Abstract

Deliberate control of thermal emission properties using nanophotonics has improved a number of applications including thermophotovoltaics (TPV), radiative cooling and infrared spectroscopy. In this work, we study the effect of simultaneous control of angular and spectral properties of thermal emitters on the efficiencies of TPV systems. While spectral selectivity reduces sub-bandgap losses, angular selectivity is expected to enhance view factors at larger separation distances and hence to provide flexibilities in cooling the photovoltaic converter. We propose a design of an angular and spectral selective thermal emitter based on waveguide perfect absorption phenomena in epsilon-near-zero thin-films. Aluminum-doped Zinc-Oxide is used as an epsilon-near-zero material with a cross-over frequency in the near-infrared. A high contrast grating is designed to restrict the emission in a range of angles around the normal direction, while an integrated filter ensures spectral selectivity to reduce sub-bandgap losses. Theoretical analysis shows an expected relative enhancement of the TPV system efficiency of at least 32% using selective emitters with ideal angular and spectral selectivity at large separation distances compared to a blackbody. This enhancement factor, however, reduces to 3.9% with non-ideal selective emitters. This big reduction of the efficiency is attributed to sub-bandgap losses, off-angular losses and high-temperature dependence of optical constants.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter

David N. Woolf, Emil A. Kadlec, Don Bethke, Albert D. Grine, John J. Nogan, Jeffrey G. Cederberg, D. Bruce Burckel, Ting Shan Luk, Eric A. Shaner, and Joel M. Hensley
Optica 5(2) 213-218 (2018)

