Abstract

We demonstrate an electro-tunable laser based on a plano-concave (p-c) Fabry-Pérot (FP) microcavity filled with dye-doped liquid crystal (LC) gain material. Owing to the high Q-factor of the p-c FP microcavity, the lasing threshold of the LC laser is as low as 0.58 µJ/mm2. The single-mode emission wavelength can be easily tuned by varying applied voltage, which induces the reconfiguration of LC molecules. Furthermore, this lasing platform operates at room temperature, thanks to the wide temperature range of the nematic LC. We believe that our LC laser is widely applicable to light sources of various micro total analysis systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically tunable Fabry–Perot lasing in nematic liquid crystal cells

Inge Nys, Jeroen Beeckman, and Kristiaan Neyts
J. Opt. Soc. Am. B 31(7) 1516-1524 (2014)

Electrically tunable infrared filter based on a cascaded liquid-crystal Fabry–Perot for spectral imaging detection

Jiuning Lin, Qing Tong, Yu Lei, Zhaowei Xin, Dong Wei, Xinyu Zhang, Jing Liao, Haiwei Wang, and Changsheng Xie
Appl. Opt. 56(7) 1925-1929 (2017)

High-Q, low-mode-volume microsphere-integrated Fabry–Perot cavity for optofluidic lasing applications

Xiaoqin Wu, Yipei Wang, Qiushu Chen, Yu-Cheng Chen, Xuzhou Li, Limin Tong, and Xudong Fan
Photon. Res. 7(1) 50-60 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47(3), 649–657 (1975).
    [Crossref]
  2. A. E. Siegman, Lasers (University Science Books, 1986).
  3. X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
    [Crossref] [PubMed]
  4. Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
    [Crossref] [PubMed]
  5. W. Lee and X. Fan, “Intracavity DNA melting analysis with optofluidic lasers,” Anal. Chem. 84(21), 9558–9563 (2012).
    [PubMed]
  6. Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
    [Crossref] [PubMed]
  7. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  8. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [Crossref]
  9. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluidics 4(1-2), 145–158 (2008).
    [Crossref]
  10. W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
    [Crossref]
  11. T. Uchida, “40 years research and development on liquid crystal displays,” Jpn. J. Appl. Phys. 53(3S1), 03CA02 (2014).
  12. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  13. M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-Tunable Liquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
    [Crossref]
  14. T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
    [Crossref]
  15. S. M. Morris, P. J. W. Hands, S. Findeisen-Tandel, R. H. Cole, T. D. Wilkinson, and H. J. Coles, “Polychromatic liquid crystal laser arrays towards display applications,” Opt. Express 16(23), 18827–18837 (2008).
    [Crossref] [PubMed]
  16. M. Y. Jeong and K. Kwak, “Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal,” Appl. Opt. 55(33), 9378–9383 (2016).
    [Crossref] [PubMed]
  17. M. Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12(3), 2007–2018 (2011).
    [Crossref] [PubMed]
  18. M. Y. Jeong and J. Cha, “Firsthand in situ observation of active fine laser tuning by combining a temperature gradient and a CLC wedge cell structure,” Opt. Express 23(16), 21243–21253 (2015).
    [Crossref] [PubMed]
  19. W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
    [Crossref] [PubMed]
  20. J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
    [Crossref]
  21. D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2(1), 012119 (2012).
    [Crossref]
  22. D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041701 (2012).
    [Crossref] [PubMed]
  23. J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
    [Crossref]
  24. W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2006).
    [Crossref]

2016 (1)

2015 (2)

M. Y. Jeong and J. Cha, “Firsthand in situ observation of active fine laser tuning by combining a temperature gradient and a CLC wedge cell structure,” Opt. Express 23(16), 21243–21253 (2015).
[Crossref] [PubMed]

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

2014 (2)

T. Uchida, “40 years research and development on liquid crystal displays,” Jpn. J. Appl. Phys. 53(3S1), 03CA02 (2014).

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

2012 (4)

W. Lee and X. Fan, “Intracavity DNA melting analysis with optofluidic lasers,” Anal. Chem. 84(21), 9558–9563 (2012).
[PubMed]

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2(1), 012119 (2012).
[Crossref]

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041701 (2012).
[Crossref] [PubMed]

2011 (2)

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

M. Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12(3), 2007–2018 (2011).
[Crossref] [PubMed]

2010 (2)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

2008 (2)

2007 (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

2006 (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2006).
[Crossref]

2005 (2)

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

2004 (1)

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

2003 (1)

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-Tunable Liquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

1975 (1)

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47(3), 649–657 (1975).
[Crossref]

Abbate, G.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2006).
[Crossref]

Arnold, S.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Barbour, R. J.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2(1), 012119 (2012).
[Crossref]

Caggioni, M.

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041701 (2012).
[Crossref] [PubMed]

Cao, W.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2006).
[Crossref]

Cha, J.

Chen, J.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Chen, Y.-J.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Cohen, I.

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041701 (2012).
[Crossref] [PubMed]

Cole, R. H.

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Coles, H. J.

Deutsch, C.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2(1), 012119 (2012).
[Crossref]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Fan, X.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

W. Lee and X. Fan, “Intracavity DNA melting analysis with optofluidic lasers,” Anal. Chem. 84(21), 9558–9563 (2012).
[PubMed]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Findeisen-Tandel, S.

