Abstract

A method is introduced to miniaturize invisibility cloaks by 50% using wave tailoring and finite/non-zero wave impedance of double near zero (DNZ) slabs. Unlike previous works, which use thick dielectric matching layers to miniaturize internal cloaks, the proposed technique is applied to both internal and external cylindrical cloaks using a thin and short DNZ slab to change cloaks’ shapes to half-cylinder shells. Moreover, sets of structures are introduced for the half sized cloaks to enable using feasible-to-fabricate structures with the help of a rigorous theoretical analysis, which is validated via full-wave simulations. All of the presented results show that the proposed half cloaks can function perfectly well. The sensitivity of half-sized cloaks to the length and material properties of the DNZ slab is investigated to find the shortest length and the highest values of the permittivity and permeability for the slab to have small yet realizable structures. The analysis shows that slabs with length as small as the diameter of the cloaks and constitutive parameters (permittivity and permeability) as high asεslab=μslab=0.10.1iand εslab=μslab=0.050.04i for half-sized external cloaks and half-sized internal cloaks, respectively, can still considerably reduce the scattered fields. The effect of the loss and incident angle of the field on the performance of the miniaturized cloaks are also analyzed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Invisibility cloaks for irregular particles using coordinate transformations

Yu You, George W. Kattawar, Peng-Wang Zhai, and Ping Yang
Opt. Express 16(9) 6134-6145 (2008)

Scattering characteristics of simplified cylindrical invisibility cloaks

Min Yan, Zhichao Ruan, and Min Qiu
Opt. Express 15(26) 17772-17782 (2007)

Ideal and nonideal invisibility cloaks

Nina A. Zharova, Ilya V. Shadrivov, Alexander A. Zharov, and Yuri S. Kivshar
Opt. Express 16(26) 21369-21374 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Y. Urzhumov and D. R. Smith, “Low-loss directional cloaks without superluminal velocity or magnetic response,” Opt. Lett. 37(21), 4471–4473 (2012).
    [Crossref] [PubMed]
  2. J. Hunt, T. Tyler, S. Dhar, Y.-J. Tsai, P. Bowen, S. Larouche, N. M. Jokerst, and D. R. Smith, “Planar, flattened Luneburg lens at infrared wavelengths,” Opt. Express 20(2), 1706–1713 (2012).
    [Crossref] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  4. Y. Dong, H. Toyao, and T. Itoh, “Design and Characterization of Miniaturized Patch Antennas Loaded with Complementary Split-Ring Resonators,” IEEE Trans. Antenn. Propag. 60(2), 772–785 (2012).
    [Crossref]
  5. A. Alu and N. Engheta, “Coaxial-to-waveguide matching with e-near-zero ultranarrow channels and bends,” IEEE Trans. Antenn. Propag. 58(2), 328–339 (2010).
    [Crossref]
  6. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  7. J. S. Marcos, M. G. Silveirinha, and N. Engheta, “mu-near-zero supercoupling,” Phys. Rev. B 91(195112), 1 (2015).
  8. A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(5638), 5638 (2014).
    [Crossref] [PubMed]
  9. R. Kastner, “Dispersivity of Balanced Near-Zero Permittivity and Permeability (EMNZ) Medium,” IEEE Trans. Microw. Theory Tech. 64(10), 3108–3112 (2016).
    [Crossref]
  10. H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(123010), 1 (2012).
  11. J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(101109), 1 (2010).
  12. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [Crossref]
  13. J. C. Soric, N. Engheta, S. Maci, and A. Alu, “Omnidirectional metamaterial antennas based on e-near-zero channel matching,” IEEE Trans. Antenn. Propag. 61(1), 33–44 (2013).
    [Crossref]
  14. H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
    [Crossref] [PubMed]
  15. S. V. Boriskina, “Quasicrystals: Making invisible materials,” Nat. Photonics 9(7), 422–424 (2015).
    [Crossref]
  16. R. Dehbashi, D. Fathi, S. Mohajerzadeh, and B. Forouzandeh, “Equivalent left-handed/right-handed metamaterial’s circuit model for the massless dirac fermions with negative refraction,” IEEE J. Sel. Top. Quantum Electron. 16(2), 394–400 (2010).
    [Crossref]
  17. J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
    [Crossref] [PubMed]
  18. P. Zhang, Y. Jin, and S. He, “Cloaking an object on a dielectric half-space,” Opt. Express 16(5), 3161–3166 (2008).
    [Crossref] [PubMed]
  19. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref] [PubMed]
  20. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
    [Crossref] [PubMed]
  21. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  22. Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [Crossref] [PubMed]
  23. R. Dehbashi and M. Shahabadi, “External Cylindrical Invisibility Cloaks with Small Material Dynamic Range,” IEEE Trans. Antenn. Propag. 62(4), 2187–2191 (2014).
    [Crossref]
  24. R. Dehbashi and M. Shahabadi, “Possibility of perfect concealment by lossy conventional and lossy metamaterial cylindrical invisibility cloaks,” J. Appl. Phys. 114(24), 244501 (2013).
    [Crossref]
  25. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  26. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
    [Crossref] [PubMed]
  27. L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
    [Crossref]
  28. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
    [Crossref] [PubMed]
  29. G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antenn. Propag. 54(3), 1017–1030 (2006).
    [Crossref]
  30. Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express 18(16), 16587–16593 (2010).
    [Crossref] [PubMed]
  31. Y. Liu, X. Zhou, Z. Zhu, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 49(7), 075107 (2016).
    [Crossref]
  32. V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
    [Crossref] [PubMed]
  33. Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98(11), 113501 (2011).
    [Crossref]
  34. J. Luo, P. Xu, L. Gao, Y. Lai, and H. Chen, “Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects,” Plasmonics 7(2), 353–358 (2012).
    [Crossref]
  35. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of Matter Waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
    [Crossref] [PubMed]
  36. R. Fleury and A. Alu, “Quantum cloaking based on scattering cancellation,” Phys. Rev. B 87(4), 045423 (2013).
    [Crossref]
  37. M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband Elastic Cloaking in Thin Plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
    [Crossref] [PubMed]
  38. T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
    [Crossref] [PubMed]
  39. H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
    [Crossref] [PubMed]
  40. L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
    [Crossref] [PubMed]
  41. R. Dehbashi, K. S. Bialkowski, and A. M. Abbosh, “Uniqueness Theorem and Uniqueness of Inverse Problems for Lossy Anisotropic Inhomogeneous Structures with Diagonal Material Tensors,” J. Appl. Phys. 121(20), 203103 (2017).
    [Crossref]
  42. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).
  43. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]

