Abstract

We experimentally demonstrate the high sensitivity of a novel liquid state, whispering-gallery-mode optical resonator to humidity changes. The optical resonator used consists of a droplet made of glycerol, a transparent liquid that enables high optical quality factor, doped with fluorescent material. As glycerol is highly hygroscopic, the refractive index and radius of the droplet change with ambient humidity. This produces a shift on the whispering gallery mode’s wavelengths, which modulates the emission of the fluorescent material. This device shows an unpreceded sensitivity of 10−3 per relative humidity percent.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Whispering gallery mode micro resonators for multi-parameter sensing applications

Arun Kumar Mallik, Gerald Farrell, Manjusha Ramakrishnan, Vishnu Kavungal, Dejun Liu, Qiang Wu, and Yuliya Semenova
Opt. Express 26(24) 31829-31838 (2018)

Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

Whispering gallery mode temperature sensor of liquid microresonastor

Zhihai Liu, Lu Liu, Zongda Zhu, Yu Zhang, Yong Wei, Xiaonan Zhang, Enming Zhao, Yaxun Zhang, Jun Yang, and Libo Yuan
Opt. Lett. 41(20) 4649-4652 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
    [Crossref]
  2. A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20(10), 1803–1814 (1981).
    [Crossref] [PubMed]
  3. S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
    [Crossref]
  4. M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
    [Crossref] [PubMed]
  5. A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. B 29(12), 3240–3247 (2012).
    [Crossref]
  6. S. Sikarwar and B. C. Yadav, “Opto-electronic humidity sensor: A review,” Sensors Actuat. A 233, 54–70 (2015).
    [Crossref]
  7. Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3(4), 274–295 (2005).
    [Crossref]
  8. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref] [PubMed]
  9. S. Kaminski, L. L. Martin, and T. Carmon, “Tweezers controlled resonator,” Opt. Express 23(22), 28914–28919 (2015).
    [Crossref] [PubMed]
  10. S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
    [Crossref] [PubMed]
  11. L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, “Whispering gallery modes in a glass microsphere as a function of temperature,” Opt. Express 19(25), 25792–25798 (2011).
    [Crossref] [PubMed]
  12. L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615–617 (2011).
    [Crossref] [PubMed]
  13. L. Martin, S. León-Luis, C. Pérez-Rodríguez, I. Martín, U. Rodríguez-Mendoza, and V. Lavín, “High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere,” J. Opt. Soc. Am. B 30(12), 3254–3259 (2013).
    [Crossref]
  14. B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
    [Crossref]
  15. S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
    [Crossref] [PubMed]
  16. Z. F. Zhang and Y. Zhang, “Humidity sensor based on optical fiber attached with hydrogel spheres,” Opt. Laser Technol. 74, 16–19 (2015).
    [Crossref]
  17. Q. Ma, L. Huang, Z. Guo, and T. Rossmann, “Spectral shift response of optical whispering-gallery modes due to water vapor adsorption and desorption,” Meas. Sci. Technol. 21(11), 115206 (2010).
    [Crossref]
  18. L. Ding, C. Belacel, S. Ducci, G. Leo, and I. Favero, “Ultralow loss single-mode silica tapers manufactured by a microheater,” Appl. Opt. 49(13), 2441–2445 (2010).
    [Crossref]
  19. G. P. Association, Physical Properties of Glycerine and its Solutions (Glycerine Producers' Association, 1963).
  20. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  21. A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
    [Crossref]
  22. R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175–178 (2016).
    [Crossref]
  23. J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
    [Crossref] [PubMed]
  24. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  25. A. Erokhin, N. Morachevskii, and F. Faizullov, “Temperature dependence of the refractive index in condensed media,” Sov. Phys. JETP 47, 699 (1978).
  26. F. Lechenault, C. L. Rountree, F. Cousin, J.-P. Bouchaud, L. Ponson, and E. Bouchaud, “Evidence of deep water penetration in silica during stress corrosion fracture,” Phys. Rev. Lett. 106(16), 165504 (2011).
    [Crossref] [PubMed]
  27. Y. Nishijima and G. Oster, “Diffusion in glycerol-water mixture,” Bull. Chem. Soc. Jpn. 33(12), 1649–1651 (1960).
    [Crossref]

