Abstract

The FIR (fluorescence intensity ratio) technique for optical thermometry has attracted considerable attention over recent years due to its high sensitivity and high spatial resolution. However, it is thought that a heating effect induced by incident light may lead to temperature overestimations, which in turn impedes the reliability of this technique for applications which require high levels of accuracy. To further improve the FIR technique, this paper presents a modified calibration expression, which is suitable for surface temperature sensing, based on the temperature distribution (calculated through COMSOL software). In addition, this modified method is verified by the experimental data.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

Efficient nanoheater operated in a biological window for photo-hyperthermia therapy

Ji Li, Li Xu, Kailei Lu, Muhammad Khuram Shahzad, Jin Ren, Enming Zhao, Hanyang Li, and Lu Liu
Biomed. Opt. Express 10(4) 1935-1941 (2019)

NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocalorifier with optical temperature probe

Lili Tong, Xiangping Li, Jinsu Zhang, Sai Xu, Jiashi Sun, Hui Zheng, Yanqiu Zhang, Xiangqing Zhang, Ruinian Hua, Haiping Xia, and Baojiu Chen
Opt. Express 25(14) 16047-16058 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
    [Crossref] [PubMed]
  2. X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
    [Crossref] [PubMed]
  3. C. Kojima and K. Irie, “Synthesis of temperature-dependent elastin-like peptide-modified dendrimer for drug delivery,” Biopolymers 100(6), 714–721 (2013).
    [Crossref] [PubMed]
  4. S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
    [Crossref]
  5. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  6. L. Prodi, E. Rampazzo, F. Rastrelli, A. Speghini, and N. Zaccheroni, “Imaging agents based on lanthanide doped nanoparticles,” Chem. Soc. Rev. 44(14), 4922–4952 (2015).
    [Crossref] [PubMed]
  7. M. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
    [Crossref]
  8. L. Liu, H. L. Jiang, Y. J. Chen, X. L. Zhang, Z. G. Zhang, and Y. X. Wang, “Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart,” J. Lumin. 143, 423–431 (2013).
    [Crossref]
  9. Z. Chouahda, J. P. Jouart, T. Duvaut, and M. Diaf, “The use of the green emission in Er3+-doped CaF2 crystals for thermometry application,” J. Phys. Condens. Matter 21(24), 245504 (2009).
    [Crossref] [PubMed]
  10. V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles,” Opt. Express 17(14), 11794–11798 (2009).
    [Crossref] [PubMed]
  11. W. L. Lu, L. H. Cheng, H. Y. Zhong, J. S. Sun, J. Wan, Y. Tian, and B. J. Chen, “Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors,” J. Phys. D Appl. Phys. 43(8), 085404 (2010).
    [Crossref]
  12. R. Wang, X. L. Zhang, F. Liu, Y. J. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).
    [Crossref]
  13. B. Dong, B. S. Cao, Z. Q. Feng, X. J. Wang, and Y. Y. He, “Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er–Yb–Mo:Al2O3,” Sens. Actuators B Chem. 165(1), 34–37 (2012).
    [Crossref]

2016 (3)

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
[Crossref]

2015 (2)

L. Prodi, E. Rampazzo, F. Rastrelli, A. Speghini, and N. Zaccheroni, “Imaging agents based on lanthanide doped nanoparticles,” Chem. Soc. Rev. 44(14), 4922–4952 (2015).
[Crossref] [PubMed]

R. Wang, X. L. Zhang, F. Liu, Y. J. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).
[Crossref]

2013 (2)

L. Liu, H. L. Jiang, Y. J. Chen, X. L. Zhang, Z. G. Zhang, and Y. X. Wang, “Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart,” J. Lumin. 143, 423–431 (2013).
[Crossref]

C. Kojima and K. Irie, “Synthesis of temperature-dependent elastin-like peptide-modified dendrimer for drug delivery,” Biopolymers 100(6), 714–721 (2013).
[Crossref] [PubMed]

2012 (1)

B. Dong, B. S. Cao, Z. Q. Feng, X. J. Wang, and Y. Y. He, “Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er–Yb–Mo:Al2O3,” Sens. Actuators B Chem. 165(1), 34–37 (2012).
[Crossref]

2010 (1)

W. L. Lu, L. H. Cheng, H. Y. Zhong, J. S. Sun, J. Wan, Y. Tian, and B. J. Chen, “Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors,” J. Phys. D Appl. Phys. 43(8), 085404 (2010).
[Crossref]

2009 (2)

Z. Chouahda, J. P. Jouart, T. Duvaut, and M. Diaf, “The use of the green emission in Er3+-doped CaF2 crystals for thermometry application,” J. Phys. Condens. Matter 21(24), 245504 (2009).
[Crossref] [PubMed]

V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles,” Opt. Express 17(14), 11794–11798 (2009).
[Crossref] [PubMed]

2004 (1)

M. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Akers, W. J.

