Qin, “Experimental research on imaging of precession targets with THz radar,” Electron. Lett. 52(25), 2059–2061 (2016).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microw. Theory Tech. 48(4), 712–718 (2000).
[Crossref]

IEEE Trans. Thz. Sci. Technol. (2)

S. Vegesna, Y. Zhu, A. Bernussi, and M. Saed, “Terahertz two-layer frequency selective surfaces with improved transmission characteristics,” IEEE Trans. Thz. Sci. Technol. 2(4), 441–448 (2012).
[Crossref]

A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Trans. Thz. Sci. Technol. 5(5), 761–769 (2015).
[Crossref]

Microw. Opt. Technol. Lett. (2)

Y. S. Im, H. K. Choi, and J. H. Park, “Design of double layer frequency selective surfaces with novel multiresonant elements for four-frequency bands,” Microw. Opt. Technol. Lett. 54(9), 2153–2157 (2012).
[Crossref]

D. Kim, S. Eo, S. Oh, and J. Jang, “Spurious resonance suppression for a THz single bandpass filter using lossy glass substrates,” Microw. Opt. Technol. Lett. 57(1), 58–60 (2015).
[Crossref]

Nat. Phys. (1)

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(7), 61310J (2006).

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (6)

Phys. Rev. B (2)

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[Crossref]

Sci. Rep. (1)

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the across unit; the parameters L, W, P and T represent the arm length, arm width, period and thickness of the cross structure, respectively; We use the periodic boundary conditions for X and Y directions, and the perfect matching layer along the Z direction.
Fig. 2
Fig. 2 Schematic diagram of the femtosecond laser micro-machining system
Fig. 3
Fig. 3 (a) The image of sample C; (b) An enlarged microscopic image of a local area. The structural parameter of sample C are L = 440 μm, W = 89 μm, P = 700 μm, and the patterned area size is 1.75×1.75 cm2.
Fig. 4
Fig. 4 (a), (b) and (c) THz spectra of three samples signals (red dot lines) and reference signal (black solid lines) measured using a THz time-domain spectroscopy system; (d), (e) and (f) Transmittance obtained by FDTD simulation (black solid lines) and THz measurements (red dot lines).
Fig. 5
Fig. 5 Schematic diagram of a double-layer metal across unit; the parameters L, W, P, T and D represent the arm length, arm width, period, thickness, and spacing of the cross structure, respectively. The origin of the coordinate system is at the center of one of the crosses.
Fig. 6
Fig. 6 (a), (b) and (c) Experimental results (red dot lines) and simulation results (black solid lines) of the transmittance for the double-layer filters with spacing of 90 μm, 220 μm, and 280 μm respectively; (d), (e) and (f) Experimental results of the transmittance for single-layer filters (black solid lines) and double-layer filters (red dot lines).
Fig. 7
Fig. 7 The transmittance contour as a function of changing spacing (50-1100 mm) and THz frequency (0.1-1.5 THz) for the double-layer filter. The vertical highlighted line is at 550 GHz, and the three horizontal highlighted lines are at 90 μm, 220 μm, and 280 μm, respectively.
Fig. 8
Fig. 8 The electric field distribution at f2(491G) (a) and f3(542G) (b), at XZ plane for a spacing of 220 μm.
Fig. 9
Fig. 9 The electric field distribution at f4(442G) (a), f5(546G) (b), and f6(660G), at XZ plane for a spacing of 280 μm.

Tables (1)

Tables Icon

Table 1 The performance of the three single-layer filters obtained by FDTD simulation (denoted by *) and THz measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ=1.8L1.35W+0.2P.

Metrics