Abstract

We study, both numerically and experimentally, the relative intensity noise (RIN) and timing jitter characteristics of optical parametric generation (OPG) process in MgO-doped periodically poled LiNbO3 (MgO:PPLN) pumped by fiber femtosecond laser. We directly characterize the RIN, and measure timing jitter spectral density of the OPG process based on the balanced optical cross-correlator (BOC) technique for the first time as well, which are both in a fairly good agreement with numerical simulation. Both the numerical and experimental study reveals that OPG can suffer from a smaller intensity fluctuation but a lager temporal jitter when it is driven into saturation. Furthermore, we demonstrate that with a 30 mW CW diode laser injection seeding the OPG output results in superior noise performance compared to the vacuum fluctuations seeded OPG.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intensity and temporal noise characteristics in femtosecond optical parametric amplifiers

Wei Chen, Jintao Fan, Aichen Ge, Huanyu Song, Youjian Song, Bowen Liu, Lu Chai, Chingyue Wang, and Minglie Hu
Opt. Express 25(25) 31263-31272 (2017)

Narrowband cw injection seeded high power femtosecond double-pass optical parametric generator at 43 MHz: Gain and noise dynamics

Heiko Linnenbank, Tobias Steinle, and Harald Giessen
Opt. Express 24(17) 19558-19566 (2016)

High-energy, near- and mid-IR picosecond pulses generated by a fiber-MOPA-pumped optical parametric generator and amplifier

Lin Xu, Ho-Yin Chan, Shaif-ul Alam, David J. Richardson, and David P. Shepherd
Opt. Express 23(10) 12613-12618 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999).
    [Crossref] [PubMed]
  2. J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272(5259), 255–258 (1996).
    [Crossref]
  3. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
    [Crossref]
  4. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
    [Crossref] [PubMed]
  5. A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3,” Opt. Lett. 22(2), 105–107 (1997).
    [Crossref] [PubMed]
  6. S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B 81(8), 1049–1052 (2005).
    [Crossref]
  7. H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR,” Opt. Express 22(15), 18072–18077 (2014).
    [Crossref] [PubMed]
  8. C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
    [Crossref]
  9. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003).
    [Crossref] [PubMed]
  10. K. Jung and J. Kim, “Characterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency,” Opt. Lett. 40(3), 316–319 (2015).
    [Crossref] [PubMed]
  11. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 14518–14525 (2011).
    [Crossref] [PubMed]
  12. J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32(24), 3519–3521 (2007).
    [Crossref] [PubMed]
  13. H. Linnenbank, T. Steinle, and H. Giessen, “Narrowband cw injection seeded high power femtosecond double-pass optical parametric generator at 43 MHz: Gain and noise dynamics,” Opt. Express 24(17), 19558–19566 (2016).
    [Crossref] [PubMed]
  14. M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photonics J. 2(4), 600–610 (2010).
    [Crossref]
  15. A. Fix and R. Wallenstein, “Spectral properties of pulsed nanosecond optical parametric oscillators: experimental investigation and numerical analysis,” J. Opt. Soc. Am. B 13(11), 2484–2497 (1996).
    [Crossref]
  16. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16(1), 117–127 (1999).
    [Crossref]
  17. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
    [Crossref] [PubMed]
  18. R. Paschotta, “Noise of mode-locked lasers. Part I: Numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
    [Crossref]
  19. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [Crossref] [PubMed]
  20. W. Chen, Y. Song, K. Jung, M. Hu, C. Wang, and J. Kim, “Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser,” Opt. Express 24(2), 1347–1357 (2016).
    [Crossref] [PubMed]
  21. J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
    [Crossref]
  22. J. Fan, C. Gu, C. Wang, and M. Hu, “Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator,” Opt. Express 24(12), 13250–13257 (2016).
    [Crossref] [PubMed]
  23. T. Steinle, V. Kumar, A. Steinmann, M. Marangoni, G. Cerullo, and H. Giessen, “Compact, low-noise, all-solid-state laser system for stimulated Raman scattering microscopy,” Opt. Lett. 40(4), 593–596 (2015).
    [Crossref] [PubMed]
  24. H. Linnenbank, T. Steinle, and H. Giessen, “Ultranarrowband cw injection-seeded femtosecond OPG for superior pulse-to-pulse stability and output power,” in Conference on Lasers and Electro-Optics, OSA Technical Digest 2016 (Optical Society of America, 2016), paper SW4Q.6.
    [Crossref]

