Abstract

Raman spectroscopy has demonstrated great potential in biomedical applications. However, spectroscopic Raman imaging is limited in the investigation of fast changing phenomena because of slow data acquisition. Our previous studies have indicated that spectroscopic Raman imaging can be significantly sped up using the approach of narrow-band imaging followed by spectral reconstruction. A multi-channel system was built to demonstrate the feasibility of fast wide-field spectroscopic Raman imaging using the approach of simultaneous narrow-band image acquisition followed by spectral reconstruction based on Wiener estimation in phantoms. To further improve the accuracy of reconstructed Raman spectra, we propose a stepwise spectral reconstruction method in this study, which can be combined with the earlier developed sequential weighted Wiener estimation to improve spectral reconstruction accuracy. The stepwise spectral reconstruction method first reconstructs the fluorescence background spectrum from narrow-band measurements and then the pure Raman narrow-band measurements can be estimated by subtracting the estimated fluorescence background from the overall narrow-band measurements. Thereafter, the pure Raman spectrum can be reconstructed from the estimated pure Raman narrow-band measurements. The result indicates that the stepwise spectral reconstruction method can improve spectral reconstruction accuracy significantly when combined with sequential weighted Wiener estimation, compared with the traditional Wiener estimation. In addition, qualitatively accurate cell Raman spectra were successfully reconstructed using the stepwise spectral reconstruction method from the narrow-band measurements acquired by a four-channel wide-field Raman spectroscopic imaging system. This method can potentially facilitate the adoption of spectroscopic Raman imaging to the investigation of fast changing phenomena.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation

Shuo Chen, Xiaoqian Lin, Clement Yuen, Saraswathi Padmanabhan, Roger W. Beuerman, and Quan Liu
Opt. Express 22(10) 12102-12114 (2014)

Piecewise Wiener estimation for reconstruction of spectral reflectance image by multipoint spectral measurements

Yuri Murakami, Masahiro Yamaguchi, and Nagaaki Ohyama
Appl. Opt. 48(11) 2188-2202 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20(20), 22158–22171 (2012).
    [Crossref] [PubMed]
  2. Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
    [Crossref]
  3. M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
    [Crossref] [PubMed]
  4. S. Baronti, A. Casini, F. Lotti, and S. Porcinai, “Multispectral Imaging System for the Mapping of Pigments in Works of Art by use of Principal-Component Analysis,” Appl. Opt. 37(8), 1299–1309 (1998).
    [Crossref] [PubMed]
  5. S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).
    [Crossref] [PubMed]
  6. J. Hartke and E. L. Dereniak, “Snapshot dual-band visible hyperspectral imaging spectrometer,” Opt. Eng. 46(1), 013201 (2007).
    [Crossref]
  7. T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
    [Crossref] [PubMed]
  8. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15(21), 14013–14027 (2007).
    [Crossref] [PubMed]
  9. S. Chen, Y. H. Ong, X. Lin, and Q. Liu, “Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background,” Biomed. Opt. Express 6(7), 2633–2648 (2015).
    [Crossref] [PubMed]
  10. S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
    [Crossref]
  11. S. Chen, Y. H. Ong, and Q. Liu, “A Method to Create a Universal Calibration Dataset for Raman Reconstruction Based on Wiener Estimation,” IEEE J. Sel. Top. Quant. 22(3), 1–7 (2016).
    [Crossref]
  12. D. Wei, S. Chen, Y. H. Ong, C. Perlaki, and Q. Liu, “Fast wide-field Raman spectroscopic imaging based on simultaneous multi-channel image acquisition and Wiener estimation,” Opt. Lett. 41(12), 2783–2786 (2016).
    [Crossref] [PubMed]
  13. S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
    [Crossref] [PubMed]
  14. M. Brückner, K. Becker, J. Popp, and T. Frosch, “Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells,” Anal. Chim. Acta 894, 76–84 (2015).
    [Crossref] [PubMed]
  15. S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
    [Crossref] [PubMed]
  16. J. S. U. Hjorth, Computer Intensive Statistical Methods: Validation, Model Selection, and Boostrap (Chapman and Hall/CRC, 1993).
  17. S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
    [Crossref] [PubMed]
  18. J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
    [Crossref]
  19. R. Piché, “Nonnegative color spectrum analysis filters from principal component analysis characteristic spectra,” J. Opt. Soc. Am. A 19(10), 1946–1950 (2002).
    [Crossref] [PubMed]
  20. M. Melanie, An Introduction to Genetic Algorithms (Massachusetts Institute of Technology, 1998).
  21. W. F. Zhang and D. Q. Dai, “Spectral reflectance estimation from camera responses by support vector regression and a composite model,” J. Opt. Soc. Am. A 25(9), 2286–2296 (2008).
    [Crossref] [PubMed]
  22. V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
    [Crossref]

2016 (2)

S. Chen, Y. H. Ong, and Q. Liu, “A Method to Create a Universal Calibration Dataset for Raman Reconstruction Based on Wiener Estimation,” IEEE J. Sel. Top. Quant. 22(3), 1–7 (2016).
[Crossref]