2017 (1)

R. Dehbashi, K. S. Bialkowski, and A. M. Abbosh, “Uniqueness Theorem and Uniqueness of Inverse Problems for Lossy Anisotropic Inhomogeneous Structures with Diagonal Material Tensors,” J. Appl. Phys. 121(20), 203103 (2017).
[Crossref]

2016 (2)

Y. Liu, X. Zhou, Z. Zhu, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 49(7), 075107 (2016).
[Crossref]

R. Kastner, “Dispersivity of Balanced Near-Zero Permittivity and Permeability (EMNZ) Medium,” IEEE Trans. Microw. Theory Tech. 64(10), 3108–3112 (2016).
[Crossref]

2015 (3)

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “mu-near-zero supercoupling,” Phys. Rev. B 91(195112), 1 (2015).

S. V. Boriskina, “Quasicrystals: Making invisible materials,” Nat. Photonics 9(7), 422–424 (2015).
[Crossref]

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

2014 (4)

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(5638), 5638 (2014).
[Crossref] [PubMed]

R. Dehbashi and M. Shahabadi, “External Cylindrical Invisibility Cloaks with Small Material Dynamic Range,” IEEE Trans. Antenn. Propag. 62(4), 2187–2191 (2014).
[Crossref]

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

2013 (6)

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref] [PubMed]

R. Fleury and A. Alu, “Quantum cloaking based on scattering cancellation,” Phys. Rev. B 87(4), 045423 (2013).
[Crossref]

R. Dehbashi and M. Shahabadi, “Possibility of perfect concealment by lossy conventional and lossy metamaterial cylindrical invisibility cloaks,” J. Appl. Phys. 114(24), 244501 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

J. C. Soric, N. Engheta, S. Maci, and A. Alu, “Omnidirectional metamaterial antennas based on e-near-zero channel matching,” IEEE Trans. Antenn. Propag. 61(1), 33–44 (2013).
[Crossref]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

2012 (5)

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(123010), 1 (2012).