2016 (2)

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref] [PubMed]

R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175–178 (2016).
[Crossref]

2015 (4)

Z. F. Zhang and Y. Zhang, “Humidity sensor based on optical fiber attached with hydrogel spheres,” Opt. Laser Technol. 74, 16–19 (2015).
[Crossref]

S. Sikarwar and B. C. Yadav, “Opto-electronic humidity sensor: A review,” Sensors Actuat. A 233, 54–70 (2015).
[Crossref]

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

S. Kaminski, L. L. Martin, and T. Carmon, “Tweezers controlled resonator,” Opt. Express 23(22), 28914–28919 (2015).
[Crossref] [PubMed]

2014 (3)

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (3)

2010 (2)

Q. Ma, L. Huang, Z. Guo, and T. Rossmann, “Spectral shift response of optical whispering-gallery modes due to water vapor adsorption and desorption,” Meas. Sci. Technol. 21(11), 115206 (2010).
[Crossref]

L. Ding, C. Belacel, S. Ducci, G. Leo, and I. Favero, “Ultralow loss single-mode silica tapers manufactured by a microheater,” Appl. Opt. 49(13), 2441–2445 (2010).
[Crossref]

2009 (1)

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

2008 (2)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
[Crossref]

2006 (1)

2005 (1)

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3(4), 274–295 (2005).
[Crossref]

1981 (1)

1978 (1)

A. Erokhin, N. Morachevskii, and F. Faizullov, “Temperature dependence of the refractive index in condensed media,” Sov. Phys. JETP 47, 699 (1978).

1977 (1)

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

1960 (1)

Y. Nishijima and G. Oster, “Diffusion in glycerol-water mixture,” Bull. Chem. Soc. Jpn. 33(12), 1649–1651 (1960).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Alonso, D.

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20(10), 1803–1814 (1981).
[Crossref] [PubMed]

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Avino, S.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Belacel, C.

Bhola, B.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

Bouchaud, E.

F. Lechenault, C. L. Rountree, F. Cousin, J.-P. Bouchaud, L. Ponson, and E. Bouchaud, “Evidence of deep water penetration in silica during stress corrosion fracture,” Phys. Rev. Lett. 106(16), 165504 (2011).
[Crossref] [PubMed]

Bouchaud, J.-P.

F. Lechenault, C. L. Rountree, F. Cousin, J.-P. Bouchaud, L. Ponson, and E. Bouchaud, “Evidence of deep water penetration in silica during stress corrosion fracture,” Phys. Rev. Lett. 106(16), 165504 (2011).
[Crossref] [PubMed]

Capuj, N. E.

Carmon, T.

Chen, Z.

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3(4), 274–295 (2005).
[Crossref]

Coskun, A. F.

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
[Crossref]

Cousin, F.

F. Lechenault, C. L. Rountree, F. Cousin, J.-P. Bouchaud, L. Ponson, and E. Bouchaud, “Evidence of deep water penetration in silica during stress corrosion fracture,” Phys. Rev. Lett. 106(16), 165504 (2011).
[Crossref] [PubMed]

Cui, X. G.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Dahan, R.

De Natale, P.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Ding, L.

Ducci, S.

Dziedzic, J.

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Dziedzic, J. M.

Erokhin, A.

A. Erokhin, N. Morachevskii, and F. Faizullov, “Temperature dependence of the refractive index in condensed media,” Sov. Phys. JETP 47, 699 (1978).

Faizullov, F.

A. Erokhin, N. Morachevskii, and F. Faizullov, “Temperature dependence of the refractive index in condensed media,” Sov. Phys. JETP 47, 699 (1978).

Fang, Y. F.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Favero, I.

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Gagliardi, G.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Giorgini, A.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Gordon, N. T.