D. Wei, S. Chen, Y. H. Ong, C. Perlaki, and Q. Liu, “Fast wide-field Raman spectroscopic imaging based on simultaneous multi-channel image acquisition and Wiener estimation,” Opt. Lett. 41(12), 2783–2786 (2016).
[Crossref] [PubMed]

2015 (3)

M. Brückner, K. Becker, J. Popp, and T. Frosch, “Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells,” Anal. Chim. Acta 894, 76–84 (2015).
[Crossref] [PubMed]

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

S. Chen, Y. H. Ong, X. Lin, and Q. Liu, “Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background,” Biomed. Opt. Express 6(7), 2633–2648 (2015).
[Crossref] [PubMed]

2014 (1)

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

2013 (1)

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

2012 (3)

S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).
[Crossref] [PubMed]

Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20(20), 22158–22171 (2012).
[Crossref] [PubMed]

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

2011 (1)

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

2008 (1)

2007 (3)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

J. Hartke and E. L. Dereniak, “Snapshot dual-band visible hyperspectral imaging spectrometer,” Opt. Eng. 46(1), 013201 (2007).
[Crossref]

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15(21), 14013–14027 (2007).
[Crossref] [PubMed]

2005 (1)

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

2004 (1)

T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
[Crossref] [PubMed]

2003 (1)

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

2002 (1)

1998 (1)

Baronti, S.

Basiji, D. A.

T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
[Crossref] [PubMed]

Becker, K.

M. Brückner, K. Becker, J. Popp, and T. Frosch, “Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells,” Anal. Chim. Acta 894, 76–84 (2015).
[Crossref] [PubMed]

Bernstein, L.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Brady, D. J.

Brie, D.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

Brückner, M.

M. Brückner, K. Becker, J. Popp, and T. Frosch, “Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells,” Anal. Chim. Acta 894, 76–84 (2015).
[Crossref] [PubMed]

Carteret, C.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

Casini, A.

Chen, G.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Chen, J.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Chen, R.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Chen, S.

D. Wei, S. Chen, Y. H. Ong, C. Perlaki, and Q. Liu, “Fast wide-field Raman spectroscopic imaging based on simultaneous multi-channel image acquisition and Wiener estimation,” Opt. Lett. 41(12), 2783–2786 (2016).
[Crossref] [PubMed]

S. Chen, Y. H. Ong, and Q. Liu, “A Method to Create a Universal Calibration Dataset for Raman Reconstruction Based on Wiener Estimation,” IEEE J. Sel. Top. Quant. 22(3), 1–7 (2016).
[Crossref]

S. Chen, Y. H. Ong, X. Lin, and Q. Liu, “Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background,” Biomed. Opt. Express 6(7), 2633–2648 (2015).
[Crossref] [PubMed]

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).
[Crossref] [PubMed]

Dai, D. Q.

Dereniak, E. L.

J. Hartke and E. L. Dereniak, “Snapshot dual-band visible hyperspectral imaging spectrometer,” Opt. Eng. 46(1), 013201 (2007).
[Crossref]

Desroches, J.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Feng, S.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Frosch, T.

M. Brückner, K. Becker, J. Popp, and T. Frosch, “Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells,” Anal. Chim. Acta 894, 76–84 (2015).
[Crossref] [PubMed]

Gehm, M. E.

George, T. C.

T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
[Crossref] [PubMed]

Guiot, M. C.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Hall, B. E.

T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
[Crossref] [PubMed]

Hartke, J.

J. Hartke and E. L. Dereniak, “Snapshot dual-band visible hyperspectral imaging spectrometer,” Opt. Eng. 46(1), 013201 (2007).
[Crossref]

Huang, Z.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Huffman, S. W.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

Humbert, B.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

Idier, J.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

Jermyn, M.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

John, R.

Leblond, F.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Levin, I. W.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

Li, B.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Li, C.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Li, Y.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Lim, M.

Lin, J.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Lin, S.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Lin, X.

S. Chen, Y. H. Ong, X. Lin, and Q. Liu, “Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background,” Biomed. Opt. Express 6(7), 2633–2648 (2015).
[Crossref] [PubMed]

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

Liu, Q.

S. Chen, Y. H. Ong, and Q. Liu, “A Method to Create a Universal Calibration Dataset for Raman Reconstruction Based on Wiener Estimation,” IEEE J. Sel. Top. Quant. 22(3), 1–7 (2016).
[Crossref]

D. Wei, S. Chen, Y. H. Ong, C. Perlaki, and Q. Liu, “Fast wide-field Raman spectroscopic imaging based on simultaneous multi-channel image acquisition and Wiener estimation,” Opt. Lett. 41(12), 2783–2786 (2016).
[Crossref] [PubMed]

S. Chen, Y. H. Ong, X. Lin, and Q. Liu, “Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background,” Biomed. Opt. Express 6(7), 2633–2648 (2015).
[Crossref] [PubMed]

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20(20), 22158–22171 (2012).
[Crossref] [PubMed]

S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).
[Crossref] [PubMed]

Lotti, F.

