Abstract

Comb generation in different mode families via a stimulated Raman scattering (SRS) process is studied using a silica toroid microcavity. The broad gain bandwidth of SRS in silica allows us to excite longitudinal modes at long wavelengths belonging to mode families that are either the same as or different from the pump mode. We found through experiment and numerical analysis, that an SRS comb in a different mode family with a high quality factor (Q) is excited when we pump in a low-Q mode. No transverse mode interaction occurs when we excite in a high-Q mode resulting the generation of a single comb family. We studied the condition of the transverse mode interaction while varying the mode overlap and Q of the Raman mode. Our experimental results are in good agreement with the analysis and this enables us to control the generation of one- and two-mode combs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity

Shun Fujii, Takumi Kato, Ryo Suzuki, Atsuhiro Hori, and Takasumi Tanabe
J. Opt. Soc. Am. B 35(1) 100-106 (2018)

Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators

Guoping Lin, Souleymane Diallo, John M. Dudley, and Yanne K. Chembo
Opt. Express 24(13) 14880-14894 (2016)

Nonlinear photonics with high-Q whispering-gallery-mode resonators

Guoping Lin, Aurélien Coillet, and Yanne K. Chembo
Adv. Opt. Photon. 9(4) 828-890 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  2. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  3. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  5. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
    [Crossref]
  6. T. Kato, A. C. Jinnai, T. Nagano, T. Kobatake, R. Suzuki, W. Yoshiki, and T. Tanabe, “Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity,” Jpn. J. Appl. Phys. 55(7), 072201 (2016).
    [Crossref]
  7. A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
    [Crossref] [PubMed]
  8. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
    [Crossref]
  9. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
    [Crossref] [PubMed]
  10. M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3(8), 854–860 (2016).
    [Crossref]
  11. P.-H. Wang, F. Ferdous, H. Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20(28), 29284–29295 (2012).
    [Crossref] [PubMed]
  12. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
    [Crossref] [PubMed]
  13. J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
    [Crossref] [PubMed]
  14. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [Crossref] [PubMed]
  15. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
    [Crossref] [PubMed]
  16. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
    [Crossref] [PubMed]
  17. T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1219–1228 (2004).
    [Crossref]
  18. A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
    [Crossref]
  19. I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32(2), 166–168 (2007).
    [Crossref] [PubMed]
  20. I. S. Grudinin and L. Maleki, “Efficient Raman laser based on a CaF2 resonator,” J. Opt. Soc. Am. B 25(4), 594–598 (2008).
    [Crossref]
  21. P. Latawiec, V. Venkataraman, M. J. Burek, B. J. M. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica 2(11), 924–928 (2015).
    [Crossref]
  22. B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38(11), 1802–1804 (2013).
    [Crossref] [PubMed]
  23. N. Deka, A. J. Maker, and A. M. Armani, “Titanium-enhanced Raman microcavity laser,” Opt. Lett. 39(6), 1354–1357 (2014).
    [Crossref] [PubMed]
  24. H. Choi and A. M. Armani, “High Efficiency Raman Lasers Based on Zr-Doped Silica Hybrid Microcavities,” ACS Photonics 3(12), 2383–2388 (2016).
    [Crossref]
  25. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
    [Crossref] [PubMed]
  26. F. Vanier, M. Rochette, N. Godbout, and Y. A. Peter, “Raman lasing in As2S3 high-Q whispering gallery mode resonators,” Opt. Lett. 38(23), 4966–4969 (2013).
    [Crossref] [PubMed]
  27. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
    [Crossref]
  28. V. M. N. Passaro and F. De Leonardis, “Investigation of SOI Raman lasers for mid-infrared gas sensing,” Sensors (Basel) 9(10), 7814–7836 (2009).
    [Crossref] [PubMed]
  29. Y. K. Chembo, I. S. Grudinin, and N. Yu, “Spatiotemporal dynamics of Kerr-Raman optical frequency combs,” Phys. Rev. A 92(4), 043818 (2015).
    [Crossref]
  30. G. Lin and Y. K. Chembo, “Phase-locking transition in Raman combs generated with whispering gallery mode resonators,” Opt. Lett. 41(16), 3718–3721 (2016).
    [Crossref] [PubMed]
  31. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6(6), 1159–1166 (1989).
    [Crossref]
  32. G. P. Agrawal, Nonlinear Optical Fiber Optics, (Academic, New York, 2001).
  33. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
    [Crossref] [PubMed]
  34. L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58(21), 2209–2211 (1987).
    [Crossref] [PubMed]
  35. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
    [Crossref] [PubMed]
  36. Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13(1), 53–57 (2016), doi:.
    [Crossref]
  37. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31(21), 3086–3088 (2006).
    [Crossref] [PubMed]
  38. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19(12), 2886–2892 (2002).
    [Crossref]
  39. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  40. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
    [Crossref] [PubMed]
  41. M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” https://arxiv.org/abs/1610.01121 (2016).

