Abstract

A method to stabilize the resonance wavelength of a depletion-type silicon micro-ring resonator modulator during high-speed operation is described. The method utilizes the intrinsic defect-mediated photo-absorption of a silicon waveguide and results in a modulator chip fabrication process that is free of heterogeneous integration (for example using germanium), thus significantly reducing the complexity and cost of manufacture. Residual defects, present after p-n junction formation, are found to produce an adequate photocurrent for use as a feedback signal, while an integrated heater is used to compensate for thermal drift via closed-loop control. The photocurrent is measured by a source-meter, which simultaneously provides a DC bias to the integrated heater during high-speed operation. A drop-port or an integrated extrinsic detector is not needed. This feedback control method is experimentally demonstrated via a computer-aided proportional-integral-differential loop. The resonance locking is validated for 12.5 Gb/s intensity modulation in a back-to-back bit-error-rate measurement. The stabilization method described is not limited to a specific modulator design and is compatible with speeds greatly in excess of 12.5 Gb/s, in contrast to the bandwidth limitation of other stabilization methods that rely on intrinsic photo-carrier generation through non-linear processes such as two-photon-absorption. Further, the use of intrinsic defects present after standard fabrication insures that no excess loss is associated with this stabilization method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters

Hasitha Jayatilleka, Kyle Murray, Miguel Ángel Guillén-Torres, Michael Caverley, Ricky Hu, Nicolas A. F. Jaeger, Lukas Chrostowski, and Sudip Shekhar
Opt. Express 23(19) 25084-25097 (2015)

Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection

J. K. Doylend, P. E. Jessop, and A. P. Knights
Opt. Express 18(14) 14671-14678 (2010)

A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control

Xuezhe Zheng, Eric Chang, Philip Amberg, Ivan Shubin, Jon Lexau, Frankie Liu, Hiren Thacker, Stevan S. Djordjevic, Shiyun Lin, Ying Luo, Jin Yao, Jin-Hyoung Lee, Kannan Raj, Ron Ho, John E. Cunningham, and Ashok V. Krishnamoorthy
Opt. Express 22(10) 12628-12633 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  2. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref] [PubMed]
  3. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  4. G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
    [Crossref]
  5. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
    [Crossref] [PubMed]
  6. S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
    [Crossref] [PubMed]
  7. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2013).
  8. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).
  9. H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
    [Crossref] [PubMed]
  10. C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express 19(6), 5143–5148 (2011).
    [Crossref] [PubMed]
  11. Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards Adaptively Tuned Silicon Microring Resonators for Optical Networks - on - Chip Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
    [Crossref]
  12. X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
    [Crossref] [PubMed]
  13. J. A. Cox, D. C. Trotter, and A. L. Starbuck, “Control of silicon-photonic micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(19), 12279–12289 (2014).
  14. Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
    [Crossref] [PubMed]
  15. B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
    [Crossref]
  16. C. Carter, W. Maszara, D. K. Sadana, G. A. Rozgonyi, J. Liu, and J. Wortman, “Residual defects following rapid thermal annealing of shallow boron and boron fluoride implants into preamorphized silicon,” Appl. Phys. Lett. 44(4), 459–461 (1984).
    [Crossref]
  17. J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
    [Crossref] [PubMed]
  18. D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
    [Crossref]
  19. S. T. Fard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(23), 28517–28529 (2014).
    [Crossref] [PubMed]
  20. X. Li, Z. Li, X. Xiao, H. Xu, J. Yu, and Y. Yu, “40 Gb/s all-silicon photodetector based on microring resonators,” IEEE Photonics Technol. Lett. 27(7), 729–732 (2015).
    [Crossref]
  21. H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
    [Crossref] [PubMed]
  22. A. Melikyan, K. Kim, Y.-K. Chen, and P. Dong, “Tapless Locking of Silicon Ring Modulators for WDM Applications,” in Optical Fiber Communication Conference (2017), paper Tu2H.6.
    [Crossref]
  23. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).
  24. D. F. Logan, P. E. Jessop, A. P. Knights, R. M. Gwilliam, and M. P. Halsall, “The effect of doping type and concentration on optical absorption via implantation induced defects in silicon-on-insulator waveguides,” Conf. Optoelectron. Microelectron. Mater. Devices, Proceedings, COMMAD 1, 152–155 (2008).
  25. Z. Wang, Y. Gao, A. S. Kashi, J. Cartledge, and A. P. Knights, “Silicon micro-ring modulator for dispersion uncompensated transmission applications,” J. Lightwave Technol. 34(16), 3675–3681 (2016).
    [Crossref]

2016 (1)

2015 (3)

2014 (6)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards Adaptively Tuned Silicon Microring Resonators for Optical Networks - on - Chip Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

J. A. Cox, D. C. Trotter, and A. L. Starbuck, “Control of silicon-photonic micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(19), 12279–12289 (2014).