High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics

Sean Molesky, Christopher J. Dewalt, and Zubin Jacob
Opt. Express 21(S1) A96-A110 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  2. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  3. C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and Selective Mid-Infrared Thermal Emitters for Sensing Applications,” in Advanced Photonics 2015 (OSA, 2015), p. SeW2B.2-SeW2B.2.
  4. Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
    [Crossref]
  5. B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
    [Crossref]
  6. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, I. Celanovic, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
    [Crossref] [PubMed]
  7. M. F. Modest, Radiative Heat Transfer (Academic, 2013).
  8. E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 3307–3316 (2016).
  9. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
    [Crossref] [PubMed]
  10. W. M. Yang, S. K. Chou, C. Shu, H. Xue, and Z. W. Li, “Development of a prototype micro-thermophotovoltaic power generator,” J. Phys. Appl. Phys. 37(7), 1017–1020 (2004).
    [Crossref]
  11. W. M. Yang, S. K. Chou, J. F. Pan, J. Li, and X. Zhao, “Comparison of cylindrical and modular micro combustor radiators for micro-TPV system application,” J. Micromech. Microeng. 20(8), 85003 (2010).
    [Crossref]
  12. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
    [Crossref]
  13. L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
    [Crossref]
  14. Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).
  15. X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling,” IEEE J. Photovolt. 7(2), 566–574 (2017).
    [Crossref]
  16. H. Chung, Z. Zhou, and P. Bermel, “Collimated thermal radiation transfer via half Maxwell’s fish-eye lens for thermophotovoltaics,” Appl. Phys. Lett. 110(20), 201111 (2017).
    [Crossref]
  17. D. L. D. Chubb, A. T. A. Pal, M. M. O. Patton, and P. P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
    [Crossref]
  18. G. E. Guazzoni, “High-Temperature Spectral Emittance of Oxides of Erbium, Samarium, Neodymium and Ytterbium,” Appl. Spectrosc. 26(1), 60–65 (1972).
    [Crossref]
  19. E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
    [Crossref]
  20. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
    [Crossref] [PubMed]
  21. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref] [PubMed]
  22. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
    [Crossref] [PubMed]
  23. G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
    [Crossref]
  24. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
    [Crossref]
  25. D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
    [Crossref]
  26. E. Sakr and P. Bermel, “Angle-Selective Reflective Filters for Exclusion of Background Thermal Emission,” Phys. Rev. Appl. 7(4), 044020 (2017).
    [Crossref]
  27. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  28. J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
    [Crossref]
  29. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
    [Crossref] [PubMed]
  30. A. M. Mahmoud and N. Engheta, “Wave–matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
  31. V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
    [Crossref] [PubMed]
  32. S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
    [Crossref] [PubMed]
  33. S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B – Condens. Matter Mater. Phys. 91(12), 1–5 (2015).
    [Crossref]
  34. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090 (2011).
    [Crossref]
  35. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [Crossref]
  36. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref] [PubMed]
  37. J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
    [Crossref] [PubMed]
  38. S. Vassant, I. Moldovan Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Electrical modulation of emissivity,” Appl. Phys. Lett. 102(8), 1–4 (2013).
    [Crossref]
  39. V. W. Brar, M. C. Sherrott, L. Sweatlock, M. S. Jang, L. Kim, M. Choi, and H. Atwater, “Electronic modulation of infrared emissivity in graphene plasmonic resonators,” Nat. Commun. 6, 1–7 (2015).
  40. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
    [Crossref] [PubMed]
  41. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
    [Crossref] [PubMed]
  42. E. Sakr and P. Bermel, “Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures,” in (2017), Vol. 10099, p. 100990A–100990A–8.
  43. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
    [Crossref] [PubMed]
  44. F. A. F. and E. M. J. Rivera, “Plasmonics - Principles and Applications,” in K. Y. Kim, ed. (InTech, 2012).
  45. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [Crossref]
  46. C. Kittel, Introduction to Solid State Physics (Wiley, 2005).
  47. R. A. Ferrell, “Predicted Radiation of Plasma Oscillations in Metal Films,” Phys. Rev. 111(5), 1214–1222 (1958).
    [Crossref]
  48. D. W. Berreman, “Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films,” Phys. Rev. 130(6), 2193–2198 (1963).
    [Crossref]
  49. W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
    [Crossref]
  50. T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
    [Crossref]
  51. S. E. Han, “Theory of thermal emission from periodic structures,” Phys. Rev. B 80(15), 155108 (2009).
    [Crossref]
  52. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
    [Crossref]
  53. P. Bermel, W. Chan, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” in TPV9:Ninth World Conference on Thermophotovoltaic Generation of Electricity (2010).
    [Crossref]
  54. M. A. Green, “Solar cell fill factors: general graph and empirical expressions,” Solid-State Electron. 24(8), 788–789 (1981).
    [Crossref]
  55. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  56. M. Garín, D. Hernández, T. Trifonov, and R. Alcubilla, “Three-dimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 134, 22–28 (2015).
    [Crossref]
  57. L. H. Sperling, Introduction to Physical Polymer Science (John Wiley & Sons, 2005).
  58. L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6, 025123 (2016).
  59. W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34(5), 1369–1373 (1995).
    [Crossref]
  60. P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
    [Crossref]
  61. H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
    [Crossref]
  62. K. Ujihara, “Reflectivity of Metals at High Temperatures,” J. Appl. Phys. 43(5), 2376–2383 (1972).
    [Crossref]

2017 (3)

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling,” IEEE J. Photovolt. 7(2), 566–574 (2017).
[Crossref]

H. Chung, Z. Zhou, and P. Bermel, “Collimated thermal radiation transfer via half Maxwell’s fish-eye lens for thermophotovoltaics,” Appl. Phys. Lett. 110(20), 201111 (2017).
[Crossref]

E. Sakr and P. Bermel, “Angle-Selective Reflective Filters for Exclusion of Background Thermal Emission,” Phys. Rev. Appl. 7(4), 044020 (2017).
[Crossref]

2016 (6)

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 3307–3316 (2016).

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6, 025123 (2016).

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

2015 (6)

V. W. Brar, M. C. Sherrott, L. Sweatlock, M. S. Jang, L. Kim, M. Choi, and H. Atwater, “Electronic modulation of infrared emissivity in graphene plasmonic resonators,” Nat. Commun. 6, 1–7 (2015).

