Abstract

We present a fiber femtosecond laser oscillator that incorporates a pair of chirped fiber Bragg gratings (CFBGs) to augment the cavity length elongation produced by a PZT actuator. With a magnification factor of 18.2, the CFBG pair offers a 4.44 mm cavity length extension, providing a 25.59 kHz tuning range of the repetition rate from a 41.56 MHz nominal value without loss of mode locking. The extended tuning range enhances the performance of comb stabilization in uncontrolled environments and pulse-to-pulse interferometry for step height measurements.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid mode-locked Er-fiber oscillator with a wide repetition rate stabilization range

Xuejian Wu, Lijun Yang, Hongyuan Zhang, Honglei Yang, Haoyun Wei, and Yan Li
Appl. Opt. 54(7) 1681-1687 (2015)

Optically stabilized Erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate

Honglei Yang, Xuejian Wu, Hongyuan Zhang, Shijie Zhao, Lijun Yang, Haoyun Wei, and Yan Li
Appl. Opt. 55(34) D29-D34 (2016)

2~5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating

Ju Han Lee, You Min Chang, Young-Geun Han, Sang Hyuck Kim, and Sang Bae Lee
Opt. Express 12(17) 3900-3905 (2004)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  2. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  3. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
    [Crossref]
  4. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
    [Crossref] [PubMed]
  5. B. Washburn, R. Fox, N. Newbury, J. Nicholson, K. Feder, P. Westbrook, and C. Jørgensen, “Fiber-laser-based frequency comb with a tunable repetition rate,” Opt. Express 12(20), 4999–5004 (2004).
    [Crossref] [PubMed]
  6. D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
    [Crossref] [PubMed]
  7. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
    [Crossref]
  8. P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
    [Crossref] [PubMed]
  9. K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
    [Crossref] [PubMed]
  10. J. S. Oh and S.-W. Kim, “Femtosecond laser pulses for surface-profile metrology,” Opt. Lett. 30(19), 2650–2652 (2005).
    [Crossref] [PubMed]
  11. W.-D. Joo, S. Kim, J. Park, K. Lee, J. Lee, S. Kim, Y.-J. Kim, and S.-W. Kim, “Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures,” Opt. Express 21(13), 15323–15334 (2013).
    [Crossref] [PubMed]
  12. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [Crossref] [PubMed]
  13. H. Wu, F. Zhang, T. Liu, F. Meng, J. Li, and X. Qu, “Absolute distance measurement using optical sampling by cavity tuning,” IEEE Photonics Technol. Lett. 28(12), 1275–1278 (2016).
    [Crossref]
  14. S. Kray, F. Spöler, T. Hellerer, and H. Kurz, “Electronically controlled coherent linear optical sampling for optical coherence tomography,” Opt. Express 18(10), 9976–9990 (2010).
    [Crossref] [PubMed]
  15. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
    [Crossref] [PubMed]
  16. S. Potvin, S. Boudreau, J.-D. Deschênes, and J. Genest, “Fully referenced single-comb interferometry using optical sampling by laser-cavity tuning,” Appl. Opt. 52(2), 248–255 (2013).
    [Crossref] [PubMed]
  17. S. Kim, Y. Kim, J. Park, S. Han, S. Park, Y.-J. Kim, and S.-W. Kim, “Hybrid mode-locked Er-doped fiber femtosecond oscillator with 156 mW output power,” Opt. Express 20(14), 15054–15060 (2012).
    [Crossref] [PubMed]
  18. H. Wang, Y. Wang, W. Zhao, W. Zhang, T. Zhang, X. Hu, Z. Yang, H. Liu, K. Duan, X. Liu, C. Li, D. Shen, Z. Sui, and B. Liu, “All-fiber mode-locked nanosecond laser employing intracavity chirped fiber gratings,” Opt. Express 18(7), 7263–7268 (2010).
    [Crossref] [PubMed]
  19. S. Duval, M. Olivier, M. Bernier, R. Vallée, and M. Piché, “Ultrashort pulses from an all-fiber ring laser incorporating a pair of chirped fiber Bragg gratings,” Opt. Lett. 39(4), 989–992 (2014).
    [Crossref] [PubMed]
  20. E. Choi, J. Na, S. Ryu, G. Mudhana, and B. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Express 13(4), 1334–1345 (2005).
    [Crossref] [PubMed]
  21. W. W. Morey, J. R. Dunphy, and G. Meltz, “Multiplexing fiber Bragg gratings sensors,” Proc. SPIE 1586, 216–224 (1992).
    [Crossref]
  22. X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
    [Crossref]

2016 (2)

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

H. Wu, F. Zhang, T. Liu, F. Meng, J. Li, and X. Qu, “Absolute distance measurement using optical sampling by cavity tuning,” IEEE Photonics Technol. Lett. 28(12), 1275–1278 (2016).
[Crossref]

2015 (2)

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref] [PubMed]

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (1)

2011 (1)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (2)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
[Crossref] [PubMed]

2005 (3)

2004 (2)

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

1992 (1)

W. W. Morey, J. R. Dunphy, and G. Meltz, “Multiplexing fiber Bragg gratings sensors,” Proc. SPIE 1586, 216–224 (1992).
[Crossref]

Bai, D.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Bernier, M.