2016 (3)

2015 (3)

2014 (1)

2013 (1)

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

2011 (1)

2010 (1)

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photonics J. 2(4), 600–610 (2010).
[Crossref]

2009 (1)

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

2007 (1)

2005 (1)

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B 81(8), 1049–1052 (2005).
[Crossref]

2004 (1)

R. Paschotta, “Noise of mode-locked lasers. Part I: Numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[Crossref]

2003 (1)

2002 (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

2001 (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

1999 (2)

1997 (2)

1996 (2)

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272(5259), 255–258 (1996).
[Crossref]

A. Fix and R. Wallenstein, “Spectral properties of pulsed nanosecond optical parametric oscillators: experimental investigation and numerical analysis,” J. Opt. Soc. Am. B 13(11), 2484–2497 (1996).
[Crossref]

Arbore, M. A.

Arisholm, G.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B 81(8), 1049–1052 (2005).
[Crossref]

G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16(1), 117–127 (1999).
[Crossref]

Baronio, F.

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photonics J. 2(4), 600–610 (2010).
[Crossref]

Brida, D.

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

Brus, L. E.

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272(5259), 255–258 (1996).
[Crossref]

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Cerullo, G.

T. Steinle, V. Kumar, A. Steinmann, M. Marangoni, G. Cerullo, and H. Giessen, “Compact, low-noise, all-solid-state laser system for stimulated Raman scattering microscopy,” Opt. Lett. 40(4), 593–596 (2015).
[Crossref] [PubMed]

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

Chai, L.

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Chen, J.

Chen, W.

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Cirmi, G.

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

Conforti, M.

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photonics J. 2(4), 600–610 (2010).
[Crossref]

Cox, J.

De Angelis, C.

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photonics J. 2(4), 600–610 (2010).
[Crossref]

De Silvestri, S.

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

Fan, J.

Fedotov, A. B.

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Fejer, M. M.

Fermann, M. E.

Fix, A.

Fujimoto, J. G.

Galvanauskas, A.

Giessen, H.

Gopinath, J. T.

Gu, C.

Harris, T. D.

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272(5259), 255–258 (1996).
[Crossref]

Harter, D.

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

Hillenbrand, R.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

Hu, M.

W. Chen, Y. Song, K. Jung, M. Hu, C. Wang, and J. Kim, “Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser,” Opt. Express 24(2), 1347–1357 (2016).
[Crossref] [PubMed]

J. Fan, C. Gu, C. Wang, and M. Hu, “Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator,” Opt. Express 24(12), 13250–13257 (2016).
[Crossref] [PubMed]

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

Innerhofer, E.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B 81(8), 1049–1052 (2005).
[Crossref]

Ippen, E. P.

Jundt, D. H.

Jung, K.

Kaertner, F. X.

Kärtner, F. X.

Keilmann, F.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

Keller, U.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B 81(8), 1049–1052 (2005).
[Crossref]

Kim, C.

Kim, H.

Kim, J.

Kitamura, K.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B 81(8), 1049–1052 (2005).
[Crossref]

Kolodziejski, L. A.

Kumar, V.

Kurimura, S.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B 81(8), 1049–1052 (2005).
[Crossref]

Kuzucu, O.

Li, J.

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Li, Y.

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Linden, S.

Linnenbank, H.

Liu, B.

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Liu, F.

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Macklin, J. J.

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272(5259), 255–258 (1996).
[Crossref]

Manzoni, C.

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

Marangoni, M.

Marchese, S. V.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B 81(8), 1049–1052 (2005).
[Crossref]

Paschotta, R.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B 81(8), 1049–1052 (2005).
[Crossref]

R. Paschotta, “Noise of mode-locked lasers. Part I: Numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[Crossref]

Petrich, G. S.

Schibli, T. R.

Shi, J.

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Silberberg, Y.

Song, Y.

Steinle, T.

Steinmann, A.

Tandon, S. N.

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

Trautman, J. K.

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272(5259), 255–258 (1996).
[Crossref]

Wallenstein, R.

Wang, C.

W. Chen, Y. Song, K. Jung, M. Hu, C. Wang, and J. Kim, “Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser,” Opt. Express 24(2), 1347–1357 (2016).
[Crossref] [PubMed]

J. Fan, C. Gu, C. Wang, and M. Hu, “Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator,” Opt. Express 24(12), 13250–13257 (2016).
[Crossref] [PubMed]

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Xing, Q.