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

M. Garín, D. Hernández, T. Trifonov, and R. Alcubilla, “Three-dimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 134, 22–28 (2015).
[Crossref]

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B – Condens. Matter Mater. Phys. 91(12), 1–5 (2015).
[Crossref]

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

2014 (6)

A. M. Mahmoud and N. Engheta, “Wave–matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

2013 (7)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

S. Vassant, I. Moldovan Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Electrical modulation of emissivity,” Appl. Phys. Lett. 102(8), 1–4 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

2012 (4)

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

2011 (1)

2010 (4)

2009 (2)

S. E. Han, “Theory of thermal emission from periodic structures,” Phys. Rev. B 80(15), 155108 (2009).
[Crossref]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

2008 (2)

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

2007 (1)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

2005 (1)

2004 (1)

W. M. Yang, S. K. Chou, C. Shu, H. Xue, and Z. W. Li, “Development of a prototype micro-thermophotovoltaic power generator,” J. Phys. Appl. Phys. 37(7), 1017–1020 (2004).
[Crossref]

2003 (1)

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[Crossref]

2002 (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

1999 (1)

D. L. D. Chubb, A. T. A. Pal, M. M. O. Patton, and P. P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

1998 (1)

1995 (1)

W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34(5), 1369–1373 (1995).
[Crossref]

1993 (1)

P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
[Crossref]

1981 (1)

M. A. Green, “Solar cell fill factors: general graph and empirical expressions,” Solid-State Electron. 24(8), 788–789 (1981).
[Crossref]

1972 (2)

1963 (1)

D. W. Berreman, “Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

1958 (1)

R. A. Ferrell, “Predicted Radiation of Plasma Oscillations in Metal Films,” Phys. Rev. 111(5), 1214–1222 (1958).
[Crossref]

Abelson, J. R.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Alam, M. A.

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling,” IEEE J. Photovolt. 7(2), 566–574 (2017).
[Crossref]

Alcubilla, R.

M. Garín, D. Hernández, T. Trifonov, and R. Alcubilla, “Three-dimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 134, 22–28 (2015).
[Crossref]

Alù, A.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Araghchini, M.

Arnold, C.

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Atkinson, J.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Atwater, H.

V. W. Brar, M. C. Sherrott, L. Sweatlock, M. S. Jang, L. Kim, M. Choi, and H. Atwater, “Electronic modulation of infrared emissivity in graphene plasmonic resonators,” Nat. Commun. 6, 1–7 (2015).

Atwater, H. A.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Avery, J. E.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[Crossref]

Babicheva, V. E.

Bardou, N.

Benisty, H.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Bermel, P.

E. Sakr and P. Bermel, “Angle-Selective Reflective Filters for Exclusion of Background Thermal Emission,” Phys. Rev. Appl. 7(4), 044020 (2017).
[Crossref]

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling,” IEEE J. Photovolt. 7(2), 566–574 (2017).
[Crossref]

H. Chung, Z. Zhou, and P. Bermel, “Collimated thermal radiation transfer via half Maxwell’s fish-eye lens for thermophotovoltaics,” Appl. Phys. Lett. 110(20), 201111 (2017).
[Crossref]

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 3307–3316 (2016).

E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, I. Celanovic, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

P. Bermel, W. Chan, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” in TPV9:Ninth World Conference on Thermophotovoltaic Generation of Electricity (2010).
[Crossref]

Berreman, D. W.

D. W. Berreman, “Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

Bezares, F. J.

Bhatia, B.

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6, 025123 (2016).

Biener, G.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Bitnar, B.

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
[Crossref]

Boltasseva, A.

Boutami, S.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Brar, V. W.

V. W. Brar, M. C. Sherrott, L. Sweatlock, M. S. Jang, L. Kim, M. Choi, and H. Atwater, “Electronic modulation of infrared emissivity in graphene plasmonic resonators,” Nat. Commun. 6, 1–7 (2015).

Braun, P. V.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Brener, I.

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B – Condens. Matter Mater. Phys. 91(12), 1–5 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Brongersma, M. L.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Caglayan, H.

Caldwell, J. D.

Campione, S.

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B – Condens. Matter Mater. Phys. 91(12), 1–5 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Carminati, R.

Catrysse, P. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Cavanna, A.