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref] [PubMed]

S. T. Fard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(23), 28517–28529 (2014).
[Crossref] [PubMed]

2013 (4)

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2013).

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[Crossref] [PubMed]

2011 (3)

C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express 19(6), 5143–5148 (2011).
[Crossref] [PubMed]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

2010 (2)

2008 (1)

D. F. Logan, P. E. Jessop, A. P. Knights, R. M. Gwilliam, and M. P. Halsall, “The effect of doping type and concentration on optical absorption via implantation induced defects in silicon-on-insulator waveguides,” Conf. Optoelectron. Microelectron. Mater. Devices, Proceedings, COMMAD 1, 152–155 (2008).

2006 (1)

1984 (1)

C. Carter, W. Maszara, D. K. Sadana, G. A. Rozgonyi, J. Liu, and J. Wortman, “Residual defects following rapid thermal annealing of shallow boron and boron fluoride implants into preamorphized silicon,” Appl. Phys. Lett. 44(4), 459–461 (1984).
[Crossref]

Absil, P.

Ackert, J. J.

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Alloatti, L.

Amberg, P.

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[Crossref] [PubMed]

Bergman, K.

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2013).

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[Crossref] [PubMed]

Carter, C.

C. Carter, W. Maszara, D. K. Sadana, G. A. Rozgonyi, J. Liu, and J. Wortman, “Residual defects following rapid thermal annealing of shallow boron and boron fluoride implants into preamorphized silicon,” Appl. Phys. Lett. 44(4), 459–461 (1984).
[Crossref]

Cartledge, J.

Caverley, M.

Chang, E.

Chen, L.

Chen, S.-W.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Chrostowski, L.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cox, J. A.

J. A. Cox, D. C. Trotter, and A. L. Starbuck, “Control of silicon-photonic micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(19), 12279–12289 (2014).

Cunningham, J. E.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De La Rue, R. M.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Desiatov, B.

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

Djordjevic, S. S.

Donzella, V.

Doylend, J. K.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Fard, S. T.

Feng, S.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards Adaptively Tuned Silicon Microring Resonators for Optical Networks - on - Chip Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

Flueckiger, J.

Gao, Y.

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Goykhman, I.

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

Grist, S. M.

Guillén-Torres, M. Á.

Gwilliam, R. M.

D. F. Logan, P. E. Jessop, A. P. Knights, R. M. Gwilliam, and M. P. Halsall, “The effect of doping type and concentration on optical absorption via implantation induced defects in silicon-on-insulator waveguides,” Conf. Optoelectron. Microelectron. Mater. Devices, Proceedings, COMMAD 1, 152–155 (2008).

Halsall, M. P.

D. F. Logan, P. E. Jessop, A. P. Knights, R. M. Gwilliam, and M. P. Halsall, “The effect of doping type and concentration on optical absorption via implantation induced defects in silicon-on-insulator waveguides,” Conf. Optoelectron. Microelectron. Mater. Devices, Proceedings, COMMAD 1, 152–155 (2008).

Hillerkuss, D.

Ho, R.

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Hu, R.

Hu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Huante-Ceron, E.

Jaeger, N. A. F.

Jayatilleka, H.

Jessop, P. E.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[Crossref] [PubMed]

D. F. Logan, P. E. Jessop, A. P. Knights, R. M. Gwilliam, and M. P. Halsall, “The effect of doping type and concentration on optical absorption via implantation induced defects in silicon-on-insulator waveguides,” Conf. Optoelectron. Microelectron. Mater. Devices, Proceedings, COMMAD 1, 152–155 (2008).

Kashi, A. S.

Knights, A. P.

Z. Wang, Y. Gao, A. S. Kashi, J. Cartledge, and A. P. Knights, “Silicon micro-ring modulator for dispersion uncompensated transmission applications,” J. Lightwave Technol. 34(16), 3675–3681 (2016).
[Crossref]

S. T. Fard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(23), 28517–28529 (2014).
[Crossref] [PubMed]

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[Crossref] [PubMed]

D. F. Logan, P. E. Jessop, A. P. Knights, R. M. Gwilliam, and M. P. Halsall, “The effect of doping type and concentration on optical absorption via implantation induced defects in silicon-on-insulator waveguides,” Conf. Optoelectron. Microelectron. Mater. Devices, Proceedings, COMMAD 1, 152–155 (2008).

Komorowska, K.

