Abstract

We propose to use adaptive bit loading based on time-domain hybrid QAM (TDHQ) to maximize the capacity of subcarrier-multiplexing (SCM) systems in meshed optical networks with cascaded reconfigurable optical add and drop multiplexers (ROADMs). Note that the capacity is defined as the achievable net bit rate at the soft-decision FEC threshold of BER = 2 × 10−2 in this work. The capacity improvement is first numerically and experimentally demonstrated in a 4-subcarrier SCM system with an aggregate symbol rate of 34.94 Gbaud. Compared with the conventional SCM system using uniform standard QAM, the proposed system can achieve an average capacity increase of 31.75% and 26.1% over various link conditions in simulations and experiments, respectively. Furthermore, we demonstrate that the proposed SCM system can better approach the channel capacity in the presence of narrow inline optical filtering. An average capacity improvement of 7.59% is also reported over all 17 ROADMs cases from 1 to 17 by simulations at OSNR = 21 dB, compared with its single carrier counterpart using TDHQ.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On the capacity improvement achieved by bandwidth-variable transceivers in meshed optical networks with cascaded ROADMs

Xingyu Zhou, Qunbi Zhuge, Meng Qiu, Meng Xiang, Fangyuan Zhang, Baojian Wu, Kun Qiu, and David V. Plant
Opt. Express 25(5) 4773-4782 (2017)

Low complexity digital backpropagation for high baud subcarrier-multiplexing systems

Fangyuan Zhang, Qunbi Zhuge, Meng Qiu, and David V. Plant
Opt. Express 24(15) 17027-17040 (2016)

Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems

Meng Qiu, Qunbi Zhuge, Mathieu Chagnon, Yuliang Gao, Xian Xu, Mohamed Morsy-Osman, and David V. Plant
Opt. Express 22(15) 18770-18777 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. B. Du and A. J. Lowery, “Optimizing the subcarrier granularity of coherent optical communications systems,” Opt. Express 19(9), 8079–8084 (2011).
    [Crossref] [PubMed]
  2. W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photonics J. 2(3), 276–283 (2010).
    [Crossref]
  3. M. Qiu, Q. Zhuge, M. Chagnon, Y. Gao, X. Xu, M. Morsy-Osman, and D. V. Plant, “Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems,” Opt. Express 22(15), 18770–18777 (2014).
    [Crossref] [PubMed]
  4. R. Dar and P. J. Winzer, “Digital Subcarrier Multiplexing in Optically Routed Networks,” in Proceedings of OFC (Los Angeles, California, 2017), paper Th3F.1.
    [Crossref]
  5. F. Guiomar, A. Carena, G. Bosco, A. Nespola, L. Bertignono, and P. Poggiolini, “Effectiveness of symbol-rate optimization with PM-16QAM subcarriers in WDM transmission,” in Proceedings of OFC (Los Angeles, California, 2017), paper W3J.3.
    [Crossref]
  6. A. Carbo, J. Renaudier, R. Rios-Müller, P. Tran, and G. Charlet, “Experimental Analysis of Non Linear Tolerance Dependency of Multicarrier Modulations versus Bandwidth Efficiency,” in Proceedings of ECOC (Valencia, Spain, 2015), paper Th.2.6.6.
    [Crossref]
  7. H. Nakashima, T. Tanimura, T. Oyama, Y. Akiyama, T. Hoshida, and J. C. Rasmussen, “Experimental investigation of nonlinear tolerance of subcarrier multiplexed signals with spectrum optimization,” in Proceedings of ECOC (Valencia, Spain, 2015), paper Mo.3.6.4.
    [Crossref]
  8. T. Oyama1, H. Nakashima, T. Hoshida, T. Tanimura1, Y. Akiyama, Z. Tao and J. C. Rasmussen “Complexity Reduction of Perturbation based Nonlinear Compensator by Subband Processing,” in Proceedings of OFC (Los Angeles, California, 2015), paper Th3D.7.
  9. R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
    [Crossref] [PubMed]
  10. F. Zhang, Q. Zhuge, M. Qiu, and D. V. Plant, “Low complexity digital backpropagation for high baud subcarrier-multiplexing systems,” Opt. Express 24(15), 17027–17040 (2016).
    [Crossref] [PubMed]
  11. J. M. Fabrega, M. S. Moreolo, L. Martín, A. Chiadò Piat, E. Riccardi, D. Roccato, N. Sambo, F. Cugini, L. Potì, S. Yan, E. Hugues-Salas, D. Simeonidou, M. Gunkel, R. Palmer, S. Fedderwitz, D. Rafique, T. Rahman, H. de Waardt, and A. Napoli, “On the Filter Narrowing Issues in Elastic Optical Networks,” J. Opt. Commun. Netw. 8(7), A23–A33 (2016).
    [Crossref]
  12. K. Shibahara, A. Masuda, H. Kishikawa, S. Kawai, and M. Fukutoku, “Filtering-tolerant transmission by the Walsh-Hadamard transform for super-channel beyond 100 Gb/s,” Opt. Express 23(10), 13245–13254 (2015).
    [Crossref] [PubMed]
  13. C. Zhu, B. Song, L. Zhuang, B. Corcoran, and A. J. Lowery, “Subband Pairwise Coding for Robust Nyquist-WDM Superchannel Transmission,” J. Lightwave Technol. 34(8), 1746–1753 (2016).
    [Crossref]
  14. T. Rahman, D. Rafique, B. Spinnler, A. Napoli, M. Bohn, A. M. J. Koonen1, C. M. Okonkwo1, and H. de Waardt, “Digital Subcarrier Multiplexed Hybrid QAM for Data-rate Flexibility and ROADM Filtering Tolerance,” in Proceedings of OFC (Anaheim, California, 2016), paper Tu3K.5.
  15. X. Zhou, L. E. Nelson, R. Isaac, P. D. Magill, B. Zhu, D. W. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50 GHz spaced,10×494.85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proceedings of OFC (Los Angeles, California, 2012), paper PDP5C.6.
  16. F. Buchali, W. Idler, L. Schmalen, and K. Schuh, “Performance and advantages of 100 Gb/s QPSK/8QAM hybrid modulation formats,” in Proceedings of OFC (Los Angeles, California, 2015), paper Th2A.16.
    [Crossref]
  17. X. Zhou, Q. Zhuge, M. Qiu, M. Xiang, F. Zhang, B. Wu, K. Qiu, and D. V. Plant, “On the capacity improvement achieved by bandwidth-variable transceivers in meshed optical networks with cascaded ROADMs,” Opt. Express 25(5), 4773–4782 (2017).
    [Crossref] [PubMed]
  18. W. Idler, F. Buchali, L. Schmalen, K. Schuh, and H. Buelow, “Hybrid Modulation Formats Outperforming 16QAM and 8QAM in Transmission Distance and Filtering with Cascaded WSS,” in Proceedings of OFC (Los Angeles, California, 2015), paper M3G.4.
  19. M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, Y. S. Mohammed, T.M. Sowailem, D. Liu, S. Fu, and D. V. Plant, “Filtering Tolerant Digital Subcarrier Multiplexing System with Flexible Bit and Power Loading,” in Proceedings of OFC (Los Angeles, California, 2017), paper W4A.7.
  20. C. Pulikkaseril, L. A. Stewart, M. A. Roelens, G. W. Baxter, S. Poole, and S. Frisken, “Spectral modeling of channel band shapes in wavelength selective switches,” Opt. Express 19(9), 8458–8470 (2011).
    [Crossref] [PubMed]
  21. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [Crossref]
  22. Q. Zhuge, M. Morsy-Osman, X. Xu, M. Chagnon, M. Qiu, and D. V. Plant, “Spectral efficiency-adaptive optical transmission using time domain hybrid QAM for agile optical networks,” J. Lightwave Technol. 31(15), 2621–2628 (2013).
    [Crossref]
  23. Q. Yang, W. Shieh, and Y. Ma, “Bit and Power Loading for Coherent Optical OFDM,” IEEE Photonics Technol. Lett. 20(15), 1305–1307 (2008).
    [Crossref]
  24. E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive Loading Algorithms for IMDD Optical OFDM PON Systems Using Directly Modulated Lasers,” J. Opt. Commun. Netw. 4(10), 769–778 (2012).
    [Crossref]
  25. D. Che and W. Shieh, “Entropy-Loading: Multi-Carrier Constellation-Shaping for Colored-SNR Optical Channels,” in Proceedings of OFC (Los Angeles, California, 2017), paper Th5B.4.
    [Crossref]
  26. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [Crossref] [PubMed]
  27. Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
    [Crossref]
  28. http://www.ciena.com/products/wavelogic/wavelogic-3/ .
  29. Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
    [Crossref]

