Abstract

As a promising solution for short-to-medium transmission systems, direct detection optical orthogonal frequency division multiplexing (DDO-OFDM) or discrete multi-tone (DMT) has been intensively investigated in last decade. Benefitting from the advantages of peak-to-average power (PAPR) reduction and signal-to-noise ratio (SNR) equalization, precoding techniques are widely applied to enhance the performance of DDO-OFDM systems. However, the conventional method of partitioning precoding sets limits the ability of precoding schemes to optimize the SNR variation and the allocation of modulation formats. Thus, the precoding transmission systems are hard to reach the capacity that traditional bit-power loading (BPL) techniques, like the Levin-Campello (LC) algorithm, can achieve. In this paper, we investigate the principle of SNR variation for precoded DDO-OFDM systems and theoretically demonstrate that the SNR equalization effect of precoding techniques is actually determined by the noise equalization process. Based on this fact, we propose an adaptively partitioned precoding (APP) algorithm to unlock the ability to control the SNR of each subcarrier. As demonstrated by the simulation and experimental results, the proposed APP algorithm achieves the transmission capacity as high as the LC algorithm and has nearly 1 dB PAPR reduction. Besides, the look-up table (LUT) operation ensures low complexity of the proposed APP algorithm compared with LC algorithm. To avoid severe chromatic dispersion (CD) induced spectral fading, single sideband (SSB) modulation is also implemented. We find that SSB modulation can reach the capacity of double sideband (DSB) modulation in optical back-to-back (OB2B) configuration by optimizing the modulation index. Therefore, the APP based SSB-DDO-OFDM scheme can sufficiently enhance the performance of cost-sensitive short-to-medium reach optical fiber communication systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An experimental demonstration for carrier reused bidirectional PON system with adaptive modulation DDO-OFDM downstream and QPSK upstream signals

Jhih-Heng Yan, You-Wei Chen, Kuan-Heng Shen, and Kai-Ming Feng
Opt. Express 21(23) 28154-28166 (2013)

Extended reach OFDM-PON using super-Nyquist image induced aliasing

Changjian Guo, Jiawei Liang, Jie Liu, and Liu Liu
Opt. Express 23(17) 21798-21808 (2015)

Performance of 16 QAM-OFDM With New Null Subcarrier Shifting in an Intensity-Modulated Direct Detection System