Bhattacharya, N.

Boudreau, S.

Braat, J. J. M.

Choi, E.

Cui, M.

Cundiff, S. T.

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Deschênes, J. D.

Deschênes, J.-D.

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Duan, K.

Dunphy, J. R.

W. W. Morey, J. R. Dunphy, and G. Meltz, “Multiplexing fiber Bragg gratings sensors,” Proc. SPIE 1586, 216–224 (1992).
[Crossref]

Duval, S.

Feder, K.

Fermann, M. E.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Fox, R.

Genest, J.

Giaccari, P.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Han, S.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref] [PubMed]

S. Kim, Y. Kim, J. Park, S. Han, S. Park, Y.-J. Kim, and S.-W. Kim, “Hybrid mode-locked Er-doped fiber femtosecond oscillator with 156 mW output power,” Opt. Express 20(14), 15054–15060 (2012).
[Crossref] [PubMed]

Hansch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hao, Q.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Hartl, I.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

He, B.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Hellerer, T.

Holman, K. W.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hu, X.

Hudson, D. D.

Jang, H.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref] [PubMed]

Jang, Y.-S.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref] [PubMed]

Jones, D. J.

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Jones, R. J.

Joo, W.-D.

Jørgensen, C.

Kim, J.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

Kim, S.

Kim, S.-W.

Kim, Y.

Kim, Y.-J.

Kray, S.

Kurz, H.

Lee, B.

Lee, J.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref] [PubMed]

W.-D. Joo, S. Kim, J. Park, K. Lee, J. Lee, S. Kim, Y.-J. Kim, and S.-W. Kim, “Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures,” Opt. Express 21(13), 15323–15334 (2013).
[Crossref] [PubMed]

Lee, K.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref] [PubMed]

W.-D. Joo, S. Kim, J. Park, K. Lee, J. Lee, S. Kim, Y.-J. Kim, and S.-W. Kim, “Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures,” Opt. Express 21(13), 15323–15334 (2013).
[Crossref] [PubMed]

Li, C.

Li, J.

H. Wu, F. Zhang, T. Liu, F. Meng, J. Li, and X. Qu, “Absolute distance measurement using optical sampling by cavity tuning,” IEEE Photonics Technol. Lett. 28(12), 1275–1278 (2016).
[Crossref]

Li, W.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Liu, B.

Liu, F.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Liu, G.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Liu, H.

Liu, T.

H. Wu, F. Zhang, T. Liu, F. Meng, J. Li, and X. Qu, “Absolute distance measurement using optical sampling by cavity tuning,” IEEE Photonics Technol. Lett. 28(12), 1275–1278 (2016).
[Crossref]

Liu, X.

Liu, Y.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Luo, D.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Meltz, G.

W. W. Morey, J. R. Dunphy, and G. Meltz, “Multiplexing fiber Bragg gratings sensors,” Proc. SPIE 1586, 216–224 (1992).
[Crossref]

Meng, F.

H. Wu, F. Zhang, T. Liu, F. Meng, J. Li, and X. Qu, “Absolute distance measurement using optical sampling by cavity tuning,” IEEE Photonics Technol. Lett. 28(12), 1275–1278 (2016).
[Crossref]

Morey, W. W.

W. W. Morey, J. R. Dunphy, and G. Meltz, “Multiplexing fiber Bragg gratings sensors,” Proc. SPIE 1586, 216–224 (1992).
[Crossref]

Mudhana, G.

Na, J.

Newbury, N.

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

Nicholson, J.

Oh, J. S.

Olivier, M.

Park, J.

Park, S.

Piché, M.

Potvin, S.

Qu, X.

H. Wu, F. Zhang, T. Liu, F. Meng, J. Li, and X. Qu, “Absolute distance measurement using optical sampling by cavity tuning,” IEEE Photonics Technol. Lett. 28(12), 1275–1278 (2016).
[Crossref]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Ryu, S.

Saucier, P.

Schibli, T. R.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Shen, D.

Shen, X.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Song, Y.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

Spöler, F.

Sui, Z.

Tremblay, P.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Urbach, H. P.

Vallée, R.

van den Berg, S. A.

Wang, C.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Wang, H.

Wang, Y.

Washburn, B.

Westbrook, P.

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Wu, H.

H. Wu, F. Zhang, T. Liu, F. Meng, J. Li, and X. Qu, “Absolute distance measurement using optical sampling by cavity tuning,” IEEE Photonics Technol. Lett. 28(12), 1275–1278 (2016).
[Crossref]

Yang, K.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Yang, Z.

Ye, J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[Crossref] [PubMed]

J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Yost, D. C.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Zeitouny, M. G.

Zeng, H.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Zhang, F.

H. Wu, F. Zhang, T. Liu, F. Meng, J. Li, and X. Qu, “Absolute distance measurement using optical sampling by cavity tuning,” IEEE Photonics Technol. Lett. 28(12), 1275–1278 (2016).
[Crossref]

Zhang, T.