2016 (7)

T. Kato, A. C. Jinnai, T. Nagano, T. Kobatake, R. Suzuki, W. Yoshiki, and T. Tanabe, “Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity,” Jpn. J. Appl. Phys. 55(7), 072201 (2016).
[Crossref]

H. Choi and A. M. Armani, “High Efficiency Raman Lasers Based on Zr-Doped Silica Hybrid Microcavities,” ACS Photonics 3(12), 2383–2388 (2016).
[Crossref]

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13(1), 53–57 (2016), doi:.
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3(8), 854–860 (2016).
[Crossref]

G. Lin and Y. K. Chembo, “Phase-locking transition in Raman combs generated with whispering gallery mode resonators,” Opt. Lett. 41(16), 3718–3721 (2016).
[Crossref] [PubMed]

2015 (3)

P. Latawiec, V. Venkataraman, M. J. Burek, B. J. M. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica 2(11), 924–928 (2015).
[Crossref]

Y. K. Chembo, I. S. Grudinin, and N. Yu, “Spatiotemporal dynamics of Kerr-Raman optical frequency combs,” Phys. Rev. A 92(4), 043818 (2015).
[Crossref]

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

2014 (3)

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

N. Deka, A. J. Maker, and A. M. Armani, “Titanium-enhanced Raman microcavity laser,” Opt. Lett. 39(6), 1354–1357 (2014).
[Crossref] [PubMed]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

2013 (7)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38(11), 1802–1804 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

F. Vanier, M. Rochette, N. Godbout, and Y. A. Peter, “Raman lasing in As2S3 high-Q whispering gallery mode resonators,” Opt. Lett. 38(23), 4966–4969 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

2009 (1)

V. M. N. Passaro and F. De Leonardis, “Investigation of SOI Raman lasers for mid-infrared gas sensing,” Sensors (Basel) 9(10), 7814–7836 (2009).
[Crossref] [PubMed]

2008 (3)

I. S. Grudinin and L. Maleki, “Efficient Raman laser based on a CaF2 resonator,” J. Opt. Soc. Am. B 25(4), 594–598 (2008).
[Crossref]

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

2007 (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32(2), 166–168 (2007).
[Crossref] [PubMed]

2006 (1)

2004 (2)

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1219–1228 (2004).
[Crossref]

2003 (2)

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[Crossref] [PubMed]

2002 (3)

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19(12), 2886–2892 (2002).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

1989 (1)

1987 (1)

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58(21), 2209–2211 (1987).
[Crossref] [PubMed]

Agrawal, G. P.

Aksyuk, V.

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Armani, A. M.

H. Choi and A. M. Armani, “High Efficiency Raman Lasers Based on Zr-Doped Silica Hybrid Microcavities,” ACS Photonics 3(12), 2383–2388 (2016).
[Crossref]

N. Deka, A. J. Maker, and A. M. Armani, “Titanium-enhanced Raman microcavity laser,” Opt. Lett. 39(6), 1354–1357 (2014).
[Crossref] [PubMed]

Armani, D. K.

Asano, T.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Balakireva, I. V.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Beha, K.

Brasch, V.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

Bulu, I.

Burek, M. J.

Byrd, J.

Cantrell, C. D.

Chembo, Y. K.

G. Lin and Y. K. Chembo, “Phase-locking transition in Raman combs generated with whispering gallery mode resonators,” Opt. Lett. 41(16), 3718–3721 (2016).
[Crossref] [PubMed]

Y. K. Chembo, I. S. Grudinin, and N. Yu, “Spatiotemporal dynamics of Kerr-Raman optical frequency combs,” Phys. Rev. A 92(4), 043818 (2015).
[Crossref]

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Chen, L.