Korn, D.

Krishnamoorthy, A. V.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref] [PubMed]

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kwok, E.

Lee, J.-H.

Lepage, G.

Leuthold, J.

Levy, U.

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

Lexau, J.

Li, G.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Li, X.

X. Li, Z. Li, X. Xiao, H. Xu, J. Yu, and Y. Yu, “40 Gb/s all-silicon photodetector based on microring resonators,” IEEE Photonics Technol. Lett. 27(7), 729–732 (2015).
[Crossref]

Li, Y.

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
[Crossref] [PubMed]

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards Adaptively Tuned Silicon Microring Resonators for Optical Networks - on - Chip Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

Li, Z.

X. Li, Z. Li, X. Xiao, H. Xu, J. Yu, and Y. Yu, “40 Gb/s all-silicon photodetector based on microring resonators,” IEEE Photonics Technol. Lett. 27(7), 729–732 (2015).
[Crossref]

C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express 19(6), 5143–5148 (2011).
[Crossref] [PubMed]

Lin, S.

Lipson, M.

Liu, F.

Liu, J.

C. Carter, W. Maszara, D. K. Sadana, G. A. Rozgonyi, J. Liu, and J. Wortman, “Residual defects following rapid thermal annealing of shallow boron and boron fluoride implants into preamorphized silicon,” Appl. Phys. Lett. 44(4), 459–461 (1984).
[Crossref]

Logan, D. F.

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

D. F. Logan, P. E. Jessop, A. P. Knights, R. M. Gwilliam, and M. P. Halsall, “The effect of doping type and concentration on optical absorption via implantation induced defects in silicon-on-insulator waveguides,” Conf. Optoelectron. Microelectron. Mater. Devices, Proceedings, COMMAD 1, 152–155 (2008).

Luo, Y.

Manipatruni, S.

Mashanovich, G. Z.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Maszara, W.

C. Carter, W. Maszara, D. K. Sadana, G. A. Rozgonyi, J. Liu, and J. Wortman, “Residual defects following rapid thermal annealing of shallow boron and boron fluoride implants into preamorphized silicon,” Appl. Phys. Lett. 44(4), 459–461 (1984).
[Crossref]

Murray, K.

Murray, K. J.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Nedeljkovic, M.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Padmaraju, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2013).

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).

Pantouvaki, M.

Poon, A. W.

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
[Crossref] [PubMed]

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards Adaptively Tuned Silicon Microring Resonators for Optical Networks - on - Chip Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

Qiu, C.

Raj, K.

Reed, G. T.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Rozgonyi, G. A.

C. Carter, W. Maszara, D. K. Sadana, G. A. Rozgonyi, J. Liu, and J. Wortman, “Residual defects following rapid thermal annealing of shallow boron and boron fluoride implants into preamorphized silicon,” Appl. Phys. Lett. 44(4), 459–461 (1984).
[Crossref]

Sadana, D. K.

C. Carter, W. Maszara, D. K. Sadana, G. A. Rozgonyi, J. Liu, and J. Wortman, “Residual defects following rapid thermal annealing of shallow boron and boron fluoride implants into preamorphized silicon,” Appl. Phys. Lett. 44(4), 459–461 (1984).
[Crossref]

Schmidt, B.

Schmidt, S. A.

Shah Hosseini, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Shakya, J.

Shappir, J.

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

Shekhar, S.

Shu, J.

Shubin, I.

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Sorel, M.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Starbuck, A. L.

J. A. Cox, D. C. Trotter, and A. L. Starbuck, “Control of silicon-photonic micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(19), 12279–12289 (2014).

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Thacker, H.

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Trotter, D. C.

J. A. Cox, D. C. Trotter, and A. L. Starbuck, “Control of silicon-photonic micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(19), 12279–12289 (2014).

Van Campenhout, J.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Velha, P.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Verheyen, P.

Wang, Z.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Wortman, J.

C. Carter, W. Maszara, D. K. Sadana, G. A. Rozgonyi, J. Liu, and J. Wortman, “Residual defects following rapid thermal annealing of shallow boron and boron fluoride implants into preamorphized silicon,” Appl. Phys. Lett. 44(4), 459–461 (1984).
[Crossref]

Xiao, X.

X. Li, Z. Li, X. Xiao, H. Xu, J. Yu, and Y. Yu, “40 Gb/s all-silicon photodetector based on microring resonators,” IEEE Photonics Technol. Lett. 27(7), 729–732 (2015).
[Crossref]

Xu, H.