S. Vassant, I. Moldovan Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Electrical modulation of emissivity,” Appl. Phys. Lett. 102(8), 1–4 (2013).
[Crossref]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, I. Celanovic, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, I. Celanovic, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

P. Bermel, W. Chan, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” in TPV9:Ninth World Conference on Thermophotovoltaic Generation of Electricity (2010).
[Crossref]

Chan, W.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, I. Celanovic, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

P. Bermel, W. Chan, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” in TPV9:Ninth World Conference on Thermophotovoltaic Generation of Electricity (2010).
[Crossref]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Choi, M.

V. W. Brar, M. C. Sherrott, L. Sweatlock, M. S. Jang, L. Kim, M. Choi, and H. Atwater, “Electronic modulation of infrared emissivity in graphene plasmonic resonators,” Nat. Commun. 6, 1–7 (2015).

Chou, S. K.

W. M. Yang, S. K. Chou, J. F. Pan, J. Li, and X. Zhao, “Comparison of cylindrical and modular micro combustor radiators for micro-TPV system application,” J. Micromech. Microeng. 20(8), 85003 (2010).
[Crossref]

W. M. Yang, S. K. Chou, C. Shu, H. Xue, and Z. W. Li, “Development of a prototype micro-thermophotovoltaic power generator,” J. Phys. Appl. Phys. 37(7), 1017–1020 (2004).
[Crossref]

Chubb, D. L. D.

D. L. D. Chubb, A. T. A. Pal, M. M. O. Patton, and P. P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

Chung, H.

H. Chung, Z. Zhou, and P. Bermel, “Collimated thermal radiation transfer via half Maxwell’s fish-eye lens for thermophotovoltaics,” Appl. Phys. Lett. 110(20), 201111 (2017).
[Crossref]

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Collin, S.

Cortes, C. L.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Costantini, D.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Coutrot, A.-L.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Dahan, N.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

DeCorby, R. G.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Dimonte, D.

E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 3307–3316 (2016).

Durisch, W.

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
[Crossref]

Dutta, A.

Edwards, B.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Ellis, C. T.

Engheta, N.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

A. M. Mahmoud and N. Engheta, “Wave–matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Fan, S.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
[Crossref] [PubMed]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Feng, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Ferrell, R. A.

R. A. Ferrell, “Predicted Radiation of Plasma Oscillations in Metal Films,” Phys. Rev. 111(5), 1214–1222 (1958).
[Crossref]

Ferrera, M.

Fink, Y.

Fraas, L. M.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[Crossref]

Garín, M.

M. Garín, D. Hernández, T. Trifonov, and R. Alcubilla, “Three-dimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 134, 22–28 (2015).
[Crossref]

Gennser, U.

S. Vassant, I. Moldovan Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Electrical modulation of emissivity,” Appl. Phys. Lett. 102(8), 1–4 (2013).
[Crossref]

Ghebrebrhan, M.

Giles, A. J.

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Glembocki, O. J.

Green, M. A.

M. A. Green, “Solar cell fill factors: general graph and empirical expressions,” Solid-State Electron. 24(8), 788–789 (1981).
[Crossref]

Greffet, J. J.

S. Vassant, I. Moldovan Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Electrical modulation of emissivity,” Appl. Phys. Lett. 102(8), 1–4 (2013).
[Crossref]

Greffet, J.-J.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Guazzoni, G. E.

Guler, U.

Hamam, R.

Han, S. E.

S. E. Han, “Theory of thermal emission from periodic structures,” Phys. Rev. B 80(15), 155108 (2009).
[Crossref]

Hasman, E.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

Hernández, D.

M. Garín, D. Hernández, T. Trifonov, and R. Alcubilla, “Three-dimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 134, 22–28 (2015).
[Crossref]

Holzner, R.

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
[Crossref]

Huang, H. X.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[Crossref]

Hugonin, J.-P.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Jacob, Z.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Jang, M. S.

V. W. Brar, M. C. Sherrott, L. Sweatlock, M. S. Jang, L. Kim, M. Choi, and H. Atwater, “Electronic modulation of infrared emissivity in graphene plasmonic resonators,” Nat. Commun. 6, 1–7 (2015).

Jenkins, P. P. P.