2017 (1)

2016 (3)

2015 (2)

K. Shibahara, A. Masuda, H. Kishikawa, S. Kawai, and M. Fukutoku, “Filtering-tolerant transmission by the Walsh-Hadamard transform for super-channel beyond 100 Gb/s,” Opt. Express 23(10), 13245–13254 (2015).
[Crossref] [PubMed]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (2)

E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive Loading Algorithms for IMDD Optical OFDM PON Systems Using Directly Modulated Lasers,” J. Opt. Commun. Netw. 4(10), 769–778 (2012).
[Crossref]

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

2011 (2)

2010 (2)

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photonics J. 2(3), 276–283 (2010).
[Crossref]

2008 (2)

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
[Crossref] [PubMed]

Q. Yang, W. Shieh, and Y. Ma, “Bit and Power Loading for Coherent Optical OFDM,” IEEE Photonics Technol. Lett. 20(15), 1305–1307 (2008).
[Crossref]

2003 (1)

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

Alvarado, A.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

Barros, D. J. F.

Baxter, G. W.

Bayvel, P.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

Chagnon, M.

Chiadò Piat, A.

Ciblat, P.

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

Corcoran, B.

Cugini, F.

de Waardt, H.

Du, L. B.

Fabrega, J. M.

Fedderwitz, S.

Frisken, S.

Fukutoku, M.

K. Shibahara, A. Masuda, H. Kishikawa, S. Kawai, and M. Fukutoku, “Filtering-tolerant transmission by the Walsh-Hadamard transform for super-channel beyond 100 Gb/s,” Opt. Express 23(10), 13245–13254 (2015).
[Crossref] [PubMed]

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

Galdino, L.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

Gao, Y.

Giacoumidis, E.

Gunkel, M.

Hugues-Salas, E.

Ip, E.

Kahn, J. M.

Kataoka, T.

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

Kavatzikidis, A.

Kawai, S.

Kawai, T.

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

Killey, R. I.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

Kishikawa, H.

Komukai, T.

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

Lau, A. P. T.

Lowery, A. J.

Ma, Y.

Q. Yang, W. Shieh, and Y. Ma, “Bit and Power Loading for Coherent Optical OFDM,” IEEE Photonics Technol. Lett. 20(15), 1305–1307 (2008).
[Crossref]

Maher, R.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

Martín, L.

Masuda, A.

Moreolo, M. S.

Morsy-Osman, M.

Napoli, A.

Palmer, R.

Plant, D. V.

Poole, S.

Potì, L.

Pulikkaseril, C.

Qiu, K.

Qiu, M.

Rafique, D.

Rahman, T.

Riccardi, E.

Roccato, D.

Roelens, M. A.

Sakamaki, Y.

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

Sambo, N.

Sato, M.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

Savory, S. J.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

Serpedin, E.

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

Shi, K.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

Shibahara, K.

Shieh, W.

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photonics J. 2(3), 276–283 (2010).
[Crossref]

Q. Yang, W. Shieh, and Y. Ma, “Bit and Power Loading for Coherent Optical OFDM,” IEEE Photonics Technol. Lett. 20(15), 1305–1307 (2008).
[Crossref]

Simeonidou, D.

Song, B.

Stewart, L. A.

Tang, J. M.

Tang, Y.

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photonics J. 2(3), 276–283 (2010).
[Crossref]

Thomsen, B. C.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

Tomkos, I.

Tsokanos, A.

Wang, Y.

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

Wu, B.

Xiang, M.

Xu, T.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

Xu, X.

Yan, S.

Yang, Q.

Q. Yang, W. Shieh, and Y. Ma, “Bit and Power Loading for Coherent Optical OFDM,” IEEE Photonics Technol. Lett. 20(15), 1305–1307 (2008).
[Crossref]

Zhang, F.