S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
[Crossref]

Alencar, M.

M. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Araújo, C. B.

M. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Bednarkiewicz, A.

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Berezin, M. Y.

S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
[Crossref]

Berezin, O.

S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
[Crossref]

Cao, B. S.

B. Dong, B. S. Cao, Z. Q. Feng, X. J. Wang, and Y. Y. He, “Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er–Yb–Mo:Al2O3,” Sens. Actuators B Chem. 165(1), 34–37 (2012).
[Crossref]

Chang, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chen, B. J.

W. L. Lu, L. H. Cheng, H. Y. Zhong, J. S. Sun, J. Wan, Y. Tian, and B. J. Chen, “Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors,” J. Phys. D Appl. Phys. 43(8), 085404 (2010).
[Crossref]

Chen, M.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chen, Y. J.

R. Wang, X. L. Zhang, F. Liu, Y. J. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).
[Crossref]

L. Liu, H. L. Jiang, Y. J. Chen, X. L. Zhang, Z. G. Zhang, and Y. X. Wang, “Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart,” J. Lumin. 143, 423–431 (2013).
[Crossref]

Cheng, L. H.

W. L. Lu, L. H. Cheng, H. Y. Zhong, J. S. Sun, J. Wan, Y. Tian, and B. J. Chen, “Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors,” J. Phys. D Appl. Phys. 43(8), 085404 (2010).
[Crossref]

Chouahda, Z.

Z. Chouahda, J. P. Jouart, T. Duvaut, and M. Diaf, “The use of the green emission in Er3+-doped CaF2 crystals for thermometry application,” J. Phys. Condens. Matter 21(24), 245504 (2009).
[Crossref] [PubMed]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Diaf, M.

Z. Chouahda, J. P. Jouart, T. Duvaut, and M. Diaf, “The use of the green emission in Er3+-doped CaF2 crystals for thermometry application,” J. Phys. Condens. Matter 21(24), 245504 (2009).
[Crossref] [PubMed]

Dong, B.

B. Dong, B. S. Cao, Z. Q. Feng, X. J. Wang, and Y. Y. He, “Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er–Yb–Mo:Al2O3,” Sens. Actuators B Chem. 165(1), 34–37 (2012).
[Crossref]

Driesen, K.

Duvaut, T.

Z. Chouahda, J. P. Jouart, T. Duvaut, and M. Diaf, “The use of the green emission in Er3+-doped CaF2 crystals for thermometry application,” J. Phys. Condens. Matter 21(24), 245504 (2009).
[Crossref] [PubMed]

Feng, W.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Feng, Z. Q.

B. Dong, B. S. Cao, Z. Q. Feng, X. J. Wang, and Y. Y. He, “Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er–Yb–Mo:Al2O3,” Sens. Actuators B Chem. 165(1), 34–37 (2012).
[Crossref]

Francés-Soriano, L.

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Gerasimchuk, N.

S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
[Crossref]

Gredin, P.

He, S.

S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
[Crossref]

He, Y. Y.

B. Dong, B. S. Cao, Z. Q. Feng, X. J. Wang, and Y. Y. He, “Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er–Yb–Mo:Al2O3,” Sens. Actuators B Chem. 165(1), 34–37 (2012).
[Crossref]

Irie, K.

C. Kojima and K. Irie, “Synthesis of temperature-dependent elastin-like peptide-modified dendrimer for drug delivery,” Biopolymers 100(6), 714–721 (2013).
[Crossref] [PubMed]

Izraely, A.

S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
[Crossref]

Jiang, H. L.

L. Liu, H. L. Jiang, Y. J. Chen, X. L. Zhang, Z. G. Zhang, and Y. X. Wang, “Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart,” J. Lumin. 143, 423–431 (2013).
[Crossref]

Jouart, J. P.

Z. Chouahda, J. P. Jouart, T. Duvaut, and M. Diaf, “The use of the green emission in Er3+-doped CaF2 crystals for thermometry application,” J. Phys. Condens. Matter 21(24), 245504 (2009).
[Crossref] [PubMed]

Kojima, C.

C. Kojima and K. Irie, “Synthesis of temperature-dependent elastin-like peptide-modified dendrimer for drug delivery,” Biopolymers 100(6), 714–721 (2013).
[Crossref] [PubMed]

Li, F.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Li, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Liu, F.

R. Wang, X. L. Zhang, F. Liu, Y. J. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).
[Crossref]

Liu, L.

R. Wang, X. L. Zhang, F. Liu, Y. J. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).
[Crossref]

L. Liu, H. L. Jiang, Y. J. Chen, X. L. Zhang, Z. G. Zhang, and Y. X. Wang, “Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart,” J. Lumin. 143, 423–431 (2013).
[Crossref]

Lu, W. L.