Hongxian Chen, Jing He, Jin Tang, Fan Li, Ming Chen, and Lin Chen
J. Opt. Commun. Netw. 6(2) 159-164 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J. Elbers, “Solutions for 80 km DWDM systems,” J. Lightwave Technol. 34(2), 491–499 (2016).
    [Crossref]
  2. J. Kani, J. Terada, K. Suzuki, and A. Otaka, “Solutions for future mobile fronthaul and access-network convergence,” J. Lightwave Technol. 35(3), 527–534 (2017).
  3. M. H. Eiselt, N. Eiselt, and A. Dochhan, “Direct-detection solutions for 100G and beyond,” in Proceedings of Optical Fiber Communication Conference (2017), paper Tu3I.3.
    [Crossref]
  4. H. Y. Chen, N. Kaneda, J. Lee, J. Chen, and Y. K. Chen, “Optical filter requirements in an EML-based single-sideband PAM4 intensity-modulation and direct-detection transmission system,” Opt. Express 25(6), 5852–5860 (2017).
    [Crossref] [PubMed]
  5. X. Li, S. Zhou, F. Gao, M. Luo, Q. Yang, Q. Mo, Y. Yu, and S. Fu, “4×28 Gb/s PAM4 long-reach PON using low complexity nonlinear compensation,” in Proceedings of Optical Fiber Communication Conference (2017), paper M3H.4.
    [Crossref]
  6. J. Zhou, L. Zhang, T. Zuo, Q. Zhang, S. Zhang, E. Zhou, and G. N. Liu, “Transmission of 100-Gb/s DSB-DMT over 80-km SMF using 10-G class TTA and direct-detection,” in Proceedings of European Conference on Optical Communication (2016), paper Tu.3.F.1.
  7. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol. 26(1), 196–203 (2008).
    [Crossref]
  8. B. Lin, J. Li, H. Yang, Y. Wan, Y. He, and Z. Chen, “Comparison of DSB and SSB transmission for OFDM-PON [Invited],” J. Opt. Commun. Netw. 4(11), B94–B100 (2012).
    [Crossref]
  9. S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett. 41(8), 1805–1808 (2016).
    [Crossref] [PubMed]
  10. L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-Band,” J. Lightwave Technol. 34(2), 723–729 (2016).
    [Crossref]
  11. Y. Gao, J. Yu, J. Xiao, Z. Cao, F. Li, and L. Chen, “Direct-detection optical OFDM transmission system with pre-emphasis technique,” J. Lightwave Technol. 29(14), 2138–2145 (2011).
    [Crossref]
  12. L. Cheng, H. Wen, X. Zheng, H. Zhang, and Y. Guo, “Predistortion of high speed optical OFDM signal for aliasing-free receiving in multiple low-bandwidth receiver system,” Chin. Opt. Lett. 8(4), 377–380 (2010).
    [Crossref]
  13. J. Campello, “Practical bit loading for DMT,” in Proceedings of Global Telecommunication Conference (GLOBECOM ’99) (Vancouver, Canada, 1999), pp. 801–805.
  14. B. S. Krongold, K. Ramchandran, and D. L. Jones, “Computationally efficient optimal power allocation algorithms for multicarrier communication systems,” IEEE Trans. Commun. 48(1), 23–27 (2000).
    [Crossref]
  15. D. Che, H. Khodakarami, A. Li, X. Chen, T. Anderson, and W. Shieh, “Subcarrier Reliability Aware Soft-Decision LDPC Code in CO-OFDM Systems,” IEEE Photonics Technol. Lett. 26(11), 1157–1160 (2014).
    [Crossref]
  16. X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System,” IEEE Photonics J. 9(2), 1–20 (2017).
  17. J. Campello, “Optimal discrete bit loading for multicarrier modulation systems,” in Proceedings of IEEE International Symposium on Information Theory (Institute of Electrical and Electronics Engineers, Cambridge, MA, 1998), pp. 193.
    [Crossref]
  18. P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
    [Crossref]
  19. X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
    [Crossref]
  20. D. J. G. Mestdagh and P. M. P. Spruyt, “A method to reduce the probability of clipping in DMT-based transceivers,” IEEE Trans. Commun. 44(10), 1234–1238 (1996).
    [Crossref]
  21. S. H. Muller and J. B. Huber, “A novel peak power reduction scheme for OFDM,” in Proceedings of IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC, 1997), pp. 1090–1094.
  22. K. Bruninghaus and H. Rohling, “Multi-carrier spread spectrum and its relationship to single-carrier transmission,” in Proceedings of IEEE Vehicular Technology Conference (48th, 1998), pp. 2329–2332.
    [Crossref]
  23. H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
    [Crossref]
  24. T. Truong, M. Arzel, H. Lin, B. Jahan, and M. Jezequel, “DFT precoded OFDM—An Alternative Candidate for Next Generation PONs,” J. Lightwave Technol. 32(6), 1228–1238 (2014).
    [Crossref]
  25. Z. Feng, Q. Wu, M. Tang, R. Lin, R. Wang, L. Deng, S. Fu, P. P. Shum, and D. Liu, “Dispersion-tolerant DDO-OFDM system and simplified adaptive modulation scheme using CAZAC precoding,” J. Lightwave Technol. 34(11), 2743–2751 (2016).
    [Crossref]
  26. Y. Hong, J. Xu, and L. K. Chen, “Experimental investigation of multi-band OCT precoding for OFDM-based visible light communications,” Opt. Express 25(11), 12908–12914 (2017).
    [Crossref] [PubMed]
  27. Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
    [Crossref]
  28. S. B. Slimane, “Reducing the Peak-to-Average Power Ratio of OFDM Signals Through Precoding,” IEEE Trans. Vehicular Technol. 56(2), 686–695 (2007).
    [Crossref]
  29. Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wirel. Commun. 4(6), 2726–2737 (2005).
    [Crossref]
  30. K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
    [Crossref]
  31. P. K. Vitthaladevuni, M. Alouini, and J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4(6), 3039–3050 (2005).
    [Crossref]
  32. A. Lozano, A. M. Tulino, and S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
    [Crossref]
  33. J. M. Cioffi, “Chapter 4: Multi-Channel Modulation,” http://www.stanford.edu/group/cioffi/book/chap4.pdf .