Y. Dong, H. Toyao, and T. Itoh, “Design and Characterization of Miniaturized Patch Antennas Loaded with Complementary Split-Ring Resonators,” IEEE Trans. Antenn. Propag. 60(2), 772–785 (2012).
[Crossref]

J. Luo, P. Xu, L. Gao, Y. Lai, and H. Chen, “Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects,” Plasmonics 7(2), 353–358 (2012).
[Crossref]

J. Hunt, T. Tyler, S. Dhar, Y.-J. Tsai, P. Bowen, S. Larouche, N. M. Jokerst, and D. R. Smith, “Planar, flattened Luneburg lens at infrared wavelengths,” Opt. Express 20(2), 1706–1713 (2012).
[Crossref] [PubMed]

Y. Urzhumov and D. R. Smith, “Low-loss directional cloaks without superluminal velocity or magnetic response,” Opt. Lett. 37(21), 4471–4473 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98(11), 113501 (2011).
[Crossref]

2010 (6)

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref] [PubMed]

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

A. Alu and N. Engheta, “Coaxial-to-waveguide matching with e-near-zero ultranarrow channels and bends,” IEEE Trans. Antenn. Propag. 58(2), 328–339 (2010).
[Crossref]

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(101109), 1 (2010).

R. Dehbashi, D. Fathi, S. Mohajerzadeh, and B. Forouzandeh, “Equivalent left-handed/right-handed metamaterial’s circuit model for the massless dirac fermions with negative refraction,” IEEE J. Sel. Top. Quantum Electron. 16(2), 394–400 (2010).
[Crossref]

Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express 18(16), 16587–16593 (2010).
[Crossref] [PubMed]

2009 (2)

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband Elastic Cloaking in Thin Plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[Crossref] [PubMed]

2008 (3)

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of Matter Waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

P. Zhang, Y. Jin, and S. He, “Cloaking an object on a dielectric half-space,” Opt. Express 16(5), 3161–3166 (2008).
[Crossref] [PubMed]

2007 (2)

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antenn. Propag. 54(3), 1017–1030 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

2004 (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

2002 (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Abbosh, A. M.

R. Dehbashi, K. S. Bialkowski, and A. M. Abbosh, “Uniqueness Theorem and Uniqueness of Inverse Problems for Lossy Anisotropic Inhomogeneous Structures with Diagonal Material Tensors,” J. Appl. Phys. 121(20), 203103 (2017).
[Crossref]

Alekseyev, L. V.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Alu, A.

R. Fleury and A. Alu, “Quantum cloaking based on scattering cancellation,” Phys. Rev. B 87(4), 045423 (2013).
[Crossref]

J. C. Soric, N. Engheta, S. Maci, and A. Alu, “Omnidirectional metamaterial antennas based on e-near-zero channel matching,” IEEE Trans. Antenn. Propag. 61(1), 33–44 (2013).
[Crossref]

A. Alu and N. Engheta, “Coaxial-to-waveguide matching with e-near-zero ultranarrow channels and bends,” IEEE Trans. Antenn. Propag. 58(2), 328–339 (2010).
[Crossref]

Alù, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Bai, X.

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Barnakov, Y. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Bialkowski, K. S.

R. Dehbashi, K. S. Bialkowski, and A. M. Abbosh, “Uniqueness Theorem and Uniqueness of Inverse Problems for Lossy Anisotropic Inhomogeneous Structures with Diagonal Material Tensors,” J. Appl. Phys. 121(20), 203103 (2017).
[Crossref]

Boriskina, S. V.

S. V. Boriskina, “Quasicrystals: Making invisible materials,” Nat. Photonics 9(7), 422–424 (2015).
[Crossref]

Bowen, P.

Burghignoli, P.

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antenn. Propag. 54(3), 1017–1030 (2006).
[Crossref]

Cai, B. G.

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(123010), 1 (2012).

Capolino, F.

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antenn. Propag. 54(3), 1017–1030 (2006).
[Crossref]

Cervera, F.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref] [PubMed]

Chan, C. T.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Chang, M. L.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Chen, H.