Zhou, X.

Zhu, C.

Zhuang, L.

Zhuge, Q.

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

IEEE Photonics J. (1)

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photonics J. 2(3), 276–283 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Q. Yang, W. Shieh, and Y. Ma, “Bit and Power Loading for Coherent Optical OFDM,” IEEE Photonics Technol. Lett. 20(15), 1305–1307 (2008).
[Crossref]

IEEE Trans. Commun. (1)

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

IEICE Commun. Express (1)

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (2)

Opt. Express (7)

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
[Crossref] [PubMed]

K. Shibahara, A. Masuda, H. Kishikawa, S. Kawai, and M. Fukutoku, “Filtering-tolerant transmission by the Walsh-Hadamard transform for super-channel beyond 100 Gb/s,” Opt. Express 23(10), 13245–13254 (2015).
[Crossref] [PubMed]

L. B. Du and A. J. Lowery, “Optimizing the subcarrier granularity of coherent optical communications systems,” Opt. Express 19(9), 8079–8084 (2011).
[Crossref] [PubMed]

M. Qiu, Q. Zhuge, M. Chagnon, Y. Gao, X. Xu, M. Morsy-Osman, and D. V. Plant, “Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems,” Opt. Express 22(15), 18770–18777 (2014).
[Crossref] [PubMed]

X. Zhou, Q. Zhuge, M. Qiu, M. Xiang, F. Zhang, B. Wu, K. Qiu, and D. V. Plant, “On the capacity improvement achieved by bandwidth-variable transceivers in meshed optical networks with cascaded ROADMs,” Opt. Express 25(5), 4773–4782 (2017).
[Crossref] [PubMed]

F. Zhang, Q. Zhuge, M. Qiu, and D. V. Plant, “Low complexity digital backpropagation for high baud subcarrier-multiplexing systems,” Opt. Express 24(15), 17027–17040 (2016).
[Crossref] [PubMed]

C. Pulikkaseril, L. A. Stewart, M. A. Roelens, G. W. Baxter, S. Poole, and S. Frisken, “Spectral modeling of channel band shapes in wavelength selective switches,” Opt. Express 19(9), 8458–8470 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5(1), 8214 (2015).
[Crossref] [PubMed]

Other (12)

R. Dar and P. J. Winzer, “Digital Subcarrier Multiplexing in Optically Routed Networks,” in Proceedings of OFC (Los Angeles, California, 2017), paper Th3F.1.
[Crossref]

F. Guiomar, A. Carena, G. Bosco, A. Nespola, L. Bertignono, and P. Poggiolini, “Effectiveness of symbol-rate optimization with PM-16QAM subcarriers in WDM transmission,” in Proceedings of OFC (Los Angeles, California, 2017), paper W3J.3.
[Crossref]

A. Carbo, J. Renaudier, R. Rios-Müller, P. Tran, and G. Charlet, “Experimental Analysis of Non Linear Tolerance Dependency of Multicarrier Modulations versus Bandwidth Efficiency,” in Proceedings of ECOC (Valencia, Spain, 2015), paper Th.2.6.6.
[Crossref]

H. Nakashima, T. Tanimura, T. Oyama, Y. Akiyama, T. Hoshida, and J. C. Rasmussen, “Experimental investigation of nonlinear tolerance of subcarrier multiplexed signals with spectrum optimization,” in Proceedings of ECOC (Valencia, Spain, 2015), paper Mo.3.6.4.
[Crossref]

T. Oyama1, H. Nakashima, T. Hoshida, T. Tanimura1, Y. Akiyama, Z. Tao and J. C. Rasmussen “Complexity Reduction of Perturbation based Nonlinear Compensator by Subband Processing,” in Proceedings of OFC (Los Angeles, California, 2015), paper Th3D.7.

W. Idler, F. Buchali, L. Schmalen, K. Schuh, and H. Buelow, “Hybrid Modulation Formats Outperforming 16QAM and 8QAM in Transmission Distance and Filtering with Cascaded WSS,” in Proceedings of OFC (Los Angeles, California, 2015), paper M3G.4.

