Abstract

Product piracy impacts wide areas of the global economy resulting in multi-billion dollar losses per year. Therefore, product protection technologies are required to produce security elements with high flexibility and complexity. In this work, the fabrication of diffraction-based security elements, so called grating cell arrays, using direct laser interference patterning is presented. Ultraviolet two-beam interference patterning is used to structure line-like gratings into 80 µm in diameter spots with spatial periods ranging from 0.7 µm to 2.2 µm on PET substrates. The developed grating cell arrays are generated by the combination of several holographic surface gratings with variable spatial period and pattern orientation. The stored security information can be visualized by illumination with a coherent light source such as a laser pointer.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Serial number coding and decoding by laser interference direct patterning on the original product surface for anti-counterfeiting

In-Yong Park, Sanghoon Ahn, Youngduk Kim, Han-Sung Bae, Hee-Shin Kang, Jason Yoo, and Jiwhan Noh
Opt. Express 25(13) 14644-14653 (2017)

Polymer-based diffractive optical elements for rear end automotive applications: design and fabrication process

M. S. Khan, Maik Rahlves, Roland Lachmayer, and Bernhard Roth
Appl. Opt. 57(30) 9106-9113 (2018)

Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation

Xiaomei Wang, James R. Leger, and Robert H. Rediker
Appl. Opt. 36(20) 4660-4665 (1997)