D. L. D. Chubb, A. T. A. Pal, M. M. O. Patton, and P. P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

Jensen, K. F.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, I. Celanovic, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

Joannopoulos, J. D.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, I. Celanovic, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
[Crossref] [PubMed]

P. Bermel, W. Chan, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” in TPV9:Ninth World Conference on Thermophotovoltaic Generation of Electricity (2010).
[Crossref]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Johnson, S. G.

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Jun, Y. C.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Kang, J.-H.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Karagodsky, V.

Khan, M. R.

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling,” IEEE J. Photovolt. 7(2), 566–574 (2017).
[Crossref]

Kildishev, A. V.

Kim, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Kim, J.

Kim, L.

V. W. Brar, M. C. Sherrott, L. Sweatlock, M. S. Jang, L. Kim, M. Choi, and H. Atwater, “Electronic modulation of infrared emissivity in graphene plasmonic resonators,” Nat. Commun. 6, 1–7 (2015).

Kinsey, N.

Kleiner, V.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

Laroche, M.

Lavrinenko, A. V.

Lefebvre, A.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Li, J.

W. M. Yang, S. K. Chou, J. F. Pan, J. Li, and X. Zhao, “Comparison of cylindrical and modular micro combustor radiators for micro-TPV system application,” J. Micromech. Microeng. 20(8), 85003 (2010).
[Crossref]

Li, Z. W.

W. M. Yang, S. K. Chou, C. Shu, H. Xue, and Z. W. Li, “Development of a prototype micro-thermophotovoltaic power generator,” J. Phys. Appl. Phys. 37(7), 1017–1020 (2004).
[Crossref]

Liu, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Liu, X.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Luk, T. S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Mahmoud, A. M.

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Marquier, F.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B – Condens. Matter Mater. Phys. 91(12), 1–5 (2015).
[Crossref]

S. Vassant, I. Moldovan Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Electrical modulation of emissivity,” Appl. Phys. Lett. 102(8), 1–4 (2013).
[Crossref]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

Marton, C. H.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, I. Celanovic, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Moldovan Doyen, I.

S. Vassant, I. Moldovan Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Electrical modulation of emissivity,” Appl. Phys. Lett. 102(8), 1–4 (2013).
[Crossref]

Moldovan-Doyen, I.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Naik, G. V.

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Newman, W. D.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Niv, A.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Pal, A. T. A.

D. L. D. Chubb, A. T. A. Pal, M. M. O. Patton, and P. P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

Pan, J. F.

W. M. Yang, S. K. Chou, J. F. Pan, J. Li, and X. Zhao, “Comparison of cylindrical and modular micro combustor radiators for micro-TPV system application,” J. Micromech. Microeng. 20(8), 85003 (2010).
[Crossref]

Pardo, F.

S. Vassant, I. Moldovan Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Electrical modulation of emissivity,” Appl. Phys. Lett. 102(8), 1–4 (2013).
[Crossref]

Park, J.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Patton, M. M. O.

D. L. D. Chubb, A. T. A. Pal, M. M. O. Patton, and P. P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

Pelouard, J. L.

S. Vassant, I. Moldovan Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Electrical modulation of emissivity,” Appl. Phys. Lett. 102(8), 1–4 (2013).
[Crossref]

Pelouard, J.-L.

Pilawa-Podgurski, R. C. N.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Pramanik, S.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Reddy, H.

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Sakr, E.

E. Sakr and P. Bermel, “Angle-Selective Reflective Filters for Exclusion of Background Thermal Emission,” Phys. Rev. Appl. 7(4), 044020 (2017).
[Crossref]

E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 3307–3316 (2016).

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Sakr, E. S.

E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Sedgwick, F. G.

Senkevich, J. J.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

Sherrott, M. C.

V. W. Brar, M. C. Sherrott, L. Sweatlock, M. S. Jang, L. Kim, M. Choi, and H. Atwater, “Electronic modulation of infrared emissivity in graphene plasmonic resonators,” Nat. Commun. 6, 1–7 (2015).

Shu, C.

W. M. Yang, S. K. Chou, C. Shu, H. Xue, and Z. W. Li, “Development of a prototype micro-thermophotovoltaic power generator,” J. Phys. Appl. Phys. 37(7), 1017–1020 (2004).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Silverman, T. J.