Fuh, A. Y. G.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Ganzke, D.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-Tunable Liquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Gauza, S.

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

Haase, W.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-Tunable Liquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Hands, P. J. W.

Hunger, D.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2(1), 012119 (2012).
[Crossref]

Jeong, M. Y.

Kasano, M.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-Tunable Liquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Kitasho, T.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-Tunable Liquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Kwak, K.

Lee, W.

W. Lee and X. Fan, “Intracavity DNA melting analysis with optofluidic lasers,” Anal. Chem. 84(21), 9558–9563 (2012).
[PubMed]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

Li, H.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

Li, J.

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

Li, Z.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluidics 4(1-2), 145–158 (2008).
[Crossref]

Lin, T.-H.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Liu, J. H.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Liu, S.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Lu, R.

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Marino, A.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2006).
[Crossref]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Morris, S. M.

Ozaki, M.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-Tunable Liquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Palffy-Muhoray, P.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2006).
[Crossref]

Porter, D.

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041701 (2012).
[Crossref] [PubMed]

Psaltis, D.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluidics 4(1-2), 145–158 (2008).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Reddy, K.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

Reichel, J.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2(1), 012119 (2012).
[Crossref]

Savage, J. R.

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041701 (2012).
[Crossref] [PubMed]

Shank, C. V.

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47(3), 649–657 (1975).
[Crossref]

Shopova, S. I.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Spicer, P.

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041701 (2012).
[Crossref] [PubMed]

Sun, Y.

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Suter, J. D.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

Taheri, B.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2006).
[Crossref]

Uchida, T.

T. Uchida, “40 years research and development on liquid crystal displays,” Jpn. J. Appl. Phys. 53(3S1), 03CA02 (2014).

Wang, W.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Warburton, R. J.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2(1), 012119 (2012).
[Crossref]

Wen, C. H.

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Wilkinson, T. D.

Wu, C. S.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Wu, C.-H.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Wu, J. W.

M. Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12(3), 2007–2018 (2011).
[Crossref] [PubMed]

Wu, S. T.

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Wu, S.-T.

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yang, P. C.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Yoshino, K.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-Tunable Liquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Yun, S. H.

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Zhang, T.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Zhou, C.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-Tunable Liquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

AIP Adv. (1)

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2(1), 012119 (2012).
[Crossref]

Anal. Chem. (1)

W. Lee and X. Fan, “Intracavity DNA melting analysis with optofluidic lasers,” Anal. Chem. 84(21), 9558–9563 (2012).
[PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

Int. J. Mol. Sci. (1)

M. Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12(3), 2007–2018 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

J. Disp. Technol. (1)

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Uchida, “40 years research and development on liquid crystal displays,” Jpn. J. Appl. Phys. 53(3S1), 03CA02 (2014).

Lab Chip (1)

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Microfluid. Nanofluidics (1)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluidics 4(1-2), 145–158 (2008).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2006).
[Crossref]

Nat. Methods (1)

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041701 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47(3), 649–657 (1975).
[Crossref]

Other (1)

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematics of the LC laser with p-c FP microcavity during operation. (a) Horizontally-aligned dye-doped LC molecules interact with light confined in the microcavity providing an optical feedback for lasing. The laser signal emerges from both the top and bottom sides of the sandwich cell. (b) When the electric field is applied to the top and bottom electrodes of the sandwich cell, the LC molecules are vertically aligned, in which the confined light passing through the sample experiences a different refractive index, owing to the birefringence of the LC molecules. POM images of the sandwich cell (c) without / (d) with applied electric field, showing typical planar and homeotropic aligned nematic LC textures, respectively. Since the normally incident light with perpendicular polarization does not experience any birefringence, the backlight is blocked by the analyzer, presenting the dark state in (d). Scale bar = 100 µm.
Fig. 2
Fig. 2 Lasing characteristics of the LC laser. (a) Laser emission spectra: the p-c cavity laser is pumped with OPO at the pump energy density of 3.2 µJ/mm2, while the p-p cavity laser is pumped at 11.1 µJ/mm2. Note that the signal below lasing threshold shows fluorescence from the DCM dye as indicated by blue curve. Absolute value of the intensities cannot be compared, since different gratings of the spectrometer were used to obtain lasing and fluorescence spectra. (b) Spectrally integrated laser intensity as a function of the pump energy density. A linear fit of the laser intensities from the p-c cavity laser (red) results in a corresponding lasing threshold of approximately 0.58 µJ/mm2, whereas the p-p cavity laser (black) has 3.3 µJ/mm2.
Fig. 3
Fig. 3 Wavelength tuning of the LC laser by varying applied voltage. (a) When no voltage is applied to the sandwich cell, the laser shows single-mode emission at 648.9 nm. As the electric field increases, the laser emission wavelength continuously red-shifts. For example, when 1.5 V is applied, the wavelength produced is 655.7 nm, which is 6.8 nm longer than that of the 0 V case. (b) Linear fit of the wavelength tuning. The slope is 4.5 nm/V.
Fig. 4
Fig. 4 Laser emission spectrum of the LC laser with a larger sandwich cell gap (20 µm), when pumped with the pump energy density of 3.2 µJ/mm2. The signal shows a multi-mode laser emission with the FSR of 5.3 nm.

Metrics