Chihara, M.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Choi, H.

H. Choi and A. M. Armani, “High Efficiency Raman Lasers Based on Zr-Doped Silica Hybrid Microcavities,” ACS Photonics 3(12), 2383–2388 (2016).
[Crossref]

Clements, W. R.

Coddington, I.

Coen, S.

Cohen, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Coillet, A.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

De Leonardis, F.

V. M. N. Passaro and F. De Leonardis, “Investigation of SOI Raman lasers for mid-infrared gas sensing,” Sensors (Basel) 9(10), 7814–7836 (2009).
[Crossref] [PubMed]

Deka, N.

Del’Haye, P.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Diddams, S. A.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Eliyahu, D.

Erkintalo, M.

Ferdous, F.

Freude, W.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Gaeta, A. L.

Godbout, N.

Gong, Q.

Gordon, J. P.

Gorodetsky, M. L.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

Griffith, A. G.

Grudinin, I. S.

Hänsch, T. W.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Haus, H. A.

Hausmann, B. J. M.

Henriet, R.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Herr, T.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Hollenbeck, D.

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Ilchenko, V. S.

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[Crossref]

Inui, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Jinnai, A. C.

T. Kato, A. C. Jinnai, T. Nagano, T. Kobatake, R. Suzuki, W. Yoshiki, and T. Tanabe, “Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity,” Jpn. J. Appl. Phys. 55(7), 072201 (2016).
[Crossref]

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

Kato, T.

T. Kato, A. C. Jinnai, T. Nagano, T. Kobatake, R. Suzuki, W. Yoshiki, and T. Tanabe, “Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity,” Jpn. J. Appl. Phys. 55(7), 072201 (2016).
[Crossref]

Kippenberg, T. J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1219–1228 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Kobatake, T.

T. Kato, A. C. Jinnai, T. Nagano, T. Kobatake, R. Suzuki, W. Yoshiki, and T. Tanabe, “Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity,” Jpn. J. Appl. Phys. 55(7), 072201 (2016).
[Crossref]

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

Koos, C.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Larger, L.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Latawiec, P.

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Leaird, D. E.

Lee, H.

Lee, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Lefever, R.

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58(21), 2209–2211 (1987).
[Crossref] [PubMed]

Letargat, R. J.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[Crossref]

Leuthold, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Li, B.-B.

Li, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Liang, W.

Lin, G.

Lin, Q.

Lipson, M.

Loncar, M.

Lugiato, L. A.

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58(21), 2209–2211 (1987).
[Crossref] [PubMed]

Maker, A. J.

Maleki, L.

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

I. S. Grudinin and L. Maleki, “Efficient Raman laser based on a CaF2 resonator,” J. Opt. Soc. Am. B 25(4), 594–598 (2008).
[Crossref]

I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32(2), 166–168 (2007).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[Crossref]

Miao, H.

Min, B.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1219–1228 (2004).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[Crossref] [PubMed]

Nagano, T.

T. Kato, A. C. Jinnai, T. Nagano, T. Kobatake, R. Suzuki, W. Yoshiki, and T. Tanabe, “Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity,” Jpn. J. Appl. Phys. 55(7), 072201 (2016).
[Crossref]

Newbury, N.

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

Noda, S.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Okawachi, Y.

Paniccia, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Papp, S. B.

Passaro, V. M. N.

V. M. N. Passaro and F. De Leonardis, “Investigation of SOI Raman lasers for mid-infrared gas sensing,” Sensors (Basel) 9(10), 7814–7836 (2009).
[Crossref] [PubMed]

Peter, Y. A.

Pfeifle, J.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Picqué, N.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Quinlan, F.

Raday, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Randle, H. G.

Rochette, M.

Rong, H.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Saleh, K.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Savchenkov, A. A.

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[Crossref]

Schindler, P.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Schmogrow, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Seidel, D.

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

Sih, V.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Solomatine, I.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1219–1228 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Srinivasan, K.

Stolen, R. H.

Suh, M.-G.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Suzuki, R.

T. Kato, A. C. Jinnai, T. Nagano, T. Kobatake, R. Suzuki, W. Yoshiki, and T. Tanabe, “Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity,” Jpn. J. Appl. Phys. 55(7), 072201 (2016).
[Crossref]

Swann, W.

Sylvestre, T.

Takahashi, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Tanabe, T.