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling,” IEEE J. Photovolt. 7(2), 566–574 (2017).
[Crossref]

Sinclair, M. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, I. Celanovic, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, I. Celanovic, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

P. Bermel, W. Chan, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” in TPV9:Ninth World Conference on Thermophotovoltaic Generation of Electricity (2010).
[Crossref]

Strobach, E.

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6, 025123 (2016).

Sun, X.

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling,” IEEE J. Photovolt. 7(2), 566–574 (2017).
[Crossref]

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).

Sun, Y.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Sweatlock, L.

V. W. Brar, M. C. Sherrott, L. Sweatlock, M. S. Jang, L. Kim, M. Choi, and H. Atwater, “Electronic modulation of infrared emissivity in graphene plasmonic resonators,” Nat. Commun. 6, 1–7 (2015).

Timans, P. J.

P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
[Crossref]

Tischler, J. G.

Trifonov, T.

M. Garín, D. Hernández, T. Trifonov, and R. Alcubilla, “Three-dimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 134, 22–28 (2015).
[Crossref]

Tropf, W. J.

W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34(5), 1369–1373 (1995).
[Crossref]

Ujihara, K.

K. Ujihara, “Reflectivity of Metals at High Temperatures,” J. Appl. Phys. 43(5), 2376–2383 (1972).
[Crossref]

Vassant, S.

S. Vassant, I. Moldovan Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Electrical modulation of emissivity,” Appl. Phys. Lett. 102(8), 1–4 (2013).
[Crossref]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Wang, E. N.

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6, 025123 (2016).

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Winn, J. N.

Wright, J. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Xue, H.

W. M. Yang, S. K. Chou, C. Shu, H. Xue, and Z. W. Li, “Development of a prototype micro-thermophotovoltaic power generator,” J. Phys. Appl. Phys. 37(7), 1017–1020 (2004).
[Crossref]

Yang, S.

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6, 025123 (2016).

Yang, W. M.

W. M. Yang, S. K. Chou, J. F. Pan, J. Li, and X. Zhao, “Comparison of cylindrical and modular micro combustor radiators for micro-TPV system application,” J. Micromech. Microeng. 20(8), 85003 (2010).
[Crossref]

W. M. Yang, S. K. Chou, C. Shu, H. Xue, and Z. W. Li, “Development of a prototype micro-thermophotovoltaic power generator,” J. Phys. Appl. Phys. 37(7), 1017–1020 (2004).
[Crossref]

Yeng, Y. X.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, I. Celanovic, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

P. Bermel, W. Chan, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” in TPV9:Ninth World Conference on Thermophotovoltaic Generation of Electricity (2010).
[Crossref]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Yu, Z.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Zhao, L.

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6, 025123 (2016).

Zhao, X.

W. M. Yang, S. K. Chou, J. F. Pan, J. Li, and X. Zhao, “Comparison of cylindrical and modular micro combustor radiators for micro-TPV system application,” J. Micromech. Microeng. 20(8), 85003 (2010).
[Crossref]

Zhou, Z.

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling,” IEEE J. Photovolt. 7(2), 566–574 (2017).
[Crossref]

H. Chung, Z. Zhou, and P. Bermel, “Collimated thermal radiation transfer via half Maxwell’s fish-eye lens for thermophotovoltaics,” Appl. Phys. Lett. 110(20), 201111 (2017).
[Crossref]

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

ACS Photonics (1)

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

AIP Adv. (1)

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6, 025123 (2016).

Appl. Energy (1)

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
[Crossref]

Appl. Phys. Lett. (4)

E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

H. Chung, Z. Zhou, and P. Bermel, “Collimated thermal radiation transfer via half Maxwell’s fish-eye lens for thermophotovoltaics,” Appl. Phys. Lett. 110(20), 201111 (2017).
[Crossref]

S. Vassant, I. Moldovan Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Electrical modulation of emissivity,” Appl. Phys. Lett. 102(8), 1–4 (2013).
[Crossref]

Appl. Spectrosc. (1)

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

IEEE J. Photovolt. (1)

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling,” IEEE J. Photovolt. 7(2), 566–574 (2017).
[Crossref]