2017 (4)

2016 (4)

2015 (1)

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
[Crossref]

2014 (2)

T. Truong, M. Arzel, H. Lin, B. Jahan, and M. Jezequel, “DFT precoded OFDM—An Alternative Candidate for Next Generation PONs,” J. Lightwave Technol. 32(6), 1228–1238 (2014).
[Crossref]

D. Che, H. Khodakarami, A. Li, X. Chen, T. Anderson, and W. Shieh, “Subcarrier Reliability Aware Soft-Decision LDPC Code in CO-OFDM Systems,” IEEE Photonics Technol. Lett. 26(11), 1157–1160 (2014).
[Crossref]

2012 (1)

2011 (2)

Y. Gao, J. Yu, J. Xiao, Z. Cao, F. Li, and L. Chen, “Direct-detection optical OFDM transmission system with pre-emphasis technique,” J. Lightwave Technol. 29(14), 2138–2145 (2011).
[Crossref]

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

2010 (1)

2008 (1)

2007 (1)

S. B. Slimane, “Reducing the Peak-to-Average Power Ratio of OFDM Signals Through Precoding,” IEEE Trans. Vehicular Technol. 56(2), 686–695 (2007).
[Crossref]

2006 (2)

A. Lozano, A. M. Tulino, and S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
[Crossref]

H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
[Crossref]

2005 (2)

P. K. Vitthaladevuni, M. Alouini, and J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4(6), 3039–3050 (2005).
[Crossref]

Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wirel. Commun. 4(6), 2726–2737 (2005).
[Crossref]

2002 (1)

K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

2000 (1)

B. S. Krongold, K. Ramchandran, and D. L. Jones, “Computationally efficient optimal power allocation algorithms for multicarrier communication systems,” IEEE Trans. Commun. 48(1), 23–27 (2000).
[Crossref]

1996 (1)

D. J. G. Mestdagh and P. M. P. Spruyt, “A method to reduce the probability of clipping in DMT-based transceivers,” IEEE Trans. Commun. 44(10), 1234–1238 (1996).
[Crossref]

1995 (1)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
[Crossref]

Alouini, M.

P. K. Vitthaladevuni, M. Alouini, and J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4(6), 3039–3050 (2005).
[Crossref]

Anderson, T.

D. Che, H. Khodakarami, A. Li, X. Chen, T. Anderson, and W. Shieh, “Subcarrier Reliability Aware Soft-Decision LDPC Code in CO-OFDM Systems,” IEEE Photonics Technol. Lett. 26(11), 1157–1160 (2014).
[Crossref]

Andrews, J. G.

Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wirel. Commun. 4(6), 2726–2737 (2005).
[Crossref]

Armstrong, J.

Arzel, M.

Bingham, J. A. C.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
[Crossref]

Bruninghaus, K.

K. Bruninghaus and H. Rohling, “Multi-carrier spread spectrum and its relationship to single-carrier transmission,” in Proceedings of IEEE Vehicular Technology Conference (48th, 1998), pp. 2329–2332.
[Crossref]

Campello, J.

J. Campello, “Practical bit loading for DMT,” in Proceedings of Global Telecommunication Conference (GLOBECOM ’99) (Vancouver, Canada, 1999), pp. 801–805.

J. Campello, “Optimal discrete bit loading for multicarrier modulation systems,” in Proceedings of IEEE International Symposium on Information Theory (Institute of Electrical and Electronics Engineers, Cambridge, MA, 1998), pp. 193.
[Crossref]

Cao, Z.

Che, D.

D. Che, H. Khodakarami, A. Li, X. Chen, T. Anderson, and W. Shieh, “Subcarrier Reliability Aware Soft-Decision LDPC Code in CO-OFDM Systems,” IEEE Photonics Technol. Lett. 26(11), 1157–1160 (2014).
[Crossref]

Chen, H. Y.

Chen, J.

Chen, L.

Chen, L. K.

Chen, X.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System,” IEEE Photonics J. 9(2), 1–20 (2017).

D. Che, H. Khodakarami, A. Li, X. Chen, T. Anderson, and W. Shieh, “Subcarrier Reliability Aware Soft-Decision LDPC Code in CO-OFDM Systems,” IEEE Photonics Technol. Lett. 26(11), 1157–1160 (2014).
[Crossref]

Chen, Y. K.