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

Guo, Z.

Q. Ma, L. Huang, Z. Guo, and T. Rossmann, “Spectral shift response of optical whispering-gallery modes due to water vapor adsorption and desorption,” Meas. Sci. Technol. 21(11), 115206 (2010).
[Crossref]

Haro-González, P.

Hossein-Zadeh, M.

Huang, G. S.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Huang, L.

Q. Ma, L. Huang, Z. Guo, and T. Rossmann, “Spectral shift response of optical whispering-gallery modes due to water vapor adsorption and desorption,” Meas. Sci. Technol. 21(11), 115206 (2010).
[Crossref]

Jaque, D.

Jonáš, A.

Kaminski, S.

Karadag, Y.

A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. B 29(12), 3240–3247 (2012).
[Crossref]

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
[Crossref]

Kiraz, A.

A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. B 29(12), 3240–3247 (2012).
[Crossref]

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
[Crossref]

Kolpakov, S. A.

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

Krause, A.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Lavín, V.

Lechenault, F.

F. Lechenault, C. L. Rountree, F. Cousin, J.-P. Bouchaud, L. Ponson, and E. Bouchaud, “Evidence of deep water penetration in silica during stress corrosion fracture,” Phys. Rev. Lett. 106(16), 165504 (2011).
[Crossref] [PubMed]

Leo, G.

León-Luis, S.

Loock, H. P.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Lu, C.

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3(4), 274–295 (2005).
[Crossref]

Ma, Q.

Q. Ma, L. Huang, Z. Guo, and T. Rossmann, “Spectral shift response of optical whispering-gallery modes due to water vapor adsorption and desorption,” Meas. Sci. Technol. 21(11), 115206 (2010).
[Crossref]

Maayani, S.

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref] [PubMed]

Mahalingam, H.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

Malara, P.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Martin, L.

Martin, L. L.

Martín, I.

Martín, I. R.

Martín, L. L.

Mei, Y. F.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Mestre, M.

Morachevskii, N.

A. Erokhin, N. Morachevskii, and F. Faizullov, “Temperature dependence of the refractive index in condensed media,” Sov. Phys. JETP 47, 699 (1978).

Mou, C.

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

Navarro-Urrios, D.

Nishijima, Y.

Y. Nishijima and G. Oster, “Diffusion in glycerol-water mixture,” Bull. Chem. Soc. Jpn. 33(12), 1649–1651 (1960).
[Crossref]

Nosovitskiy, P.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

Oster, G.

Y. Nishijima and G. Oster, “Diffusion in glycerol-water mixture,” Bull. Chem. Soc. Jpn. 33(12), 1649–1651 (1960).
[Crossref]

Pérez-Rodríguez, C.

Ponson, L.

F. Lechenault, C. L. Rountree, F. Cousin, J.-P. Bouchaud, L. Ponson, and E. Bouchaud, “Evidence of deep water penetration in silica during stress corrosion fracture,” Phys. Rev. Lett. 106(16), 165504 (2011).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Rodríguez-Mendoza, U.

Rossmann, T.

Q. Ma, L. Huang, Z. Guo, and T. Rossmann, “Spectral shift response of optical whispering-gallery modes due to water vapor adsorption and desorption,” Meas. Sci. Technol. 21(11), 115206 (2010).
[Crossref]

Rountree, C. L.

F. Lechenault, C. L. Rountree, F. Cousin, J.-P. Bouchaud, L. Ponson, and E. Bouchaud, “Evidence of deep water penetration in silica during stress corrosion fracture,” Phys. Rev. Lett. 106(16), 165504 (2011).
[Crossref] [PubMed]

Sikarwar, S.

S. Sikarwar and B. C. Yadav, “Opto-electronic humidity sensor: A review,” Sensors Actuat. A 233, 54–70 (2015).
[Crossref]

Steier, W. H.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Vahala, K. J.

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wang, J.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Yadav, B. C.