J. Appl. Phys. (2)

P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
[Crossref]

K. Ujihara, “Reflectivity of Metals at High Temperatures,” J. Appl. Phys. 43(5), 2376–2383 (1972).
[Crossref]

J. Eur. Ceram. Soc. (1)

D. L. D. Chubb, A. T. A. Pal, M. M. O. Patton, and P. P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

J. Micromech. Microeng. (1)

W. M. Yang, S. K. Chou, J. F. Pan, J. Li, and X. Zhao, “Comparison of cylindrical and modular micro combustor radiators for micro-TPV system application,” J. Micromech. Microeng. 20(8), 85003 (2010).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

J. Phys. Appl. Phys. (1)

W. M. Yang, S. K. Chou, C. Shu, H. Xue, and Z. W. Li, “Development of a prototype micro-thermophotovoltaic power generator,” J. Phys. Appl. Phys. 37(7), 1017–1020 (2004).
[Crossref]

MRS Adv. (1)

E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 3307–3316 (2016).

Nano Lett. (1)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Nat. Commun. (3)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

A. M. Mahmoud and N. Engheta, “Wave–matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).

V. W. Brar, M. C. Sherrott, L. Sweatlock, M. S. Jang, L. Kim, M. Choi, and H. Atwater, “Electronic modulation of infrared emissivity in graphene plasmonic resonators,” Nat. Commun. 6, 1–7 (2015).

Nat. Mater. (1)

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Nature (2)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Opt. Eng. (1)

W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34(5), 1369–1373 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (2)

Optica (1)

Phys. Rev. (2)

R. A. Ferrell, “Predicted Radiation of Plasma Oscillations in Metal Films,” Phys. Rev. 111(5), 1214–1222 (1958).
[Crossref]

D. W. Berreman, “Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

Phys. Rev. Appl. (2)

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

E. Sakr and P. Bermel, “Angle-Selective Reflective Filters for Exclusion of Background Thermal Emission,” Phys. Rev. Appl. 7(4), 044020 (2017).
[Crossref]

Phys. Rev. B (3)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

S. E. Han, “Theory of thermal emission from periodic structures,” Phys. Rev. B 80(15), 155108 (2009).
[Crossref]

Phys. Rev. B – Condens. Matter Mater. Phys. (1)

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B – Condens. Matter Mater. Phys. 91(12), 1–5 (2015).
[Crossref]

Phys. Rev. Lett. (1)

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).

Sci. Rep. (1)

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. Garín, D. Hernández, T. Trifonov, and R. Alcubilla, “Three-dimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 134, 22–28 (2015).
[Crossref]

Solid-State Electron. (1)

M. A. Green, “Solar cell fill factors: general graph and empirical expressions,” Solid-State Electron. 24(8), 788–789 (1981).
[Crossref]

Other (7)

P. Bermel, W. Chan, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” in TPV9:Ninth World Conference on Thermophotovoltaic Generation of Electricity (2010).
[Crossref]

F. A. F. and E. M. J. Rivera, “Plasmonics - Principles and Applications,” in K. Y. Kim, ed. (InTech, 2012).

C. Kittel, Introduction to Solid State Physics (Wiley, 2005).

E. Sakr and P. Bermel, “Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures,” in (2017), Vol. 10099, p. 100990A–100990A–8.