Chen, Z.

Cheng, L.

Cho, K.

K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

Chow, P. S.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
[Crossref]

Cioffi, J. M.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
[Crossref]

Deng, L.

Z. Feng, Q. Wu, M. Tang, R. Lin, R. Wang, L. Deng, S. Fu, P. P. Shum, and D. Liu, “Dispersion-tolerant DDO-OFDM system and simplified adaptive modulation scheme using CAZAC precoding,” J. Lightwave Technol. 34(11), 2743–2751 (2016).
[Crossref]

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
[Crossref]

Dochhan, A.

Eiselt, M. H.

Eiselt, N.

Elbers, J.

Evans, B. L.

Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wirel. Commun. 4(6), 2726–2737 (2005).
[Crossref]

Feng, Z.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System,” IEEE Photonics J. 9(2), 1–20 (2017).

Z. Feng, Q. Wu, M. Tang, R. Lin, R. Wang, L. Deng, S. Fu, P. P. Shum, and D. Liu, “Dispersion-tolerant DDO-OFDM system and simplified adaptive modulation scheme using CAZAC precoding,” J. Lightwave Technol. 34(11), 2743–2751 (2016).
[Crossref]

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
[Crossref]

Fu, S.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System,” IEEE Photonics J. 9(2), 1–20 (2017).

S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett. 41(8), 1805–1808 (2016).
[Crossref] [PubMed]

Z. Feng, Q. Wu, M. Tang, R. Lin, R. Wang, L. Deng, S. Fu, P. P. Shum, and D. Liu, “Dispersion-tolerant DDO-OFDM system and simplified adaptive modulation scheme using CAZAC precoding,” J. Lightwave Technol. 34(11), 2743–2751 (2016).
[Crossref]

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
[Crossref]

Gao, Y.

Giddings, R. P.

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Goodman, D. J.

H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
[Crossref]

Griesser, H.

Guo, Y.

He, Y.

Hong, Y.

Huber, J. B.

S. H. Muller and J. B. Huber, “A novel peak power reduction scheme for OFDM,” in Proceedings of IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC, 1997), pp. 1090–1094.

Jahan, B.

Jezequel, M.

Jin, X.

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Jones, D. L.

B. S. Krongold, K. Ramchandran, and D. L. Jones, “Computationally efficient optimal power allocation algorithms for multicarrier communication systems,” IEEE Trans. Commun. 48(1), 23–27 (2000).
[Crossref]

Kaneda, N.

Kani, J.

Khodakarami, H.

D. Che, H. Khodakarami, A. Li, X. Chen, T. Anderson, and W. Shieh, “Subcarrier Reliability Aware Soft-Decision LDPC Code in CO-OFDM Systems,” IEEE Photonics Technol. Lett. 26(11), 1157–1160 (2014).
[Crossref]

Kieffer, J. C.

P. K. Vitthaladevuni, M. Alouini, and J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4(6), 3039–3050 (2005).
[Crossref]

Krongold, B. S.

B. S. Krongold, K. Ramchandran, and D. L. Jones, “Computationally efficient optimal power allocation algorithms for multicarrier communication systems,” IEEE Trans. Commun. 48(1), 23–27 (2000).
[Crossref]

Lee, J.

Li, A.

D. Che, H. Khodakarami, A. Li, X. Chen, T. Anderson, and W. Shieh, “Subcarrier Reliability Aware Soft-Decision LDPC Code in CO-OFDM Systems,” IEEE Photonics Technol. Lett. 26(11), 1157–1160 (2014).
[Crossref]

Li, B.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System,” IEEE Photonics J. 9(2), 1–20 (2017).

Li, F.

Li, J.

Li, X.

Lim, J.

H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
[Crossref]

Lin, B.

Lin, H.

Lin, R.

Z. Feng, Q. Wu, M. Tang, R. Lin, R. Wang, L. Deng, S. Fu, P. P. Shum, and D. Liu, “Dispersion-tolerant DDO-OFDM system and simplified adaptive modulation scheme using CAZAC precoding,” J. Lightwave Technol. 34(11), 2743–2751 (2016).
[Crossref]

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
[Crossref]

Liu, D.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System,” IEEE Photonics J. 9(2), 1–20 (2017).