J. Luo, P. Xu, L. Gao, Y. Lai, and H. Chen, “Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects,” Plasmonics 7(2), 353–358 (2012).
[Crossref]

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98(11), 113501 (2011).
[Crossref]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Chen, L.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref] [PubMed]

Chen, W. J.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Cheng, Q.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Climente, A.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref] [PubMed]

Cui, T. J.

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(123010), 1 (2012).

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Cummer, S. A.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dehbashi, R.

R. Dehbashi, K. S. Bialkowski, and A. M. Abbosh, “Uniqueness Theorem and Uniqueness of Inverse Problems for Lossy Anisotropic Inhomogeneous Structures with Diagonal Material Tensors,” J. Appl. Phys. 121(20), 203103 (2017).
[Crossref]

R. Dehbashi and M. Shahabadi, “External Cylindrical Invisibility Cloaks with Small Material Dynamic Range,” IEEE Trans. Antenn. Propag. 62(4), 2187–2191 (2014).
[Crossref]

R. Dehbashi and M. Shahabadi, “Possibility of perfect concealment by lossy conventional and lossy metamaterial cylindrical invisibility cloaks,” J. Appl. Phys. 114(24), 244501 (2013).
[Crossref]

R. Dehbashi, D. Fathi, S. Mohajerzadeh, and B. Forouzandeh, “Equivalent left-handed/right-handed metamaterial’s circuit model for the massless dirac fermions with negative refraction,” IEEE J. Sel. Top. Quantum Electron. 16(2), 394–400 (2010).
[Crossref]

Dhar, S.

Dong, J. W.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Dong, Y.

Y. Dong, H. Toyao, and T. Itoh, “Design and Characterization of Miniaturized Patch Antennas Loaded with Complementary Split-Ring Resonators,” IEEE Trans. Antenn. Propag. 60(2), 772–785 (2012).
[Crossref]

Engheta, N.

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “mu-near-zero supercoupling,” Phys. Rev. B 91(195112), 1 (2015).

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(5638), 5638 (2014).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

J. C. Soric, N. Engheta, S. Maci, and A. Alu, “Omnidirectional metamaterial antennas based on e-near-zero channel matching,” IEEE Trans. Antenn. Propag. 61(1), 33–44 (2013).
[Crossref]

A. Alu and N. Engheta, “Coaxial-to-waveguide matching with e-near-zero ultranarrow channels and bends,” IEEE Trans. Antenn. Propag. 58(2), 328–339 (2010).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Enoch, S.

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband Elastic Cloaking in Thin Plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Farhat, M.

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband Elastic Cloaking in Thin Plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[Crossref] [PubMed]

Fathi, D.

R. Dehbashi, D. Fathi, S. Mohajerzadeh, and B. Forouzandeh, “Equivalent left-handed/right-handed metamaterial’s circuit model for the massless dirac fermions with negative refraction,” IEEE J. Sel. Top. Quantum Electron. 16(2), 394–400 (2010).
[Crossref]

Fleury, R.

R. Fleury and A. Alu, “Quantum cloaking based on scattering cancellation,” Phys. Rev. B 87(4), 045423 (2013).
[Crossref]

Forouzandeh, B.

R. Dehbashi, D. Fathi, S. Mohajerzadeh, and B. Forouzandeh, “Equivalent left-handed/right-handed metamaterial’s circuit model for the massless dirac fermions with negative refraction,” IEEE J. Sel. Top. Quantum Electron. 16(2), 394–400 (2010).
[Crossref]

Gao, D.

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Gao, F.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Gao, L.

J. Luo, P. Xu, L. Gao, Y. Lai, and H. Chen, “Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects,” Plasmonics 7(2), 353–358 (2012).
[Crossref]

García-Chocano, V. M.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of Matter Waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Guenneau, S.

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband Elastic Cloaking in Thin Plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[Crossref] [PubMed]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Halterman, K.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref] [PubMed]

Han, T.

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Hand, T.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Hang, Z. H.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Hao, J.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(101109), 1 (2010).

He, S.

Huang, X. Q.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Huang, Z. Y.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Hunt, J.

Itoh, T.

Y. Dong, H. Toyao, and T. Itoh, “Design and Characterization of Miniaturized Patch Antennas Loaded with Complementary Split-Ring Resonators,” IEEE Trans. Antenn. Propag. 60(2), 772–785 (2012).
[Crossref]

Jackson, D. R.