W. L. Lu, L. H. Cheng, H. Y. Zhong, J. S. Sun, J. Wan, Y. Tian, and B. J. Chen, “Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors,” J. Phys. D Appl. Phys. 43(8), 085404 (2010).
[Crossref]

Maciel, G. S.

M. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Marciniak, L.

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Mortier, M.

Moshchalkov, V. V.

Patra, A.

M. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Pérez-Prieto, J.

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Prodi, L.

L. Prodi, E. Rampazzo, F. Rastrelli, A. Speghini, and N. Zaccheroni, “Imaging agents based on lanthanide doped nanoparticles,” Chem. Soc. Rev. 44(14), 4922–4952 (2015).
[Crossref] [PubMed]

Prorok, K.

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Rampazzo, E.

L. Prodi, E. Rampazzo, F. Rastrelli, A. Speghini, and N. Zaccheroni, “Imaging agents based on lanthanide doped nanoparticles,” Chem. Soc. Rev. 44(14), 4922–4952 (2015).
[Crossref] [PubMed]

Rastrelli, F.

L. Prodi, E. Rampazzo, F. Rastrelli, A. Speghini, and N. Zaccheroni, “Imaging agents based on lanthanide doped nanoparticles,” Chem. Soc. Rev. 44(14), 4922–4952 (2015).
[Crossref] [PubMed]

Rodriguez, V. D.

Speghini, A.

L. Prodi, E. Rampazzo, F. Rastrelli, A. Speghini, and N. Zaccheroni, “Imaging agents based on lanthanide doped nanoparticles,” Chem. Soc. Rev. 44(14), 4922–4952 (2015).
[Crossref] [PubMed]

Sun, J. S.

W. L. Lu, L. H. Cheng, H. Y. Zhong, J. S. Sun, J. Wan, Y. Tian, and B. J. Chen, “Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors,” J. Phys. D Appl. Phys. 43(8), 085404 (2010).
[Crossref]

Sun, Y.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Tan, Y. W.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Tian, Y.

W. L. Lu, L. H. Cheng, H. Y. Zhong, J. S. Sun, J. Wan, Y. Tian, and B. J. Chen, “Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors,” J. Phys. D Appl. Phys. 43(8), 085404 (2010).
[Crossref]

Tikhomirov, V. K.

Tourkakis, G.

S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
[Crossref]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wan, J.

W. L. Lu, L. H. Cheng, H. Y. Zhong, J. S. Sun, J. Wan, Y. Tian, and B. J. Chen, “Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors,” J. Phys. D Appl. Phys. 43(8), 085404 (2010).
[Crossref]

Wang, R.

R. Wang, X. L. Zhang, F. Liu, Y. J. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).
[Crossref]

Wang, X. J.

B. Dong, B. S. Cao, Z. Q. Feng, X. J. Wang, and Y. Y. He, “Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er–Yb–Mo:Al2O3,” Sens. Actuators B Chem. 165(1), 34–37 (2012).
[Crossref]

Wang, Y. X.

L. Liu, H. L. Jiang, Y. J. Chen, X. L. Zhang, Z. G. Zhang, and Y. X. Wang, “Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart,” J. Lumin. 143, 423–431 (2013).
[Crossref]

Zaccheroni, N.

L. Prodi, E. Rampazzo, F. Rastrelli, A. Speghini, and N. Zaccheroni, “Imaging agents based on lanthanide doped nanoparticles,” Chem. Soc. Rev. 44(14), 4922–4952 (2015).
[Crossref] [PubMed]

Zhang, H. R.

S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
[Crossref]

Zhang, X. L.

R. Wang, X. L. Zhang, F. Liu, Y. J. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).
[Crossref]

L. Liu, H. L. Jiang, Y. J. Chen, X. L. Zhang, Z. G. Zhang, and Y. X. Wang, “Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart,” J. Lumin. 143, 423–431 (2013).
[Crossref]

Zhang, Z. G.

L. Liu, H. L. Jiang, Y. J. Chen, X. L. Zhang, Z. G. Zhang, and Y. X. Wang, “Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart,” J. Lumin. 143, 423–431 (2013).
[Crossref]

Zhong, H. Y.

W. L. Lu, L. H. Cheng, H. Y. Zhong, J. S. Sun, J. Wan, Y. Tian, and B. J. Chen, “Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors,” J. Phys. D Appl. Phys. 43(8), 085404 (2010).
[Crossref]

Zhou, H. Y.