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Xu, B.

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Yelin, D.

Zheltikov, A. M.

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Appl. Phys. B (2)

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B 81(8), 1049–1052 (2005).
[Crossref]

R. Paschotta, “Noise of mode-locked lasers. Part I: Numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[Crossref]

IEEE Photonics J. (1)

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photonics J. 2(4), 600–610 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

J. Li, L. Chai, J. Shi, F. Liu, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses,” Laser Phys. Lett. 10(12), 125404 (2013).
[Crossref]

Nat. Photonics (1)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Nature (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. A (1)

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

Science (1)

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272(5259), 255–258 (1996).
[Crossref]

Other (1)

H. Linnenbank, T. Steinle, and H. Giessen, “Ultranarrowband cw injection-seeded femtosecond OPG for superior pulse-to-pulse stability and output power,” in Conference on Lasers and Electro-Optics, OSA Technical Digest 2016 (Optical Society of America, 2016), paper SW4Q.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Simulated relative intensity noise (RIN) spectra density of the OPG output below and above saturation. (b) Simulated timing jitter spectra density of the OPG output below and above saturation.
Fig. 2
Fig. 2 Schematic diagram of OPG process. The solid black line in the right panel indicates intensity of the signal beam. The dark gray area displays the OPG operate in the saturation regime. The red dot presents the position inside nonlinear crystal where the quantum noise can be stimulated and evolved from the fluctuating random fields to the generated pulse situation. The light purple area indicates possibility of quantum noise which can be amplified into signal pulse situation. (a) and (b) show the intensity noise fluctuation as well as temporal jitter properties when the OPG process operated below and above saturation, respectively.
Fig. 3
Fig. 3 Experimental setup of a single pass OPG. HWP: half-wave plate; PBS: polarization beam splitter; L1-L2: lens; DM: dichroic mirror; MgO:PPLN: MgO-doped periodically poled LiNbO3.
Fig. 4
Fig. 4 (a) Measured tuning spectra for different poling periods and corresponding average output power of signal; (b) Measured signal tuning range of OPG as a function of the crystal with the 29.5 um poling period; (c) Typical autocorrelation trace of the signal at 1474 nm; (d) Average output power and pump to signal conversion efficiency at 1474 nm versus incident pump power and the inset shows pump depletion.
Fig. 5
Fig. 5 Experimental setup for RIN and timing jitter characterization of OPG output pulses consisting of (I) home-made Yb-fiber amplifier system, (II) OPG I; (III) OPG II; (IV) Balanced optical cross-correlation (BOC) measurement system; (V) CW laser diode unit. HWP: half-wave plate; PBS: polarization beam splitter; L1-L5: lens; DM: dichroic mirror; F: filter; BD: balanced detector; PPKTP: periodically poled KTiOPO4.
Fig. 6
Fig. 6 Noise performance measurement results when the OPG worked below and above saturation. (a) Measured RIN spectra and integrated RIN at the output of OPG; (b) Timing jitter spectral density and integrated timing jitter of OPG output.
Fig. 7
Fig. 7 (a) Measured RIN spectra and integrated RIN at OPG output with 30 mW injection seeding at a wavelength of 1470 nm; (b) Measured spectral interferograms between two branches of OPG output pulses when the OPG worked below and above saturation. The inset shows the spectrum of CW laser diode

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( z , ω ) z + i ( k ( ω ) ω v r e f ) E ( z , ω ) = i ω 2 ε 0 c n ( ω ) P N L ( z , ω ) ,
δ E ( t ) δ E ( t ' ) = h ν δ ( t t ' ) n 0 ε 0 c g p a r a m e t r i c .
g p a r a m e t r i c = ω s ω i d e f f | E p | k s k i c 2
( z + ( 1 v g 1 1 v g 3 ) Γ ) A 1 ( z , t ) = 2 i ω 1 2 d e f f k 1 c 2 A 3 ( z , t ) A 2 * ( z , t ) e i k z ,
I 1 ( z , t ) = 2 n 1 ε 0 c A 1 ( z , t ) A 1 ( z , t )
z I 1 = 4 ε 0 ω 1 d e f f ( i A 3 ( z , t ) A 2 * ( z , t ) A 1 * ( z , t ) e i k z + c . c . ) ( ( 1 v g 1 1 v g 3 ) Γ ) I 1 ( z , t ) .

Metrics