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antenn. Propag. 54(3), 1017–1030 (2006).
[Crossref]

Jin, Y.

Jokerst, N. M.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kastner, R.

R. Kastner, “Dispersivity of Balanced Near-Zero Permittivity and Permeability (EMNZ) Medium,” IEEE Trans. Microw. Theory Tech. 64(10), 3108–3112 (2016).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Lai, Y.

J. Luo, P. Xu, L. Gao, Y. Lai, and H. Chen, “Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects,” Plasmonics 7(2), 353–358 (2012).
[Crossref]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Larouche, S.

Li, B.

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Li, H.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Liu, R.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, X. Zhou, Z. Zhu, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 49(7), 075107 (2016).
[Crossref]

Llopis-Pontiveros, R.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref] [PubMed]

Lovat, G.

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antenn. Propag. 54(3), 1017–1030 (2006).
[Crossref]

Luo, J.

J. Luo, P. Xu, L. Gao, Y. Lai, and H. Chen, “Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects,” Plasmonics 7(2), 353–358 (2012).
[Crossref]

Ma, H. F.

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(123010), 1 (2012).

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Maci, S.

J. C. Soric, N. Engheta, S. Maci, and A. Alu, “Omnidirectional metamaterial antennas based on e-near-zero channel matching,” IEEE Trans. Antenn. Propag. 61(1), 33–44 (2013).
[Crossref]

Mahmoud, A. M.

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(5638), 5638 (2014).
[Crossref] [PubMed]

Marcos, J. S.

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “mu-near-zero supercoupling,” Phys. Rev. B 91(195112), 1 (2015).

Martínez-Pastor, J.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref] [PubMed]

Mock, J. J.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mohajerzadeh, S.

R. Dehbashi, D. Fathi, S. Mohajerzadeh, and B. Forouzandeh, “Equivalent left-handed/right-handed metamaterial’s circuit model for the massless dirac fermions with negative refraction,” IEEE J. Sel. Top. Quantum Electron. 16(2), 394–400 (2010).
[Crossref]

Narimanov, E. E.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Neff, C. W.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

Nguyen, V. C.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref] [PubMed]

Noginov, M. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

O’Brien, K.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Qiu, C. W.

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Qiu, M.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(101109), 1 (2010).

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

Ruan, Z.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Salandrino, A.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Sánchez-Dehesa, J.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref] [PubMed]

Sanchis, L.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Shahabadi, M.

R. Dehbashi and M. Shahabadi, “External Cylindrical Invisibility Cloaks with Small Material Dynamic Range,” IEEE Trans. Antenn. Propag. 62(4), 2187–2191 (2014).
[Crossref]

R. Dehbashi and M. Shahabadi, “Possibility of perfect concealment by lossy conventional and lossy metamaterial cylindrical invisibility cloaks,” J. Appl. Phys. 114(24), 244501 (2013).
[Crossref]

Shi, J. H.

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(123010), 1 (2012).

Shi, X.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Silveirinha, M. G.

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “mu-near-zero supercoupling,” Phys. Rev. B 91(195112), 1 (2015).

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Smith, D. R.

J. Hunt, T. Tyler, S. Dhar, Y.-J. Tsai, P. Bowen, S. Larouche, N. M. Jokerst, and D. R. Smith, “Planar, flattened Luneburg lens at infrared wavelengths,” Opt. Express 20(2), 1706–1713 (2012).
[Crossref] [PubMed]

Y. Urzhumov and D. R. Smith, “Low-loss directional cloaks without superluminal velocity or magnetic response,” Opt. Lett. 37(21), 4471–4473 (2012).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Soric, J. C.

J. C. Soric, N. Engheta, S. Maci, and A. Alu, “Omnidirectional metamaterial antennas based on e-near-zero channel matching,” IEEE Trans. Antenn. Propag. 61(1), 33–44 (2013).
[Crossref]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Suchowski, H.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

Sun, C.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of Matter Waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Sun, H.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Thong, J. T.

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Toyao, H.

Y. Dong, H. Toyao, and T. Itoh, “Design and Characterization of Miniaturized Patch Antennas Loaded with Complementary Split-Ring Resonators,” IEEE Trans. Antenn. Propag. 60(2), 772–785 (2012).
[Crossref]

Tsai, Y.-J.