S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
[Crossref]

Zhu, X.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Biopolymers (1)

C. Kojima and K. Irie, “Synthesis of temperature-dependent elastin-like peptide-modified dendrimer for drug delivery,” Biopolymers 100(6), 714–721 (2013).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

L. Prodi, E. Rampazzo, F. Rastrelli, A. Speghini, and N. Zaccheroni, “Imaging agents based on lanthanide doped nanoparticles,” Chem. Soc. Rev. 44(14), 4922–4952 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Lumin. (1)

L. Liu, H. L. Jiang, Y. J. Chen, X. L. Zhang, Z. G. Zhang, and Y. X. Wang, “Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart,” J. Lumin. 143, 423–431 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

S. He, G. Tourkakis, O. Berezin, N. Gerasimchuk, H. R. Zhang, H. Y. Zhou, A. Izraely, W. J. Akers, and M. Y. Berezin, “Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(14), 3028–3035 (2016).
[Crossref]

J. Phys. Condens. Matter (1)

Z. Chouahda, J. P. Jouart, T. Duvaut, and M. Diaf, “The use of the green emission in Er3+-doped CaF2 crystals for thermometry application,” J. Phys. Condens. Matter 21(24), 245504 (2009).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

W. L. Lu, L. H. Cheng, H. Y. Zhong, J. S. Sun, J. Wan, Y. Tian, and B. J. Chen, “Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors,” J. Phys. D Appl. Phys. 43(8), 085404 (2010).
[Crossref]

Nanoscale (1)

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

R. Wang, X. L. Zhang, F. Liu, Y. J. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).
[Crossref]

Sens. Actuators B Chem. (1)

B. Dong, B. S. Cao, Z. Q. Feng, X. J. Wang, and Y. Y. He, “Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er–Yb–Mo:Al2O3,” Sens. Actuators B Chem. 165(1), 34–37 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 a) XRD patterns of Er3+ doped Y2O3 ceramics. b) Detailed energy levels of Er3+ 4I15/2, 4S3/2, and 2H11/2. Figures in the frames are the normalized upconversion spectra under low and high temperatures.
Fig. 2
Fig. 2 a) FIR dependence of laser power. b) Temperature dependence of laser power, in which ‘nearest’ means thermal couple is beside the luminescent spot as close as possible without direct irradiation; ‘back’ means the probe is attached on the back position of the luminescent spot.
Fig. 3
Fig. 3 Calculated results by COMSOL software. a) 3-D temperature distribution on the sample’s surface; b) Highest temperature Tm dependence of laser power; c)-d) Radial temperature distribution calculated by using different parameters. P denotes the laser power, α the absorption coefficient of sample. Insets are the normalized temperature distribution under different conditions.
Fig. 4
Fig. 4 a) Integrated element (r, dr) of luminescent spot, whose radius is equal to laser radius R; b) Calculated temperature distribution along the radial direction and fitted curve using Lorentzian function; c) Variation of parameter A0 in the Lorentzian function with pumping power. A0 determines the width of the Lorentzian curve; d) Comparison of fitted Lorentzian curve (temperature distribution) and Gaussian curve (laser power distribution).
Fig. 5
Fig. 5 Experimental verification. a) Temperature dependence of heating power, in which horizontal axis represents the setting temperature of the heating plate, and the vertical axis is the actual temperature measured on the sample’s surface by thermal couple. Note that this measurement is carried out without laser excitation; b)-d) FIR dependences of temperature under different pumping power, fitting equations are given.
Fig. 6
Fig. 6 Comparison of sensing performance between the modified method proposed in this paper and the conventional method. a) 574 mW excitation; b) 1017 mW excitation.
Fig. 7
Fig. 7 a) Photograph of the pork skin; b) TEM of sample, bar is 100 nm.
Fig. 8
Fig. 8 a) Calibration of thermometer; b) Surface temperature sensing of the pork skin at different positions by using the proposed dual-power method (20 mW and 37 mW).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F I R = I 2 I 1 = C exp ( Δ E k T )
F I R = I 2 I 1 = 0 R d I 2 0 R d I 1 = 0 R C exp ( Δ E / k T ) d I 1 0 R d I 1 = C 0 R exp ( Δ E / k T ( r ) ) ρ G n ( r ) 2 π r d r 0 R ρ G n ( r ) 2 π r d r
F I R = C 0 R exp ( Δ E ( 1 + A P r 2 ) / k T m ) exp ( B r 2 ) r d r 0 R exp ( B r 2 ) r d r = C exp ( Δ E k T m ) 0 R exp ( ( A P Δ E / k T m + B ) r 2 ) r d r 0 R exp ( B r 2 ) r d r = C ( A P Δ E k B T m + 1 ) exp ( Δ E k T m )
F I R C exp ( Δ E k T m ) = C exp ( Δ E k ( α P + T 0 ) )
T 0 = 1 A 1 ( Δ E k ln ( F I R 2 / C ) A Δ E k ln ( F I R 1 / C ) )

Metrics