Abstract

Metasurfaces have attracted significant attention due to their novel designs for flat optics. However, the approach usually used to engineer metasurface devices assumes that neighboring elements are identical, by extracting the phase information from simulations with periodic boundaries, or that near-field coupling between particles is negligible, by extracting the phase from single particle simulations. This is not the case most of the time and the approach thus prevents the optimization of devices that operate away from their optimum. Here, we propose a versatile numerical method to obtain the phase of each element within the metasurface (meta-atoms) while accounting for near-field coupling. Quantifying the phase error of each element of the metasurfaces with the proposed local phase method paves the way to the design of highly efficient metasurface devices including, but not limited to, deflectors, high numerical aperture metasurface concentrators, lenses, cloaks, and modulators.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computational inverse design for cascaded systems of metasurface optics

Adam S. Backer
Opt. Express 27(21) 30308-30331 (2019)

Fast optimization method of designing a wideband metasurface without using the Pancharatnam–Berry phase

Sai Sui, Hua Ma, Yueguang Lv, Jiafu Wang, Zhiqiang Li, Jieqiu Zhang, Zhuo Xu, and Shaobo Qu
Opt. Express 26(2) 1443-1451 (2018)

Genetically optimized all-dielectric metasurfaces

Victor Egorov, Michal Eitan, and Jacob Scheuer
Opt. Express 25(3) 2583-2593 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [PubMed]
  2. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
  3. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
  4. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [PubMed]
  5. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
    [PubMed]
  6. P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11, 1600295 (2017).
  7. Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell Emission with Babinet Metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
    [PubMed]
  8. J. He, Z. Xie, S. Wang, X. Wang, Q. Kan, and Y. Zhang, “Terahertz polarization modulator based on metasurface,” J. Opt. 17, 105107 (2015).
  9. E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).
  10. L. Y. Hsu, T. Lepetit, and B. Kanté, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
  11. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [PubMed]
  12. L. Hsu, M. Dupré, A. Ndao, and B. Kanté, “From parabolic-trough to metasurface-concentrator: assessing focusing in the wave-optics limit,” Opt. Lett. 42(8), 1520–1523 (2017).
    [PubMed]
  13. C. Simovski, D. Morits, P. Voroshilov, M. Guzhva, P. Belov, and Y. Kivshar, “Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells,” Opt. Express 21(Suppl 4), A714–A725 (2013).
    [PubMed]
  14. R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
    [PubMed]
  15. J.-H. Park, A. Kodigala, A. Ndao, and B. Kanté, “Hybridized metamaterial platform for nano-scale sensing,” Opt. Express 25(13), 15590–15598 (2017).
    [PubMed]
  16. S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6(1), 22428 (2016).
    [PubMed]
  17. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
  18. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [PubMed]
  19. C. Balanis, Antenna Theory, Analysis, and Design, 3rd ed. (Wiley, 2005).
  20. D. S. Boyuk, L.-W. Chou, and M. A. Filler, “Strong near-field coupling of plasmonic resonators embedded in Si nanowires,” ACS Photonics 3, 184–189 (2016).
  21. A. Ndao, A. Belkhir, R. Salut, and F. I. Baida, “Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode,” Appl. Phys. Lett. 103, 211901 (2013).
  22. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).
  23. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
    [PubMed]
  24. T. Lepetit and B. Kanté, “Cramér-Rao bounds for determination of electric and magnetic susceptibilities in metasurfaces,” Opt. Express 23(3), 3460–3471 (2015).
    [PubMed]

2017 (6)

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11, 1600295 (2017).

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[PubMed]

J.-H. Park, A. Kodigala, A. Ndao, and B. Kanté, “Hybridized metamaterial platform for nano-scale sensing,” Opt. Express 25(13), 15590–15598 (2017).
[PubMed]

L. Hsu, M. Dupré, A. Ndao, and B. Kanté, “From parabolic-trough to metasurface-concentrator: assessing focusing in the wave-optics limit,” Opt. Lett. 42(8), 1520–1523 (2017).
[PubMed]

2016 (4)

D. S. Boyuk, L.-W. Chou, and M. A. Filler, “Strong near-field coupling of plasmonic resonators embedded in Si nanowires,” ACS Photonics 3, 184–189 (2016).

S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6(1), 22428 (2016).
[PubMed]

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell Emission with Babinet Metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[PubMed]

2015 (6)

T. Lepetit and B. Kanté, “Cramér-Rao bounds for determination of electric and magnetic susceptibilities in metasurfaces,” Opt. Express 23(3), 3460–3471 (2015).
[PubMed]

J. He, Z. Xie, S. Wang, X. Wang, Q. Kan, and Y. Zhang, “Terahertz polarization modulator based on metasurface,” J. Opt. 17, 105107 (2015).