X. Li, Z. Li, X. Xiao, H. Xu, J. Yu, and Y. Yu, “40 Gb/s all-silicon photodetector based on microring resonators,” IEEE Photonics Technol. Lett. 27(7), 729–732 (2015).
[Crossref]

Xu, Q.

Yao, J.

Yu, H.

Yu, J.

X. Li, Z. Li, X. Xiao, H. Xu, J. Yu, and Y. Yu, “40 Gb/s all-silicon photodetector based on microring resonators,” IEEE Photonics Technol. Lett. 27(7), 729–732 (2015).
[Crossref]

Yu, Y.

X. Li, Z. Li, X. Xiao, H. Xu, J. Yu, and Y. Yu, “40 Gb/s all-silicon photodetector based on microring resonators,” IEEE Photonics Technol. Lett. 27(7), 729–732 (2015).
[Crossref]

Zhang, X.

Zhang, Y.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards Adaptively Tuned Silicon Microring Resonators for Optical Networks - on - Chip Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

Zheng, X.

Zhu, X.

Appl. Phys. Lett. (2)

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

C. Carter, W. Maszara, D. K. Sadana, G. A. Rozgonyi, J. Liu, and J. Wortman, “Residual defects following rapid thermal annealing of shallow boron and boron fluoride implants into preamorphized silicon,” Appl. Phys. Lett. 44(4), 459–461 (1984).
[Crossref]

Conf. Optoelectron. Microelectron. Mater. Devices, Proceedings, COMMAD (1)

D. F. Logan, P. E. Jessop, A. P. Knights, R. M. Gwilliam, and M. P. Halsall, “The effect of doping type and concentration on optical absorption via implantation induced defects in silicon-on-insulator waveguides,” Conf. Optoelectron. Microelectron. Mater. Devices, Proceedings, COMMAD 1, 152–155 (2008).

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards Adaptively Tuned Silicon Microring Resonators for Optical Networks - on - Chip Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Li, Z. Li, X. Xiao, H. Xu, J. Yu, and Y. Yu, “40 Gb/s all-silicon photodetector based on microring resonators,” IEEE Photonics Technol. Lett. 27(7), 729–732 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nanophotonics (2)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2013).

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Opt. Express (10)

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
[Crossref] [PubMed]

S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
[Crossref] [PubMed]

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).

H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
[Crossref] [PubMed]

C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express 19(6), 5143–5148 (2011).
[Crossref] [PubMed]

S. T. Fard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(23), 28517–28529 (2014).
[Crossref] [PubMed]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[Crossref] [PubMed]

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref] [PubMed]

J. A. Cox, D. C. Trotter, and A. L. Starbuck, “Control of silicon-photonic micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(19), 12279–12289 (2014).

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (1)

A. Melikyan, K. Kim, Y.-K. Chen, and P. Dong, “Tapless Locking of Silicon Ring Modulators for WDM Applications,” in Optical Fiber Communication Conference (2017), paper Tu2H.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Resonance control in the MRR modulator using a drop-port tap. (b) Resonance control using a designated extrinsic defect-mediated photo-detector, integrated onto the ring resonator. (c) Proposed resonance control using the intrinsic defect-mediated photocurrent.
Fig. 2
Fig. 2 MRR spectra under different reverse bias from 0 V to −4 V (left) and measured photocurrent (right). Intensity refers to light output from the chip and includes coupling and transmission loss. (a) Device A: MRR modulator with junction offset 75 nm and gap 265 nm. (b) Device B: MRR modulator with junction offset 0 nm and gap 235 nm.
Fig. 3
Fig. 3 (a) Measured MRR spectra for different heater powers. (b) Extracted resonance shift with respect to the applied heater power using a linear fit.
Fig. 4
Fig. 4 (a) Measured photocurrent versus the on-chip power estimated at the ring resonator input for different reverse bias (ranging from −1 V to −6 V). (b) A 2nd-order polynomial fit of the photocurrent curve at reverse bias −4 V, separating the photocurrent components that result from the linear-absorption and non-linear-absorption. (c) Ratio of the linear term (0.17P) and quadratic term (0.37P2) for different on-chip power. (d) Measured photocurrent versus the heater power for two data rates: 7.5 Gb/s and 12.5 Gb/s RF signals with 2 V peak-to-peak voltage and −2 V DC offset.
Fig. 5
Fig. 5 Modulation regimes for the MRR and eye-diagrams at different photocurrents for a 12.5 Gb/s NRZ modulation.
Fig. 6
Fig. 6 Resonance control experimental measurement setup and algorithm.
Fig. 7
Fig. 7 (a) Measured BER of a 12.5 Gb/s rate for several conditions (b) Recorded error currents. Associated eye-diagrams are also plotted.

Metrics