Z. Feng, Q. Wu, M. Tang, R. Lin, R. Wang, L. Deng, S. Fu, P. P. Shum, and D. Liu, “Dispersion-tolerant DDO-OFDM system and simplified adaptive modulation scheme using CAZAC precoding,” J. Lightwave Technol. 34(11), 2743–2751 (2016).
[Crossref]

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
[Crossref]

Liu, G. N.

Lowery, A. J.

Lozano, A.

A. Lozano, A. M. Tulino, and S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
[Crossref]

Mao, Y.

Mestdagh, D. J. G.

D. J. G. Mestdagh and P. M. P. Spruyt, “A method to reduce the probability of clipping in DMT-based transceivers,” IEEE Trans. Commun. 44(10), 1234–1238 (1996).
[Crossref]

Muller, S. H.

S. H. Muller and J. B. Huber, “A novel peak power reduction scheme for OFDM,” in Proceedings of IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC, 1997), pp. 1090–1094.

Myung, H. G.

H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
[Crossref]

Otaka, A.

Quinlan, T.

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Ramchandran, K.

B. S. Krongold, K. Ramchandran, and D. L. Jones, “Computationally efficient optimal power allocation algorithms for multicarrier communication systems,” IEEE Trans. Commun. 48(1), 23–27 (2000).
[Crossref]

Rohling, H.

K. Bruninghaus and H. Rohling, “Multi-carrier spread spectrum and its relationship to single-carrier transmission,” in Proceedings of IEEE Vehicular Technology Conference (48th, 1998), pp. 2329–2332.
[Crossref]

Schmidt, B. J. C.

Shen, Z.

Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wirel. Commun. 4(6), 2726–2737 (2005).
[Crossref]

Shieh, W.

D. Che, H. Khodakarami, A. Li, X. Chen, T. Anderson, and W. Shieh, “Subcarrier Reliability Aware Soft-Decision LDPC Code in CO-OFDM Systems,” IEEE Photonics Technol. Lett. 26(11), 1157–1160 (2014).
[Crossref]

Shum, P.

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
[Crossref]

Shum, P. P.

Slimane, S. B.

S. B. Slimane, “Reducing the Peak-to-Average Power Ratio of OFDM Signals Through Precoding,” IEEE Trans. Vehicular Technol. 56(2), 686–695 (2007).
[Crossref]

Spruyt, P. M. P.

D. J. G. Mestdagh and P. M. P. Spruyt, “A method to reduce the probability of clipping in DMT-based transceivers,” IEEE Trans. Commun. 44(10), 1234–1238 (1996).
[Crossref]

Suzuki, K.

Tang, J. M.

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Tang, M.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System,” IEEE Photonics J. 9(2), 1–20 (2017).

Z. Feng, Q. Wu, M. Tang, R. Lin, R. Wang, L. Deng, S. Fu, P. P. Shum, and D. Liu, “Dispersion-tolerant DDO-OFDM system and simplified adaptive modulation scheme using CAZAC precoding,” J. Lightwave Technol. 34(11), 2743–2751 (2016).
[Crossref]

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
[Crossref]

Terada, J.

Truong, T.

Tulino, A. M.

A. Lozano, A. M. Tulino, and S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
[Crossref]

Verdu, S.

A. Lozano, A. M. Tulino, and S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
[Crossref]

Vitthaladevuni, P. K.

P. K. Vitthaladevuni, M. Alouini, and J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4(6), 3039–3050 (2005).
[Crossref]

Walker, S.

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Wan, Y.

Wang, R.

Z. Feng, Q. Wu, M. Tang, R. Lin, R. Wang, L. Deng, S. Fu, P. P. Shum, and D. Liu, “Dispersion-tolerant DDO-OFDM system and simplified adaptive modulation scheme using CAZAC precoding,” J. Lightwave Technol. 34(11), 2743–2751 (2016).
[Crossref]

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
[Crossref]

Wei, J. L.

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Wen, H.

Wu, Q.

Z. Feng, Q. Wu, M. Tang, R. Lin, R. Wang, L. Deng, S. Fu, P. P. Shum, and D. Liu, “Dispersion-tolerant DDO-OFDM system and simplified adaptive modulation scheme using CAZAC precoding,” J. Lightwave Technol. 34(11), 2743–2751 (2016).
[Crossref]

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
[Crossref]

Xiao, J.