T. Kato, A. C. Jinnai, T. Nagano, T. Kobatake, R. Suzuki, W. Yoshiki, and T. Tanabe, “Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity,” Jpn. J. Appl. Phys. 55(7), 072201 (2016).
[Crossref]

Terawaki, R.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Tomlinson, W. J.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Vahala, K.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13(1), 53–57 (2016), doi:.
[Crossref]

Vahala, K. J.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1219–1228 (2004).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Vanier, F.

Venkataraman, V.

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

Wang, J.

Wang, P.-H.

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Weimann, C.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Weiner, A. M.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Xiao, Y.-F.

Xu, S.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Yan, M.-Y.

Yang, K. Y.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13(1), 53–57 (2016), doi:.
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Yang, Q.-F.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13(1), 53–57 (2016), doi:.
[Crossref]

Yi, X.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13(1), 53–57 (2016), doi:.
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Yoshiki, W.

T. Kato, A. C. Jinnai, T. Nagano, T. Kobatake, R. Suzuki, W. Yoshiki, and T. Tanabe, “Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity,” Jpn. J. Appl. Phys. 55(7), 072201 (2016).
[Crossref]

Yu, M.

Yu, N.

Y. K. Chembo, I. S. Grudinin, and N. Yu, “Spatiotemporal dynamics of Kerr-Raman optical frequency combs,” Phys. Rev. A 92(4), 043818 (2015).
[Crossref]

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

H. Choi and A. M. Armani, “High Efficiency Raman Lasers Based on Zr-Doped Silica Hybrid Microcavities,” ACS Photonics 3(12), 2383–2388 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1219–1228 (2004).
[Crossref]

J. Opt. B Quantum Semiclassical Opt. (1)

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003).
[Crossref]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

T. Kato, A. C. Jinnai, T. Nagano, T. Kobatake, R. Suzuki, W. Yoshiki, and T. Tanabe, “Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity,” Jpn. J. Appl. Phys. 55(7), 072201 (2016).
[Crossref]

Nat. Commun. (1)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Nat. Photonics (4)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Nat. Phys. (1)

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13(1), 53–57 (2016), doi:.
[Crossref]

Nature (4)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (10)

F. Vanier, M. Rochette, N. Godbout, and Y. A. Peter, “Raman lasing in As2S3 high-Q whispering gallery mode resonators,” Opt. Lett. 38(23), 4966–4969 (2013).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38(11), 1802–1804 (2013).
[Crossref] [PubMed]

N. Deka, A. J. Maker, and A. M. Armani, “Titanium-enhanced Raman microcavity laser,” Opt. Lett. 39(6), 1354–1357 (2014).
[Crossref] [PubMed]

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31(21), 3086–3088 (2006).
[Crossref] [PubMed]

G. Lin and Y. K. Chembo, “Phase-locking transition in Raman combs generated with whispering gallery mode resonators,” Opt. Lett. 41(16), 3718–3721 (2016).
[Crossref] [PubMed]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32(2), 166–168 (2007).
[Crossref] [PubMed]

Optica (4)

Phys. Rev. A (1)

Y. K. Chembo, I. S. Grudinin, and N. Yu, “Spatiotemporal dynamics of Kerr-Raman optical frequency combs,” Phys. Rev. A 92(4), 043818 (2015).
[Crossref]

Phys. Rev. Lett. (3)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58(21), 2209–2211 (1987).
[Crossref] [PubMed]

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Science (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Sensors (Basel) (1)

V. M. N. Passaro and F. De Leonardis, “Investigation of SOI Raman lasers for mid-infrared gas sensing,” Sensors (Basel) 9(10), 7814–7836 (2009).
[Crossref] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Optical Fiber Optics, (Academic, New York, 2001).

