Abstract

High peak-to-average power ratio (PAPR) leads to out-of-band power and in-band distortion in the direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) systems. In order to effectively reduce the PAPR with faster convergence and lower complexity, this paper proposes a tone reservation based scheme, which is the combination of the signal-to-clipping noise ratio (SCR) procedure and the least squares approximation (LSA) procedure. In the proposed scheme, the transmitter of the DCO-OFDM indoor visible light communication (VLC) system is designed to transform the PAPR reduced signal into real-valued positive OFDM signal without doubling the transmission bandwidth. Moreover, the communication distance and the light emitting diode (LED) irradiance angle are taking into consideration in the evaluation of the system bit error rate (BER). The PAPR reduction efficiency of the proposed scheme is remarkable for DCO-OFDM indoor VLC systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved TKM-TR methods for PAPR reduction of DCO-OFDM visible light communications

Yongqiang Hei, Jiao Liu, Huaxi Gu, Wentao Li, Xiaochuan Xu, and Ray T. Chen
Opt. Express 25(20) 24448-24458 (2017)

BICM-ID scheme for clipped DCO-OFDM in visible light communications

Jiandong Tan, Zhaocheng Wang, Qi Wang, and Linglong Dai
Opt. Express 24(5) 4573-4581 (2016)

Time domain reshuffling for OFDM based indoor visible light communication systems

Xiaodi You, Jian Chen, Changyuan Yu, and Huanhuan Zheng
Opt. Express 25(10) 11606-11621 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  2. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of the -art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
    [Crossref]
  3. J. Ding, Z. Huang, and Y. Ji, “Independent reflecting element interaction characterization for indoor visible light communication based on new generation lighting,” Chin. Opt. Lett. 8(12), 1182–1186 (2010).
    [Crossref]
  4. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  5. X. You, J. Chen, C. Yu, and H. Zheng, “Time domain reshuffling for OFDM based indoor visible light communication systems,” Opt. Express 25(10), 11606–11621 (2017).
    [Crossref] [PubMed]
  6. J. Wang, Y. Xu, X. Ling, R. Zhang, Z. Ding, and C. Zhao, “PAPR analysis for OFDM visible light communication,” Opt. Express 24(24), 27457–27474 (2016).
    [Crossref] [PubMed]
  7. W. O. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Optimising OFDM based visible light communication for high throughput and reduced PAPR,” in Proceedings of IEEE International Conference on Communication Workshop, (IEEE, 2015), pp. 1322–1326.
    [Crossref]
  8. W. O. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Pilot-assisted PAPR reduction technique for optical FDM communication systems,” J. Lightwave Technol. 32(7), 1374–1382 (2014).
    [Crossref]
  9. K. Bandara, P. Niroopan, and Y. H. Chung, “PAPR reduced OFDM visible light communication using exponential nonlinear companding,” in Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, (IEEE, 2013), pp. 1–5.
    [Crossref]
  10. V. K. Singn and U. D. Dalal, “A fast Hartley transform based novel optical OFDM system for VLC indoor application with constant envelope PAPR reduction technique using frequency modulation,” Opt. Commun. 400, 128–135 (2017).
  11. H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
    [Crossref]
  12. Y. Hei, J. Liu, W. Li, X. Xu, and R. T. Chen, “Branch and bound methods based tone injection schemes for PAPR reduction of DCO-OFDM visible light communications,” Opt. Express 25(2), 595–604 (2017).
    [Crossref] [PubMed]
  13. J. Tellado-Mourelo, Peak to average power ratio reduction for multicarrier modulation, PhD thesis, Stanford University (1999).
  14. H. Li, J. Tao, and Y. Zhou, “An improved tone reservation scheme with fast convergence for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(4), 902–906 (2011).
    [Crossref]

2017 (3)

2016 (1)

2014 (2)

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
[Crossref]

W. O. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Pilot-assisted PAPR reduction technique for optical FDM communication systems,” J. Lightwave Technol. 32(7), 1374–1382 (2014).
[Crossref]

2011 (2)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of the -art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

H. Li, J. Tao, and Y. Zhou, “An improved tone reservation scheme with fast convergence for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(4), 902–906 (2011).
[Crossref]

2010 (1)

2009 (1)

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Armstrong, J.

Bandara, K.

K. Bandara, P. Niroopan, and Y. H. Chung, “PAPR reduced OFDM visible light communication using exponential nonlinear companding,” in Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, (IEEE, 2013), pp. 1–5.
[Crossref]

Chen, J.

Chen, R. T.

Chung, Y. H.

K. Bandara, P. Niroopan, and Y. H. Chung, “PAPR reduced OFDM visible light communication using exponential nonlinear companding,” in Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, (IEEE, 2013), pp. 1–5.
[Crossref]

Dalal, U. D.

V. K. Singn and U. D. Dalal, “A fast Hartley transform based novel optical OFDM system for VLC indoor application with constant envelope PAPR reduction technique using frequency modulation,” Opt. Commun. 400, 128–135 (2017).

Ding, J.

Ding, Z.

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of the -art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Ghassemlooy, Z.