S. Sikarwar and B. C. Yadav, “Opto-electronic humidity sensor: A review,” Sensors Actuat. A 233, 54–70 (2015).
[Crossref]

Zhang, J.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Zhang, Y.

Z. F. Zhang and Y. Zhang, “Humidity sensor based on optical fiber attached with hydrogel spheres,” Opt. Laser Technol. 74, 16–19 (2015).
[Crossref]

Zhang, Z. F.

Z. F. Zhang and Y. Zhang, “Humidity sensor based on optical fiber attached with hydrogel spheres,” Opt. Laser Technol. 74, 16–19 (2015).
[Crossref]

Zhong, J.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Zhou, K.

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

Zullo, R.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Adv. Opt. Mater. (1)

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

Y. Nishijima and G. Oster, “Diffusion in glycerol-water mixture,” Bull. Chem. Soc. Jpn. 33(12), 1649–1651 (1960).
[Crossref]

IEEE Sens. J. (1)

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

Q. Ma, L. Huang, Z. Guo, and T. Rossmann, “Spectral shift response of optical whispering-gallery modes due to water vapor adsorption and desorption,” Meas. Sci. Technol. 21(11), 115206 (2010).
[Crossref]

Nanoscale (1)

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Laser Technol. (1)

Z. F. Zhang and Y. Zhang, “Humidity sensor based on optical fiber attached with hydrogel spheres,” Opt. Laser Technol. 74, 16–19 (2015).
[Crossref]

Opt. Lett. (1)

Optica (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett. (2)

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

F. Lechenault, C. L. Rountree, F. Cousin, J.-P. Bouchaud, L. Ponson, and E. Bouchaud, “Evidence of deep water penetration in silica during stress corrosion fracture,” Phys. Rev. Lett. 106(16), 165504 (2011).
[Crossref] [PubMed]

Sens. Lett. (1)

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3(4), 274–295 (2005).
[Crossref]

Sensors (Basel) (1)

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

Sensors Actuat. A (1)

S. Sikarwar and B. C. Yadav, “Opto-electronic humidity sensor: A review,” Sensors Actuat. A 233, 54–70 (2015).
[Crossref]

Sov. Phys. JETP (1)

A. Erokhin, N. Morachevskii, and F. Faizullov, “Temperature dependence of the refractive index in condensed media,” Sov. Phys. JETP 47, 699 (1978).

Other (1)

G. P. Association, Physical Properties of Glycerine and its Solutions (Glycerine Producers' Association, 1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Optical image of the modified optical fiber, (b) optical image of the liquid resonator made in the tip of the modified optical fiber, (c) optical image of the liquid resonator under excitation at 532 nm, and (d) schematic representation of the confocal microscope.
Fig. 2
Fig. 2 (a) Emission spectrum of rhodamine 6G present in the droplet resonator, where WGMs modulate the emission, at 45% RH. (b) Scheme of the WGM shift due to water absorption in the drop.
Fig. 3
Fig. 3 Calibration of the variation of the wavelength of a WGM peak with increasing RH (red squares) obtained from emission spectra of rhodamine 6G (see Fig. 2), its fit to a quadratic polynomial (black line), and estimation of the displacement of the wavelength of the WGM peak from the expected variation of the refractive index and the radius of the resonator with RH (blue line).
Fig. 4
Fig. 4 (a) Sensitivity of the displacement of the wavelengths of the WGMs calculated from the experimental data from the calibration using Eq. (1) (SExperimental, red squares) and from the estimation (STotal, blue continuous line) of the sensitivity of the decrease of the refractive index (SRefractive index, blue dashed line) and the sensitivity of the increase of the radius of the resonator (SRadius, blue dotted line). (b) Numerical simulation of the first radial optical mode in a spherical droplet.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

mλ=2πR n eff
S= 1 λ δλ δRH
S= S Radius + S Refractive index = 1 λ ( 1 R δR δRH + 1 n eff δ n eff δRH )
ΔR H min = Δ λ min dλ dRH
x p = 2Dt

Metrics