Lynch, D. H.

T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
[Crossref] [PubMed]

Mazet, V.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

Mercier, J.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Mok, K.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Morrissey, P. J.

T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
[Crossref] [PubMed]

Movasaghi, Z.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Ong, Y. H.

Ortyn, W. E.

T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
[Crossref] [PubMed]

Pan, J.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Perlaki, C.

Perry, D. J.

T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
[Crossref] [PubMed]

Petrecca, K.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Piché, R.

Pichette, J.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Popp, J.

M. Brückner, K. Becker, J. Popp, and T. Frosch, “Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells,” Anal. Chim. Acta 894, 76–84 (2015).
[Crossref] [PubMed]

Porcinai, S.

Rehman, I. U.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Rehman, S.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Saint-Arnaud, K.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Schaeberle, M. D.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

Schlücker, S.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

Schulz, T. J.

Seo, M. J.

T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
[Crossref] [PubMed]

Sun, L.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Wei, D.

Willett, R. M.

Wu, Y.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Zeng, H.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Zhang, W. F.

Zhu, C.

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

Zimmerman, C. A.

T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
[Crossref] [PubMed]

Anal. Chem. (1)

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

M. Brückner, K. Becker, J. Popp, and T. Frosch, “Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells,” Anal. Chim. Acta 894, 76–84 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. Rev. (1)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (1)

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Chemometr. Intell. Lab. (1)

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

Cytometry A (1)

T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A 59(2), 237–245 (2004).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quant. (1)

S. Chen, Y. H. Ong, and Q. Liu, “A Method to Create a Universal Calibration Dataset for Raman Reconstruction Based on Wiener Estimation,” IEEE J. Sel. Top. Quant. 22(3), 1–7 (2016).
[Crossref]

J. Biomed. Opt. (2)

S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).
[Crossref] [PubMed]

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Raman Spectrosc. (2)

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Opt. Eng. (1)

J. Hartke and E. L. Dereniak, “Snapshot dual-band visible hyperspectral imaging spectrometer,” Opt. Eng. 46(1), 013201 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Sci. Transl. Med. (1)

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Other (2)

J. S. U. Hjorth, Computer Intensive Statistical Methods: Validation, Model Selection, and Boostrap (Chapman and Hall/CRC, 1993).

M. Melanie, An Introduction to Genetic Algorithms (Massachusetts Institute of Technology, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the (a) traditional Wiener estimation and (b) stepwise Wiener estimation. The input variables, the intermediate variables and final results are highlighted in blue, green and red, respectively.
Fig. 2
Fig. 2 (a) Comparison of the measured spontaneous Raman spectrum, the spontaneous Raman spectrum reconstructed by the traditional WE and stepwise sequential weighted WE in the typical case. (b) Transmittance spectra of the best combination of four commercial filters used in the typical case. Note that fluorescence background has been removed in both sets of spectra to facilitate comparison in Raman features.
Fig. 3
Fig. 3 (a) Comparison of the measured SERS spectrum, the SERS reconstructed by the traditional WE and stepwise sequential weighted WE in the typical case. (b) Transmittance spectra of the best combination of four commercial filters used in the typical case. Note that fluorescence background has been removed in both sets of spectra to facilitate comparison in Raman features.
Fig. 4
Fig. 4 (a) Four-channel narrow-band images experimentally acquired from leukemia cells. The pixels within red squares form the regions of interest (ROI). (b) Experimental Raman spectrum measured by a commercial Raman spectrometer and representative Raman spectrum reconstructed using the traditional WE and stepwise sequential weighted WE. Note that the narrow-band measurements used to reconstruct the Raman spectrum and the experimental Raman spectrum may be acquired from different cells.

Tables (4)

Tables Icon

Table 1 Comparison in the mean relative RMSE of spontaneous Raman spectra (after fluorescence background removal) reconstructed using the traditional WE, stepwise WE and stepwise sequential weighted WE with different types and numbers of filters

Tables Icon

Table 2 Comparison in the mean relative RMSE of SERS spectra (after fluorescence background removal) reconstructed using the traditional WE, stepwise WE and stepwise sequential weighted WE with different types and numbers of filters

Tables Icon

Table 3 Comparison in the mean relative RMSE of spontaneous Raman spectra (after fluorescence background removal) reconstructed by the traditional WE, the stepwise WE and the stepwise WE without fluorescence background correction using different types and numbers of filters.

Tables Icon

Table 4 Comparison in the mean relative RMSE of SERS spectra (after fluorescence background removal) reconstructed by the traditional WE, the stepwise WE and the stepwise WE without fluorescence background correction using different types and numbers of filters.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

W=E(s c T ) [E(c c T )] 1 .
W= i=1 n w i s i c i T j=1 n ( w j c j c j T ) 1 .
w i = d i 1 j=1 n d j 1 .
d i = m=1 k | s i ( λ m )r( λ m ) | .

Metrics