Tumkur, T.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Tyler, T.

Urzhumov, Y.

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Wilton, D. R.

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antenn. Propag. 54(3), 1017–1030 (2006).
[Crossref]

Wong, Z. J.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

Xu, H.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Xu, P.

J. Luo, P. Xu, L. Gao, Y. Lai, and H. Chen, “Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects,” Plasmonics 7(2), 353–358 (2012).
[Crossref]

Xu, Y.

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98(11), 113501 (2011).
[Crossref]

Yan, M.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

Yan, W.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(101109), 1 (2010).

Yin, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

Zhang, B.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Zhang, P.

Zhang, S.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of Matter Waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Zhang, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of Matter Waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Zhang, Z. Q.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Zhao, X.

Y. Liu, X. Zhou, Z. Zhu, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 49(7), 075107 (2016).
[Crossref]

Zhong, Z. C.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Zhou, X.

Y. Liu, X. Zhou, Z. Zhu, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 49(7), 075107 (2016).
[Crossref]

Zhu, Z.

Y. Liu, X. Zhou, Z. Zhu, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 49(7), 075107 (2016).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(101109), 1 (2010).

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98(11), 113501 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Dehbashi, D. Fathi, S. Mohajerzadeh, and B. Forouzandeh, “Equivalent left-handed/right-handed metamaterial’s circuit model for the massless dirac fermions with negative refraction,” IEEE J. Sel. Top. Quantum Electron. 16(2), 394–400 (2010).
[Crossref]

IEEE Trans. Antenn. Propag. (5)

J. C. Soric, N. Engheta, S. Maci, and A. Alu, “Omnidirectional metamaterial antennas based on e-near-zero channel matching,” IEEE Trans. Antenn. Propag. 61(1), 33–44 (2013).
[Crossref]

Y. Dong, H. Toyao, and T. Itoh, “Design and Characterization of Miniaturized Patch Antennas Loaded with Complementary Split-Ring Resonators,” IEEE Trans. Antenn. Propag. 60(2), 772–785 (2012).
[Crossref]

A. Alu and N. Engheta, “Coaxial-to-waveguide matching with e-near-zero ultranarrow channels and bends,” IEEE Trans. Antenn. Propag. 58(2), 328–339 (2010).
[Crossref]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antenn. Propag. 54(3), 1017–1030 (2006).
[Crossref]

R. Dehbashi and M. Shahabadi, “External Cylindrical Invisibility Cloaks with Small Material Dynamic Range,” IEEE Trans. Antenn. Propag. 62(4), 2187–2191 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

R. Kastner, “Dispersivity of Balanced Near-Zero Permittivity and Permeability (EMNZ) Medium,” IEEE Trans. Microw. Theory Tech. 64(10), 3108–3112 (2016).
[Crossref]

J. Appl. Phys. (2)

R. Dehbashi and M. Shahabadi, “Possibility of perfect concealment by lossy conventional and lossy metamaterial cylindrical invisibility cloaks,” J. Appl. Phys. 114(24), 244501 (2013).
[Crossref]

R. Dehbashi, K. S. Bialkowski, and A. M. Abbosh, “Uniqueness Theorem and Uniqueness of Inverse Problems for Lossy Anisotropic Inhomogeneous Structures with Diagonal Material Tensors,” J. Appl. Phys. 121(20), 203103 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. Liu, X. Zhou, Z. Zhu, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 49(7), 075107 (2016).
[Crossref]

Nat. Commun. (1)

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(5638), 5638 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

S. V. Boriskina, “Quasicrystals: Making invisible materials,” Nat. Photonics 9(7), 422–424 (2015).
[Crossref]

New J. Phys. (1)

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(123010), 1 (2012).

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (3)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “mu-near-zero supercoupling,” Phys. Rev. B 91(195112), 1 (2015).