Xu, J.

Xu, X.

Yang, H.

Yang, Q.

Yi, L.

Yoon, D.

K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

Yu, J.

Zhang, H.

Zhang, L.

Zhang, Q.

Zheng, X.

Zhou, E.

Zhou, H.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System,” IEEE Photonics J. 9(2), 1–20 (2017).

Zhou, S.

Zuo, T.

Chin. Opt. Lett. (1)

IEEE Photonics J. (2)

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System,” IEEE Photonics J. 9(2), 1–20 (2017).

IEEE Photonics Technol. Lett. (2)

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, “Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization,” IEEE Photonics Technol. Lett. 27(14), 1507–1510 (2015).
[Crossref]

D. Che, H. Khodakarami, A. Li, X. Chen, T. Anderson, and W. Shieh, “Subcarrier Reliability Aware Soft-Decision LDPC Code in CO-OFDM Systems,” IEEE Photonics Technol. Lett. 26(11), 1157–1160 (2014).
[Crossref]

IEEE Trans. Commun. (4)

B. S. Krongold, K. Ramchandran, and D. L. Jones, “Computationally efficient optimal power allocation algorithms for multicarrier communication systems,” IEEE Trans. Commun. 48(1), 23–27 (2000).
[Crossref]

D. J. G. Mestdagh and P. M. P. Spruyt, “A method to reduce the probability of clipping in DMT-based transceivers,” IEEE Trans. Commun. 44(10), 1234–1238 (1996).
[Crossref]

K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. Lozano, A. M. Tulino, and S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

S. B. Slimane, “Reducing the Peak-to-Average Power Ratio of OFDM Signals Through Precoding,” IEEE Trans. Vehicular Technol. 56(2), 686–695 (2007).
[Crossref]

IEEE Trans. Wirel. Commun. (2)

Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wirel. Commun. 4(6), 2726–2737 (2005).
[Crossref]

P. K. Vitthaladevuni, M. Alouini, and J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4(6), 3039–3050 (2005).
[Crossref]

IEEE Veh. Technol. Mag. (1)

H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
[Crossref]

J. Lightwave Technol. (7)

J. Opt. Commun. Netw. (1)

Opt. Express (2)

Opt. Lett. (1)

Other (8)

X. Li, S. Zhou, F. Gao, M. Luo, Q. Yang, Q. Mo, Y. Yu, and S. Fu, “4×28 Gb/s PAM4 long-reach PON using low complexity nonlinear compensation,” in Proceedings of Optical Fiber Communication Conference (2017), paper M3H.4.
[Crossref]

J. Zhou, L. Zhang, T. Zuo, Q. Zhang, S. Zhang, E. Zhou, and G. N. Liu, “Transmission of 100-Gb/s DSB-DMT over 80-km SMF using 10-G class TTA and direct-detection,” in Proceedings of European Conference on Optical Communication (2016), paper Tu.3.F.1.

M. H. Eiselt, N. Eiselt, and A. Dochhan, “Direct-detection solutions for 100G and beyond,” in Proceedings of Optical Fiber Communication Conference (2017), paper Tu3I.3.
[Crossref]

S. H. Muller and J. B. Huber, “A novel peak power reduction scheme for OFDM,” in Proceedings of IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC, 1997), pp. 1090–1094.

K. Bruninghaus and H. Rohling, “Multi-carrier spread spectrum and its relationship to single-carrier transmission,” in Proceedings of IEEE Vehicular Technology Conference (48th, 1998), pp. 2329–2332.
[Crossref]

J. Campello, “Practical bit loading for DMT,” in Proceedings of Global Telecommunication Conference (GLOBECOM ’99) (Vancouver, Canada, 1999), pp. 801–805.