Zhang, W.

Zhao, J.

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

Zhao, W.

Adv. Opt. Photonics (1)

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu, Q. Hao, W. Li, and H. Zeng, “Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity,” Appl. Phys. Lett. 106(3), 031117 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Wu, F. Zhang, T. Liu, F. Meng, J. Li, and X. Qu, “Absolute distance measurement using optical sampling by cavity tuning,” IEEE Photonics Technol. Lett. 28(12), 1275–1278 (2016).
[Crossref]

Nat. Photonics (2)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (7)

H. Wang, Y. Wang, W. Zhao, W. Zhang, T. Zhang, X. Hu, Z. Yang, H. Liu, K. Duan, X. Liu, C. Li, D. Shen, Z. Sui, and B. Liu, “All-fiber mode-locked nanosecond laser employing intracavity chirped fiber gratings,” Opt. Express 18(7), 7263–7268 (2010).
[Crossref] [PubMed]

S. Kray, F. Spöler, T. Hellerer, and H. Kurz, “Electronically controlled coherent linear optical sampling for optical coherence tomography,” Opt. Express 18(10), 9976–9990 (2010).
[Crossref] [PubMed]

B. Washburn, R. Fox, N. Newbury, J. Nicholson, K. Feder, P. Westbrook, and C. Jørgensen, “Fiber-laser-based frequency comb with a tunable repetition rate,” Opt. Express 12(20), 4999–5004 (2004).
[Crossref] [PubMed]

S. Kim, Y. Kim, J. Park, S. Han, S. Park, Y.-J. Kim, and S.-W. Kim, “Hybrid mode-locked Er-doped fiber femtosecond oscillator with 156 mW output power,” Opt. Express 20(14), 15054–15060 (2012).
[Crossref] [PubMed]

W.-D. Joo, S. Kim, J. Park, K. Lee, J. Lee, S. Kim, Y.-J. Kim, and S.-W. Kim, “Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures,” Opt. Express 21(13), 15323–15334 (2013).
[Crossref] [PubMed]

E. Choi, J. Na, S. Ryu, G. Mudhana, and B. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Express 13(4), 1334–1345 (2005).
[Crossref] [PubMed]

P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Proc. SPIE (1)

W. W. Morey, J. R. Dunphy, and G. Meltz, “Multiplexing fiber Bragg gratings sensors,” Proc. SPIE 1586, 216–224 (1992).
[Crossref]

Sci. Rep. (1)

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Wide repetition rate tunable femtosecond laser with a pair of CFBGs. (a) System layout of the proposed laser oscillator. (b) Group delay profiles of CFBG1, CFBG2 and CFBG1 + CFBG2. (c) Magnification of cavity length’s tunable range by stretching a CFBG out of a pair of CFBGs. CFBG: chirped fiber Bragg grating, OC: optical circulator, PZT: piezo-electric transducer, LD: laser diode, WDM: wavelength division multiplexer, EDF: Er-doped fiber, I: isolator, SA: saturable absorber, NPR: nonlinear polarization rotation, H: half-wave plate, Q: quarter-wave plate, PBS: polarization beam splitter.
Fig. 2
Fig. 2 CFBG control for tuning the repetition rate. (a) CFBG1 attachment mechanism to a PZT actuator. (b) Optical cavity length (2ΔL) versus the tuning range (Δfr).
Fig. 3
Fig. 3 Spectral and temporal characteristics of the mode-locked femtosecond pulses with a wide range tuning of the repetition rate. (a) Time trace of the repetition rate (solid) controlled with a sawtooth command signal (dotted). (b) Optical spectrum of the output pulses. (c) Pulse duration measured by interferometric autocorrelation.
Fig. 4
Fig. 4 RF spectral characteristics. (a) Harmonic spectrum of the pulse repetition rate (RBW: 300 kHz). (b) Magnified view of the 24th RF harmonic for noise analysis with 30 kHz RBW. (c) RF beat notes with a cw distributed feedback (DFB) laser (RBW: 100 kHz).
Fig. 5
Fig. 5 Comb stabilization test results. (a) Repetition rate drift with a temperature change of 5.75 °C. (b) Comb stabilization by phase-locking of the repetition rate to the Rb clock. (c) Frequency stability in terms of the Allan deviation. (d) Long-term stabilization control of the repetition rate during 12 hours.
Fig. 6
Fig. 6 Measurement of large step height. (a) Pulse-to-pulse interferometer configuration. (b) Reconstructed surface 3-D profile of a 1.3 mm gauge block assembly. (c) Acquired interferograms. (d) Sectional view of step height (along line a-a’ in (b)). (e) Measurement repeatability. Abbreviations are; fr: repetition rate, SMF: single-mode fiber, DCF: dispersion compensating fiber, C: coupler, L: lens, LP: linear polarizer, IL: imaging lens.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔL=n(1 p e ) λ 0 Δλ δ=nγδforγ(1 p e ) λ 0 Δλ
Δ f r f r = 2ΔL L = 2nγδ L
I= I 0 [1+Γcos(2k(hΔL))]

Metrics