R. Fleury and A. Alu, “Quantum cloaking based on scattering cancellation,” Phys. Rev. B 87(4), 045423 (2013).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (12)

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref] [PubMed]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband Elastic Cloaking in Thin Plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[Crossref] [PubMed]

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of Matter Waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Plasmonics (1)

J. Luo, P. Xu, L. Gao, Y. Lai, and H. Chen, “Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects,” Plasmonics 7(2), 353–358 (2012).
[Crossref]

Science (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Other (1)

R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) Wave shaping of the zero material slabs. (b) At surface S 1 in the center line of the cloak, the phase front of the field is the same as the phase front outside of the device. (c) Half of the cloak is replaced by a DNZ slab.
Fig. 2
Fig. 2 The entire DNZ slab has a constant electric field upon incident of fields with any polarization. For TE and TM polarized waves, the same happens if the material is MNZ and ENZ, respectively.
Fig. 3
Fig. 3 A T E z electric field is incident upon a half-sized external invisibility cloak.
Fig. 4
Fig. 4 The half-sized internal cloak with different cloaked dielectric objects: (a) Cloaked object with ε d = 30. (b) Cloaked object with ε d = 10.
Fig. 5
Fig. 5 The half-sized external cloak with different embedded dielectrics: (a) Embedded dielectric with ε d = 16. (b) Embedded dielectric with ε d = 12.
Fig. 6
Fig. 6 (a) Half-sized external cloak using DNZ material with transformation parameters (p, w, v) = (1.3, 2.5, 1.1). Source is on the left side. (b) Comparing the simulation and the analytical results for E z field component along c< r <c, φ (0, 180), z =0 at t=0s, due to a TEz plane wave incidence from left onto a half external cloak with a=0.5 λ 0 , and b= λ 0 transformation orders (p, w, v) = (1.3, 2.5, 1.1).
Fig. 7
Fig. 7 (a) Half-sized internal cloak using DNZ with parameters (m, n) = (0.2, 0.3) (cloaked object with ε obj = 15). Source is on the left side. (b) Comparing the simulation result with the analytical result for E z field component along the 0.4< r <0.4, φ = (0, 180), z =0at t=0s, due to a TEz plane wave incidence from left onto a half internal cloak with a=0.67 λ 0 , and b=1.33 λ 0 and orders(m, n) = (0.2, 0.3).
Fig. 8
Fig. 8 E z field component due to a T E z plane wave incidence from right. (a) The dielectric of ε r = 20 ( λ 0 <r<1.2 λ 0 ) has been cloaked by a half-ring anti-object (0.9 λ 0 <r< λ 0 ) and the half-sized external cloak (0.5 λ 0 <r< λ 0 ). (b) The half-ring dielectric of ε r = 20 ( λ 0 <r<1.2 λ 0 ) without the cloak and anti-object which caused strong perturbation outside of the half-ring.
Fig. 9
Fig. 9 Half-sized cloaks’ function with lossy finite length DNZ slabs: (a) The scattered field caused by the arbitrary shaped PEC, without half cloak and DNZ slab. (b) Internal cloak with cloaked PEC object: finite sized lossy DNZ slab with ε slab =0.05i0.04, μ slab =0.05i0.04 with length equal to the half cloak’s diameter. (c) Like (b) but with DNZ slab with length twice the half cloak’s diameter (d) External dielectric object with ε obj = 20 without the half external cloak and the slab. (e) External cloak with cloaked object shown in (d): finite sized lossy DNZ slab with ε slab =0.05i0.1, μ slab =0.05i0.1. (f) Like (e) but with DNZ slab with length one and half times of the half cloak’s diameter.
Fig. 10
Fig. 10 Comparing the fields along the x axis at y = 0 for the cases in Fig. 9(a) and 9(b).
Fig. 11
Fig. 11 Comparing the fields along the x axis at y = 0 for the cases in Fig. 9(d) and 9(e).
Fig. 12
Fig. 12 Impinging a wave from left to half external cloak. Angle between the wave front and the slab is 5 degrees ( ε slab = μ slab = 10 6 ).
Fig. 13
Fig. 13 Impinging a T E z wave from right to: (a) half external cloak. (b) DNZ slab without external cloak. (c) Half internal cloak with ε Obj =15. (d) DNZ slab without internal cloak. The angle between the wave front and the slab is 5 degrees ( ε slab = μ slab = 10 6 ).
Fig. 14
Fig. 14 Impinging a T E z wave from right to half external cloak with cloaked external object (external half-ring) with ε Obj =20 and slab with length equal to the half cloak’s diameter with: (a) ε slab = μ slab = 10 6 . (b) ε slab = μ slab =0.10.04i. The angle between the wave front and the slab is 5 degrees.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