L. Y. Hsu, T. Lepetit, and B. Kanté, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[PubMed]

2013 (3)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

A. Ndao, A. Belkhir, R. Salut, and F. I. Baida, “Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode,” Appl. Phys. Lett. 103, 211901 (2013).

C. Simovski, D. Morits, P. Voroshilov, M. Guzhva, P. Belov, and Y. Kivshar, “Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells,” Opt. Express 21(Suppl 4), A714–A725 (2013).
[PubMed]

2012 (1)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

2011 (2)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

1998 (1)

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).

Aieta, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Alù, A.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[PubMed]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Baida, F. I.

A. Ndao, A. Belkhir, R. Salut, and F. I. Baida, “Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode,” Appl. Phys. Lett. 103, 211901 (2013).

Belkhir, A.

A. Ndao, A. Belkhir, R. Salut, and F. I. Baida, “Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode,” Appl. Phys. Lett. 103, 211901 (2013).

Belov, P.

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[PubMed]

C. Simovski, D. Morits, P. Voroshilov, M. Guzhva, P. Belov, and Y. Kivshar, “Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells,” Opt. Express 21(Suppl 4), A714–A725 (2013).
[PubMed]

Boyuk, D. S.

D. S. Boyuk, L.-W. Chou, and M. A. Filler, “Strong near-field coupling of plasmonic resonators embedded in Si nanowires,” ACS Photonics 3, 184–189 (2016).

Brongersma, M. L.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).

Capasso, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Chavel, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11, 1600295 (2017).

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Chen, H.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell Emission with Babinet Metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[PubMed]

Chen, M.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell Emission with Babinet Metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[PubMed]

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Chen, W. T.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[PubMed]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Chen, Z.

S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6(1), 22428 (2016).
[PubMed]

Chou, L.-W.

D. S. Boyuk, L.-W. Chou, and M. A. Filler, “Strong near-field coupling of plasmonic resonators embedded in Si nanowires,” ACS Photonics 3, 184–189 (2016).

Devlin, R.

Devlin, R. C.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[PubMed]

Dupré, M.

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[PubMed]

Filler, M. A.

D. S. Boyuk, L.-W. Chou, and M. A. Filler, “Strong near-field coupling of plasmonic resonators embedded in Si nanowires,” ACS Photonics 3, 184–189 (2016).

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Genevet, P.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Guzhva, M.

Hasman, E.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).

He, J.

J. He, Z. Xie, S. Wang, X. Wang, Q. Kan, and Y. Zhang, “Terahertz polarization modulator based on metasurface,” J. Opt. 17, 105107 (2015).

He, Z.

S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6(1), 22428 (2016).
[PubMed]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[PubMed]

Hsu, L.

Hsu, L. Y.

L. Y. Hsu, T. Lepetit, and B. Kanté, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

i Qiu, C.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Kan, Q.

J. He, Z. Xie, S. Wang, X. Wang, Q. Kan, and Y. Zhang, “Terahertz polarization modulator based on metasurface,” J. Opt. 17, 105107 (2015).

Kanté, B.

Kats, M. A.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Khorasaninejad, M.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[PubMed]

Kivshar, Y.

Kleiner, V.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).

Kodigala, A.

Lagarias, J. C.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).

Lalanne, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11, 1600295 (2017).

Lepetit, T.

L. Y. Hsu, T. Lepetit, and B. Kanté, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).

T. Lepetit and B. Kanté, “Cramér-Rao bounds for determination of electric and magnetic susceptibilities in metasurfaces,” Opt. Express 23(3), 3460–3471 (2015).
[PubMed]

Li, B.

S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6(1), 22428 (2016).
[PubMed]

Li, H.

S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6(1), 22428 (2016).
[PubMed]

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Liu, Y.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell Emission with Babinet Metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[PubMed]

Maguid, E.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).

Mishra, I.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[PubMed]

Morits, D.

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Ndao, A.

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Oh, J.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[PubMed]

Park, J.-H.

Peng, Y.

S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6(1), 22428 (2016).
[PubMed]

Reeds, J. A.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).

Roques-Carmes, C.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[PubMed]

Salut, R.

A. Ndao, A. Belkhir, R. Salut, and F. I. Baida, “Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode,” Appl. Phys. Lett. 103, 211901 (2013).

Schmidt, R.

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[PubMed]

Simovski, C.

Slobozhanyuk, A.

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[PubMed]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Voroshilov, P.

Wang, S.

J. He, Z. Xie, S. Wang, X. Wang, Q. Kan, and Y. Zhang, “Terahertz polarization modulator based on metasurface,” J. Opt. 17, 105107 (2015).

Wang, X.