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, Y. S. Mohammed, T.M. Sowailem, D. Liu, S. Fu, and D. V. Plant, “Filtering Tolerant Digital Subcarrier Multiplexing System with Flexible Bit and Power Loading,” in Proceedings of OFC (Los Angeles, California, 2017), paper W4A.7.

T. Rahman, D. Rafique, B. Spinnler, A. Napoli, M. Bohn, A. M. J. Koonen1, C. M. Okonkwo1, and H. de Waardt, “Digital Subcarrier Multiplexed Hybrid QAM for Data-rate Flexibility and ROADM Filtering Tolerance,” in Proceedings of OFC (Anaheim, California, 2016), paper Tu3K.5.

X. Zhou, L. E. Nelson, R. Isaac, P. D. Magill, B. Zhu, D. W. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50 GHz spaced,10×494.85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proceedings of OFC (Los Angeles, California, 2012), paper PDP5C.6.

F. Buchali, W. Idler, L. Schmalen, and K. Schuh, “Performance and advantages of 100 Gb/s QPSK/8QAM hybrid modulation formats,” in Proceedings of OFC (Los Angeles, California, 2015), paper Th2A.16.
[Crossref]

http://www.ciena.com/products/wavelogic/wavelogic-3/ .

D. Che and W. Shieh, “Entropy-Loading: Multi-Carrier Constellation-Shaping for Colored-SNR Optical Channels,” in Proceedings of OFC (Los Angeles, California, 2017), paper Th5B.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Simulation setup and ROADM frequency response.
Fig. 2
Fig. 2 (a) Required OSNR versus number of cascaded ROADMs. (b) Received SNR versus number of cascaded ROADMs for each subcarrier in an 8-subcarrier system.
Fig. 3
Fig. 3 (a) Adaptive bit loading based on TDHQ in SCM systems. (b) TDHQ frame structure under investigation. (c) Required SNRs for various TDHQ modulation formats.
Fig. 4
Fig. 4 (a) Achievable capacity versus OSNRs with 12 ROADMs. (b) Achievable capacity versus number of cascaded ROADMs at OSNR = 21 dB.
Fig. 5
Fig. 5 (a) Achievable capacity versus the frequency mismatch given OSNR = 21 dB and 6 cascaded ROADMs. (b) Achievable capacity versus number of cascaded ROADMs given OSNR = 21 dB and the frequency mismatch = 2.5 GHz.
Fig. 6
Fig. 6 Experimental setup. VOA: variable optical attenuator; SW: switch;
Fig. 7
Fig. 7 (a) Received SNR of subcarriers after transmitting 7 loops. (b) Achievable capacity versus WS 3-dB bandwidth after transmitting 7 loops.
Fig. 8
Fig. 8 Achievable capacity versus transmission distance with a fixed WS 3-dB bandwidth of 40 GHz.
Fig. 9
Fig. 9 (a) Achievable capacity versus OSNRs. (b) Achievable capacity versus the number of cascaded ROADMs.
Fig. 10
Fig. 10 Bits-per-symbol on each subcarrier given (a) 10 ROADMs; (b) 16 ROADMs. OSNR = 21 dB, R S : symbol rate.

Tables (2)

Tables Icon

Table 1 Simulated average capacity improvement over various ROADM cases compared with the SCM scheme using uniform standard QAM.

Tables Icon

Table 2 Simulated average capacity improvement over various ROADM cases, compared with the single carrier system. OSNR = 21 dB.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( f ) = 1 2 σ 2 π { e r f ( B 0 / 2 f 2 σ ) e r f ( B 0 / 2 f 2 σ ) } , σ = B O T F 2 2 l n 2
B E R = 1 B p S 1 + B p S 2 + + B p S M [ B p S 1 ξ ( S N R 1 , B p S 1 ) + B p S 2 ξ ( S N R 2 , B p S 2 ) + + B p S M ξ ( S N R M , B p S M ) ]
ξ ( S N R , B p S ) = 1 ( 1 F R ) B p S H + F R B p S L [ ( 1 F R ) B p S H Φ H ( S N R F R P R + ( 1 F R ) ) + F R B p S L Φ L ( S N R F R + ( 1 F R ) / P R ) ]

Metrics