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” https://arxiv.org/abs/1610.01121 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Cross-sectional mode profiles of a silica toroid microcavity. These results were obtained using the finite-element method (COMSOL Multiphysics). The diameter of the microcavity is 100 μm and the minor diameter is 8 μm. The results are for the TE00, TE01, and TE10 mode. (b) Calculated threshold coefficient C. The blue, red, and black lines indicate combinations of TE01(pump) -TE00(Raman), TE10(pump) -TE00(Raman), and TE10(pump) -TE01(Raman), respectively.
Fig. 2
Fig. 2 (a) Schematic image of our experimental setup. TLD, tunable laser diode (Santec TSL-710); EDFA, erbium-doped fiber amplifier (Pritel PMFA-30); VOA, variable optical attenuator (OZ Optics DA-100); FPC, fiber polarization controller (Thorlabs FPC560); OSA, optical spectrum analyzer (Yokogawa AQ6375); PM, power meter (Agilent 81634B). A tapered fiber is used as an evanescent coupler to couple light with a microcavity. (b) An optical microscope image of a fabricated silica toroidal microcavity obtained from the top. A tapered fiber is aligned close to the cavity. The diameter is about 100 μm. (c) Typical Raman gain in silica at 1550 nm calculated with parameters given in [38].
Fig. 3
Fig. 3 Optical spectra pumped with different modes. We used the same cavity. Spectrum when we pumped the cavity at (a) 1548.96 nm and (b) 1543.08 nm. The pump power was about 1 W after the EDFA. (c) and (d) are magnified views of (a) and (b), respectively. The equidistant vertical gray lines in (c) show that the SRS comb is generated in the same mode family as the pump mode.
Fig. 4
Fig. 4 (a) Transmittance spectrum for the 1548.96 nm mode we used in Fig. 3(a). (b) Same as (a) but for 1543.08 nm. It should be noted that the resonant is at shorter wavelength for Fig. 3(a) and 3(b) due to the presence of thermo-optic effect, but we are measuring the same mode.
Fig. 5
Fig. 5 Transmittance spectrum of the modes where comb generates. Transmittance spectrum of (a) H1, (b) H2, (c) L1, and (d) L2 modes respectively. the obtained Q are shown in the panel.
Fig. 6
Fig. 6 (a) Explanation of the high and low Q modes of the pump. (b) Optical spectrum when we pump at mode b. (c) As (b) but when we pump the cavity at mode c.
Fig. 7
Fig. 7 Dispersions used for numerical calculation. The cavity is the same as that shown in Fig. 1. The major diameter is 100 μm and the minor diameter is 8 μm. (a) β1 is the inverse of the group velocity. (b) β2 is the second-order dispersion including material and geometrical dispersion.
Fig. 8
Fig. 8 Simulation results with the model we used in experiments. Input power is set as 1 W. (a) Integrated power of SRS modes versus QTE00/QTE01. The Q of the TE01 mode is defined as 5.0 × 106. As QTE00/QTE01 increases and exceeds > 2, the SRS mode power increases rapidly, because the gain exceeds the threshold of SRS. (b) The theoretical threshold coefficient C mentioned in section 2. (c) Optical spectrum when QTE00/QTE01 = 3. (d) High-Q mode pumping with the same Q ratio as (c). No transverse mode coupling is observed.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P th = π 2 n 2 V eff λ P λ R g R Q e P ( 1 Q T P ) 2 1 Q T R ,
V eff = | E P | 2 dV | E R | 2 dV | E P | 2 | E R | 2 dV ,
C= P th_same P th_diff = A eff_same A eff_diff Q T_diff Q T_same ,
t R E p r ={ α p 2 κ p 2 i δ p +iL k2 β p (k) k! ( i t ) k } E p +iL(1 f R )( γ p | E p | 2 +2 γ p | E s | 2 ) E p + f R { γ p E p h R ( t ' ) | E p (t t ' ) | 2 d t ' + Γ p E p h R ( t ' ) | E s (t t ' ) | 2 d t ' + Γ p E s h R ( t ' ) E p (t t ' ) E s * (t t ' )d t ' }+ κ p S in ,
t R E s r ={ α s 2 κ s 2 iL( β s (1) β p (1) )( i t )+iL k2 β s (k) k! ( i t ) k } E s +iL(1 f R )( γ s | E s | 2 +2 γ s | E p | 2 ) E s , + f R { γ s E s h R ( t ' ) | E s (t t ' ) | 2 d t ' + Γ s E s h R ( t ' ) | E p (t t ' ) | 2 d t ' + Γ s E p h R ( t ' ) E s (t t ' ) E p * (t t ' )d t ' }
Γ= n 2 ω c A ps ,
A ps = | E p (x,y) | 2 dxdy | E s (x,y) | 2 dxdy | E p (x,y) | 2 | E s (x,y) | 2 dxdy ,
h R = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp( t τ 2 )sin( t τ 1 ),

Metrics