H ¯ d =(1/iω μ 0 μ d )× E ¯ d
E z i = E 0 e j k 0 x
E z s_slab = E 0 R e j k 0 x
E z s_cloak = E 0 q= + j q a q H q (2) ( k 0 r ) e jq φ
E z l = E 0 q= + j q ( J q ( k 0 r )+ a q H q (2) ( k 0 r )+R J q ( k 0 r ) ) e jq φ
H φ l = E 0 k 0 jω μ 0 q= + j q ( J q ( k 0 r )+ a q H q (2) ( k 0 r )+R J q ( k 0 r ) ) e jq φ
f d ( r )=( c/ a p ) r p ;p>0
ε z d =p ( c a p ) 2 r 2( p1 ) , μ r d = 1 p , μ φ d =p;p>0
f c ( r )= ( b w c w b v a v r v + b v c w b w a v b v a v ) 1/w ;( v,w ) 2 { ( 0,0 ) }
ε z ext_c = v w ( c w b w a v b v ) 2/w r v2 ( r v + b w a v b v c w c w b w ) 2/w1 μ r ext_c = w v 1 r v ( r v + b w a v b v c w c w b w ); μ φ ext_c = 1 μ r ext_c ;( v,w ) 2 { ( 0,0 ) }
E z d = E 0 q= + d q j q J q ( k 0 f d ( r ) ) e jq φ ; H φ d = E 0 k 0 jω μ 0 c a p r p1 q= + d q j q J q ( k 0 f d ( r ) ) e jq φ
a< r <b: E z ext_c = E 0 q= + j q b q J q ( k 0 f c ( r ) ) e jq φ H φ ext_c = E 0 k 0 jω μ 0 ( c w b w a v b v ) 1 w 1 r ( r v + b w a v b v c w c w b w ) 1 w q= + j q b q J q ( k 0 f c ( r ) ) e jq φ
d q = b q
a q H q (2) ( k 0 b)+( (1) q R b q ) J q ( k 0 b)= J q ( k 0 b); a q H q (2) ( k 0 b)+( (1) q R b q ) J q ( k 0 b)= J q ( k 0 b)
a q = | J q ( k 0 b) J q ( k 0 b ) J q ( k 0 b ) J q ( k 0 b ) | Δ ; (1) q R b q = | H q 2 ( k 0 b ) J q ( k 0 b ) H q 2 ( k 0 b ) J q ( k 0 b ) | Δ ;Δ=| H q 2 ( k 0 b ) J q ( k 0 b ) H q 2 ( k 0 b ) J q ( k 0 b ) |
Δ= J q ( k 0 b ) H q (2) ( k 0 b ) J q ( k 0 b ) H q (2) ( k 0 b )=2/ jπ k 0 b 0
(1) q R b q =1
a q =0
E z l = E z i + E z s_slab = E 0 ( e j k 0 x +R e j k 0 x ); H y l = k 0 E 0 ω μ 0 ( e j k 0 x R e j k 0 x )
E z l (x=0)= E 0 (1+R)
E z r =T E 0 e j k 0 (xd) ;H y r = k 0 ω μ 0 T E 0 e j k 0 (xd)
T=1+R
H y l ( x=0 )= H y r ( x=d )
R=0
T=1
b q =1
f c ( r )= [ ( ( b m a m )/ b n ) r n + a m ] 1/m ;0<rb
ε r int_c = μ r int_c = n m r m a m r m ; ε φ int_c = μ φ int_c = 1 ε r int_c ; ε z int_c = μ z int_c = m b 2 r m2 n ( b m a m ) 2 n ( r m a m ) 2 n 1 ;m0,n>0
E z int_c = E 0 q= + j q J q ( k c ( r m a m ) 1 n ) e jq φ H φ int_c = E 0 k c jω μ φ int_c m n r m1 ( r m a m ) 1 n 1 q= + j q J q ( k c ( r m a m ) 1 n ) e jq φ ; k c =b/ ( b m a m ) 1 n k 0
E z int_c ( r ' )= E 0 q= + j q J q (0) e jq φ
{ J q (0)=1 q=0 J q (0)=0 q0
E z int_c ( r =a )= E 0
(w,v)0:c= b 2 /a
μ r ext_c = μ φ ext_c =1, ε z ext_c = ( b/ r ) 4

Metrics