W. O. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Pilot-assisted PAPR reduction technique for optical FDM communication systems,” J. Lightwave Technol. 32(7), 1374–1382 (2014).
[Crossref]

W. O. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Optimising OFDM based visible light communication for high throughput and reduced PAPR,” in Proceedings of IEEE International Conference on Communication Workshop, (IEEE, 2015), pp. 1322–1326.
[Crossref]

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of the -art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Hei, Y.

Huang, Z.

Ji, Y.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Li, H.

H. Li, J. Tao, and Y. Zhou, “An improved tone reservation scheme with fast convergence for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(4), 902–906 (2011).
[Crossref]

Li, W.

Ling, X.

Liu, J.

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of the -art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Niroopan, P.

K. Bandara, P. Niroopan, and Y. H. Chung, “PAPR reduced OFDM visible light communication using exponential nonlinear companding,” in Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, (IEEE, 2013), pp. 1–5.
[Crossref]

Popoola, W. O.

W. O. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Pilot-assisted PAPR reduction technique for optical FDM communication systems,” J. Lightwave Technol. 32(7), 1374–1382 (2014).
[Crossref]

W. O. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Optimising OFDM based visible light communication for high throughput and reduced PAPR,” in Proceedings of IEEE International Conference on Communication Workshop, (IEEE, 2015), pp. 1322–1326.
[Crossref]

Singn, V. K.

V. K. Singn and U. D. Dalal, “A fast Hartley transform based novel optical OFDM system for VLC indoor application with constant envelope PAPR reduction technique using frequency modulation,” Opt. Commun. 400, 128–135 (2017).

Stewart, B. G.

W. O. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Pilot-assisted PAPR reduction technique for optical FDM communication systems,” J. Lightwave Technol. 32(7), 1374–1382 (2014).
[Crossref]

W. O. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Optimising OFDM based visible light communication for high throughput and reduced PAPR,” in Proceedings of IEEE International Conference on Communication Workshop, (IEEE, 2015), pp. 1322–1326.
[Crossref]

Tao, J.

H. Li, J. Tao, and Y. Zhou, “An improved tone reservation scheme with fast convergence for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(4), 902–906 (2011).
[Crossref]

Wang, J.

Xu, W.

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
[Crossref]

Xu, X.

Xu, Y.

You, X.

Yu, C.

Yuan, Y.

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
[Crossref]

Zhang, H.

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
[Crossref]

Zhang, R.

Zhao, C.

Zheng, H.

Zhou, Y.

H. Li, J. Tao, and Y. Zhou, “An improved tone reservation scheme with fast convergence for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(4), 902–906 (2011).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Commun. Mag. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of the -art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
[Crossref]

IEEE Trans. Broadcast (1)

H. Li, J. Tao, and Y. Zhou, “An improved tone reservation scheme with fast convergence for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(4), 902–906 (2011).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

J. Lightwave Technol. (2)

Opt. Commun. (1)

V. K. Singn and U. D. Dalal, “A fast Hartley transform based novel optical OFDM system for VLC indoor application with constant envelope PAPR reduction technique using frequency modulation,” Opt. Commun. 400, 128–135 (2017).

Opt. Express (3)

Other (3)

K. Bandara, P. Niroopan, and Y. H. Chung, “PAPR reduced OFDM visible light communication using exponential nonlinear companding,” in Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, (IEEE, 2013), pp. 1–5.
[Crossref]

W. O. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Optimising OFDM based visible light communication for high throughput and reduced PAPR,” in Proceedings of IEEE International Conference on Communication Workshop, (IEEE, 2015), pp. 1322–1326.
[Crossref]

J. Tellado-Mourelo, Peak to average power ratio reduction for multicarrier modulation, PhD thesis, Stanford University (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the DCO-OFDM indoor VLC system with PAPR reduction.
Fig. 2
Fig. 2 Direct LOS indoor VLC system model.
Fig. 3
Fig. 3 CCDF statistics of OFDM symbols for different iterations.
Fig. 4
Fig. 4 BER comparison of different distances and iterations.
Fig. 5
Fig. 5 Constellation diagram of received signals.
Fig. 6
Fig. 6 PSD of the proposed scheme.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P r = P t ( a + 1 ) A r g a 2 π D 2 cos a ( φ ) ,
x n = 1 N ( k = 0 N / 2 1 X k e j 2 π k n N J + k = N J N / 2 N J 1 X k e j 2 π k n N J ) = Q [ X 0 , , X N / 2 1 , 0 , , 0 , N ( J 1 ) X N / 2 , , X N 1 ] N J × 1 T ,
x + c = [ x 0 , x 1 / J , x 2 / J , , x N J 1 ] N J × 1 T + [ c 0 , c 1 / J , c 2 / J , , c N J 1 ] N J × 1 T = Q J ( X + C ) ,
P A P R ( d B ) = 10 log max 0 n < N J { | x n + c n | 2 } E { | x + c | 2 } ,
P A P R ( d B ) = 10 log max 0 n < N J { | x n + c n | 2 } E { | x | 2 } ,
S C R = x 2 x y 2 2 .
x i + 1 = x i μ ( x n max i i A e j arg { x n max i i } ) Q ^ ( q n max i , J r o w ) J * ,
p = n P | c n i | | f n i | n P | c n i | 2 ,
x i + 1 = x i p [ ( x n max i i A e j arg { x n max i i } ) Q ^ ( q n max i , J r o w ) J * c i ] .

Metrics