J. He, Z. Xie, S. Wang, X. Wang, Q. Kan, and Y. Zhang, “Terahertz polarization modulator based on metasurface,” J. Opt. 17, 105107 (2015).

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Wang, Z.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell Emission with Babinet Metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[PubMed]

Webb, A.

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[PubMed]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Wright, M. H.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).

Wright, P. E.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).

Xie, Z.

J. He, Z. Xie, S. Wang, X. Wang, Q. Kan, and Y. Zhang, “Terahertz polarization modulator based on metasurface,” J. Opt. 17, 105107 (2015).

Xu, H.

S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6(1), 22428 (2016).
[PubMed]

Yannai, M.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).

Yao, K.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell Emission with Babinet Metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[PubMed]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Yulevich, I.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Zhan, S.

S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6(1), 22428 (2016).
[PubMed]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Zhang, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Zhang, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Zhang, Y.

J. He, Z. Xie, S. Wang, X. Wang, Q. Kan, and Y. Zhang, “Terahertz polarization modulator based on metasurface,” J. Opt. 17, 105107 (2015).

Zhao, Y.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).

Zhu, A. Y.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[PubMed]

ACS Photonics (1)

D. S. Boyuk, L.-W. Chou, and M. A. Filler, “Strong near-field coupling of plasmonic resonators embedded in Si nanowires,” ACS Photonics 3, 184–189 (2016).

Appl. Phys. Lett. (1)

A. Ndao, A. Belkhir, R. Salut, and F. I. Baida, “Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode,” Appl. Phys. Lett. 103, 211901 (2013).

J. Opt. (1)

J. He, Z. Xie, S. Wang, X. Wang, Q. Kan, and Y. Zhang, “Terahertz polarization modulator based on metasurface,” J. Opt. 17, 105107 (2015).

Laser Photonics Rev. (1)

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11, 1600295 (2017).

Light Sci. Appl. (1)

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).

Nano Lett. (2)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[PubMed]

Nat. Commun. (1)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. i Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[PubMed]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Phys. Rev. B (1)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).

Phys. Rev. Lett. (1)

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell Emission with Babinet Metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[PubMed]

Prog. Electromagnetics Res. (1)

L. Y. Hsu, T. Lepetit, and B. Kanté, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).

Sci. Rep. (2)

S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6(1), 22428 (2016).
[PubMed]

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[PubMed]

Science (3)

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

SIAM J. Optim. (1)

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).

Other (1)

C. Balanis, Antenna Theory, Analysis, and Design, 3rd ed. (Wiley, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic of the local phase method (LPM). The deflector super-cell is made of 9 different elements. (a) Super-cell illuminated by a plane wave coming from the left (top z plane) that interacts with the TiO2 dielectric resonator (in brown) with a refractive index of 2.52 and is reflected by a metallic ground plane (grey-bold). The green-blue color represents the SiO2 spacer. (b) Schematic of the new field source. The green rhombus represents the probe.
Fig. 2
Fig. 2 Dimensions of (a) the rectangular elements. (b) the rectangular elements with covered layer. (c) the parallelepiped elements. Phase-shift obtained with the UCM with (d) the rectangular elements, (e) the rectangular elements with covered layer and (f) the parallelepiped elements.
Fig. 3
Fig. 3 Designing metasurfaces with rectangular elements. (a) Dimensions for the UCM and LPM metasurface elements. (b) Radar cross-section of the UCM and LPM metasurfaces. (c) Phase difference between two adjacent elements for two metasurfaces. (d) Phase error for the UCM and LPM metasurfaces.
Fig. 4
Fig. 4 Designing metasurfaces with rectangular elements embedded in a SiO2 layer. (a) Dimensions for the UCM and LPM metasurface elements. (b) Radar cross-section of the UCM and LPM metasurfaces. (c) Phase difference between two adjacent elements for two metasurfaces. (d) Phase error for the UCM and LPM metasurfaces.
Fig. 5
Fig. 5 Designing metasurfaces with slanted parallelepiped elements. (a) Dimensions for the UCM and LPM metasurface elements. (b) Radar cross-section of the UCM and LPM metasurfaces. (c) Phase difference between two adjacent elements for two metasurfaces. (d) Phase error for the UCM and LPM metasurfaces.
Fig. 6
Fig. 6 (a) The schematic of the concentrator. (b) Dimensions for unit cell method and LPM (c) Phase difference between two adjacent elements for the two methods. (d) Phase error for the two methods.
Fig. 7
Fig. 7 Real part of the reflected electric field for (a) the UCM, and (b) for the LPM. The black rectangular boxes represent the index position of the first 11 elements (from 0 to 10)
Fig. 8
Fig. 8 Total power density plot for (a) the UCM, and (b) for the LPM. The LPM increase the power at the spot.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J s = n × H
M s = n × E

Metrics