L. H. Sperling, Introduction to Physical Polymer Science (John Wiley & Sons, 2005).

M. F. Modest, Radiative Heat Transfer (Academic, 2013).

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and Selective Mid-Infrared Thermal Emitters for Sensing Applications,” in Advanced Photonics 2015 (OSA, 2015), p. SeW2B.2-SeW2B.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A TPV system with a directional and frequency-selective thermal emitter placed on an arbitrary distance from the PV converter. The selectivity of the emitter maintains high thermal-to-electrical energy conversion efficiency at larger separation distances.
Fig. 2
Fig. 2 The structure of an angular and spectral selective thermal emitter, based on thin-film doped-oxides. The bottom structure is an ENZ thin film material on a metallic reflector, and a 2D high contrast grating on top for coupling. The top structure is a 1D dielectric stack of alternating high- and low-index materials nH and nL.
Fig. 3
Fig. 3 Emissivity of the bottom structure in Fig. 2 (without the filter), as a function of the incident angle and the normalized frequency. Parameters used are ax = ay = a, wx = wy = w = 0.543a, tg = 0.1a, tENZ = 0.05a, and a = 900 nm. The ENZ thin-film is made of AZO, and the bottom metal is Ta. Perfect absorption modes, Ferrell-Berreman modes, and ENZ modes are all observed.. The dashed line represents the grating light line θ c =asin( 1λ/a ). The fully transparent window (f = 0.7-0.9 c/a) shows the desired emission spectrum selected by the top filter in Fig. 2.
Fig. 4
Fig. 4 Electric field profiles of Ex, Ey and Ez showing enhanced fields inside the AZO thin film, resulting in nearly perfect absorption. Plots are taken at different points labeled in Fig. 3: (a) Perfect absorption mode due to coupling to a waveguide mode. (b) Absorption caused by excitation of Ferrell-Berreman mode coupled above the grating light line. (c) Absorption caused by ENZ mode excitation in the thin film with decaying field profiles inside the grating.
Fig. 5
Fig. 5 The emissivity function of the full emitter structure in Fig. 2. The selected ENZ material is AZO of thickness tENZ = 0.03a, with optical parameters retrieved from [55] with a Tantalum back reflector and a Si grating. The filter is design as A(0.5L)(HL)8(0.5L)A, with nH = 3.6, nL = 1.37, and dL/dH = 0.8/1.6. The separation gap is tgap = 4a, with a = 900 nm. A selective emission of angular half-width of 18° around f = 0.78c/a is evident.
Fig. 6
Fig. 6 Temperature dependence of the optical constants of AZO at high temperatures. Drude- model is used to construct this figure, with parameters retrieved from Table. 1 and applying (6), (7) and (8).
Fig. 7
Fig. 7 The change of emissivity function at high temperatures ((b) T = 873 K, and (c) T = 1573 K) compared to room temperature ((a) T = 300 K) parameters. The change of the optical parameters with temperature causes an increase in the parasitic spectral and off-directional radiation, increasing losses of view factor at higher temperatures.
Fig. 8
Fig. 8 (a) The computed TPV efficiency as a function of the TPV diode bandgap. The separation distance between the emitter and the receiver is set to D = 1.5l1 = 1.5l2. The figure shows a maximum TPV efficiency of 11.66% at a PV bandgap of 0.92 eV. (b), (c) Plots of the TPV efficiency dependence with distance D: (b) using an ideal spectral and angular selective emitter, with zero sub-bandgap losses and zero off-directional losses: The highest efficiencies can be extracted from an emitter with ideal spectral and angular selectivity, and (c) using the designed selective emitter with different temperature optical parameters.

Tables (1)

Tables Icon

Table 1 Drude-Lorentz Parameters of Ta and AZO at 300 K (eV)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η= V OC I SC FF/ P em ,
ϕ r ( λ )= x 1 = l 1 /2 l 1 /2 d x 1 x 2 = l 2 /2 l 2 /2 d x 2 ε ps ( λ, x 1 , x 2 ) D 2 2 ( D 2 + x 1 2 + x 2 2 2 x 1 x 2 ) 3/2 ,
I SC = A d 0 λ g dλ 2qc λ 4 ϕ r ( λ )EQE( λ ) exp( hc/ λk T e )1 ,
P em = A em 0 dλ 2h c 2 λ 5 ϕ em ( λ ) exp( hc/ λk T e )1 ,
ϕ em ( λ )= x 1 = l 1 /2 l 1 /2 d x 1 x 2 = d x 2 ε ps ( λ, x 1 , x 2 ) D 2 2 ( D 2 + x 1 2 + x 2 2 2 x 1 x 2 ) 3/2 .
ε( ω,T )= ε ω p 2 ( T ) ω 2 iωΓ( T ) + n=1 N ω pn 2 ω Tn 2 ω 2 iω Γ Tn ( T ) ,
ω p ( T )= ω p ( T 0 ) 1+α( T T 0 ) ,
Γ( T )=Γ( T 0 ) ( T T 0 ) β ,

Metrics