J. Campello, “Optimal discrete bit loading for multicarrier modulation systems,” in Proceedings of IEEE International Symposium on Information Theory (Institute of Electrical and Electronics Engineers, Cambridge, MA, 1998), pp. 193.
[Crossref]

J. M. Cioffi, “Chapter 4: Multi-Channel Modulation,” http://www.stanford.edu/group/cioffi/book/chap4.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 SNR thresholds for different modulation formats in an AWGN channel.
Fig. 2
Fig. 2 Schematic diagram of APP algorithm.
Fig. 3
Fig. 3 Model for SSB-DDO-OFDM simulation/experimental system. S/P: serial to parallel conversion, CP: cyclic prefix, P/S: parallel to serial conversion, AWG: arbitrary waveform generator, LPF: low-pass filter, EA: electrical amplifier, DD-MZM: Dual-driver Mach-Zehnder modulator, VOA: variable optical attenuator, SSMF: standard single mode fiber, EDFA: erbium doped fiber amplifier, OBPF: optical bandpass filter, OC: optical coupler, OSA: optical spectrum analyzer, PD: photodiode, DSO: digital storage oscilloscope.
Fig. 4
Fig. 4 The modulation index optimization with different OSNR for SSB and DSB in OB2B configuration. (a) Theoretical capacity versus modulation index for different OSNR. (b) Optimal modulation index and maximum theoretical capacity versus OSNR. LSB: lower sideband, USB: upper sideband.
Fig. 5
Fig. 5 Comparison results for APP and LC schemes. (a) Data rates and (b) BER versus OSNR with different fiber length.
Fig. 6
Fig. 6 CCDF of PAPR for APP and LC schemes with OSNR of 22 dB.
Fig. 7
Fig. 7 Allocated results in simulation with 50 km fiber length and 22 dB OSNR. (a) SNR distribution, (b) BPS, and (c) Power level versus subcarrier index of the APP scheme, respectively. Blue and green denote subcarrier distribution of the precoding set 1 and 2, respectively. Red denotes the dropped subcarriers. (d) SNR distribution, (e) BPS, and (f) Power level versus subcarrier index of the LC scheme, respectively. Red denotes the dropped subcarriers.
Fig. 8
Fig. 8 (a) Theoretical capacity versus drive amplitude, and (b) optical spectrum of DSB, LSB, and USB signal at optimal drive amplitude in OB2B configuration with 40 dB OSNR measured in 0.1 nm resolution bandwidth.
Fig. 9
Fig. 9 Experimental results. (a) Data rate and (b) BER versus OSNR.
Fig. 10
Fig. 10 Allocated results in experiment with 50 km fiber length and 32 dB OSNR. (a) SNR distribution, (b) BPS, and (c) Power level versus subcarrier index of the APP scheme, respectively. Blue, green and yellow denote subcarrier distribution of the precoding set 1, 2, and 3, respectively. Red denotes the dropped subcarriers. (d) SNR distribution, (e) BPS, and (f) Power level versus subcarrier index of the LC scheme, respectively. Red denotes the dropped subcarriers.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Y m = C N m X m
C= 1 N [ c 11 c 12 c 13 c 1N c 21 c 22 c 23 c 2N c 31 c 32 c 33 c 3N c N1 c N2 c N3 c NN ]
R m = H m Y m + n m = H m C N m X m + n m
X m ' = C N m 1 H m 1 R m = X m + C N m H H m 1 n m
P N,i =( p=1 N m c pi * n p H p ) ( q=1 N m c qi * n q H q ) *
P N,i = 1 N m p=1 N m | n p H p | 2
SN R i = P S,i P N,i = | X i | 2 1 N m p=1 N m | n p H p | 2
g=f(i) where g,i=1,2,...,Nsc
{ SN R th,k SN R g <SN R th,k+1 (k<V) SN R g SN R th,V (k=V)
P r = P r +Nscg+1 and go to End.
SN R eq,m =10 log 10 ( N m )-10 log 10 ( n=g g+ N m 1 10 SN R rs,n /10 )
N m = N m 1
P N, f 1 (p) = 1 N m q=g g+ N m 1 10 SN R rs,q 10 , P S, f 1 (p) = 10 SN R th,k 10 P N, f 1 (p) , b f 1 (p) =k , where p=g,g+1,...,g+ N m 1
P r = P r + N m ( 1 P S, f 1 (g) ) , m=m+1 N m =1 , g=g+ N m
N m = N m 1
P N, f 1 (p) = 1 N m q=g g+ N m 1 10 SN R rs,q 10 , P S, f 1 (p) = 10 SN R th,k 10 P N, f 1 (p) , b f 1 (p) =k , where p=g,g+1,...,g+ N m 1
P r = P r + N m ( 1 P S, f 1 (g) ) , g=g+ N m
MI= π V rms V π
C t = i=1 Nsc B log 2 (1+ 10 SN R i /10 )

Metrics