References

  • View by:
  • |
  • |
  • |

  1. VDMA, VDMA Studie Produktpiraterie 2016 (VDMA, 2016).
  2. European Commission, Report on EU customs enforcement of intellectual property rights. Results at the EU border (Publications Office of the European Union, 2015).
  3. A. Harris, Orgalime Guide Combating Counterfeiting. A practical guide for European engineering companies (Orgalime, 2001).
  4. M.-F. Chen, Y.-P. Chen, W.-T. Hsiao, S.-Y. Wu, C.-W. Hu, and Z.-P. Gu, “A scribing laser marking system using DSP controller,” Opt. Lasers Eng. 46(5), 410–418 (2008).
  5. J. Diaci, D. Bračun, A. Gorkič, and J. Možina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Lasers Eng. 49(2), 195–199 (2011).
  6. B. Gu, “Review - 40 years of laser-marking - industrial applications,” Proc. SPIE 6106, 61061 (2006).
  7. T. J. Soon, “QR code,” Synthesis 2008, 59–78 (2008).
  8. T. Staake, F. Thiesse, and E. Fleisch, “Extending the EPC network,” in Proceedings of the 2005 ACM symposium on applied computing, H. M. Haddad, L. M. Liebrock, ed. (Association for computing machinery, 2005), pp. 1607–1612.
  9. K. Seino, S. Kuwabara, S. Mikami, Y. Takahashi, M. Yoshikawa, H. Narumi, K. Koganezaki, T. Wakabayashi, and A. Nagano, “Development of the traceability system which secures the safety of fishery products using the QR code and a digital signature,” in Proceedings of MTS/IEEE Techno-Ocean ’04 (MTS/IEEE, 2005), pp. 476–481.
  10. European Union, “Commission Delegated Regulation (EU) 2016/161,” Off. J. Eur. Union L 32, 1–27 (2015).
  11. M. USAMI, “An ultra small RFID chip: µ-chip,” in Proceedings of IEEE radio frequency integrated circuits symposium (IEEE, 2004), pp. 241–244.
  12. C. Pille, “In-process-embedding of piezo sensors and RFID transponders into cast parts for autonomous manufacturing logistics,” in Proceedings of Smart systems integration, T Gessner, ed. (VDE Verlag, 2010), pp. 1–10.
  13. S. L. Yeh and S. T. Lin, “Anticounterfeiting method for a dot-matrix hologram composed of grating dots with different fringe orientations,” Opt. Eng. 54(11), 113106 (2015).
  14. S. L. Yeh, “Dot-matrix hologram with an encrypted figure,” Opt. Eng. 45(9), 95801 (2006).
  15. M. Andrulevičius, T. Tamulevičius, and S. Tamulevičius, “Formation and analysis of dot-matrix holograms,” Mater. Sci. 13(4), 278–281 (2007).
  16. Y. Nakayama, J. Yamamoto, and H. Kawada, “Sub-50-nm pitch size grating reference for CD-SEM magnification calibration,” Proc. SPIE 7272, 727224 (2009).
  17. W. Zhou, “Study and design for coding system of the star-array code base on the information optical storage,” Proc. SPIE 7512, 75120G (2009).
  18. W. Jia, Z. Chen, F. J. Wen, C. Zhou, Y. T. Chow, and P. S. Chung, “Coaxial holographic encoding based on pure phase modulation,” Appl. Opt. 50(34), H10–H15 (2011).
    [PubMed]
  19. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [PubMed]
  20. Z. Chen, N. K. Bao, and P. S. Chung, “Encoded cell grating array in anti-counterfeit technology,” Chin. Opt. Lett. 3(6), 319–321 (2005).
  21. T. Dresel, M. Beyerlein, and J. Schwider, “Design and fabrication of computer-generated beam-shaping holograms,” Appl. Opt. 35(23), 4615–4621 (1996).
    [PubMed]
  22. L. C. Ferri, “Visualization of 3D information with digital holography using laser printers,” Comput. Graph. 25(2), 309–321 (2001).
  23. N. A. Vainos, S. Mailis, S. Pissadakis, L. Boutsikaris, P. J. Parmiter, P. Dainty, and T. J. Hall, “Excimer laser use for microetching computer-generated holographic structures,” Appl. Opt. 35(32), 6304–6319 (1996).
    [PubMed]
  24. S. M. Arnold, “Electron beam fabrication of computer-generated holograms,” Opt. Eng. 24(5), 803–807 (1985).
  25. F. Xu, J. E. Ford, and Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34(2), 256–266 (1995).
    [PubMed]
  26. F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).
  27. C.-K. Lee, J. W.-J. Wu, S.-L. Yeh, C.-W. Tu, Y.-A. Han, E. H.-Z. Liao, L. Y.-Y. Chang, I.-E. Tsai, H.-H. Lin, J. C.-T. Hsieh, and J. T. Lee, “Optical configuration and color-representation range of a variable-pitch dot matrix holographic printer,” Appl. Opt. 39(1), 40–53 (2000).
    [PubMed]
  28. Y. T. Lu and S. Chi, “Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications,” Optik (Stuttg.) 114(4), 161–167 (2003).
  29. K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 517–518 (1997).
  30. J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett. 83(23), 4707–4709 (2003).
  31. P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci. 109, 25–29 (1997).
  32. M. Bieda, E. Beyer, and A. F. Lasagni, “Direct Fabrication of Hierarchical Microstructures on Metals by Means of Direct Laser Interference Patterning,” J. Eng. Mater. Technol. 132(3), 31015 (2010).
  33. A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical Gratings in Mixed-Oxide Films by Laser-Interference Irradiation,” Adv. Mater. 17(18), 2228–2232 (2005).
  34. H. Perez-Hernandez and A. F. Lasagni, “Fast and efficient manufacturing method of one- and two-dimensional polyethylene terephthalate transmission diffraction gratings by direct laser interference patterning,” Polym. Eng. Sci. 52(9), 1903–1908 (2012).
  35. A. Rosenkranz, C. Gachot, E. Ramos-Moore, and F. Mücklich, “Laser interference patterning of steel surfaces - influence on the frictional performance under dry and lubricated sliding conditions,” Tribology Online 11(2), 575–582 (2016).
  36. E. Roitero, F. Lasserre, M. Anglada, F. Mücklich, and E. Jiménez-Piqué, “A parametric study of laser interference surface patterning of dental zirconia: Effects of laser parameters on topography and surface quality,” Dent. Mater. 33(1), e28–e38 (2017).
    [PubMed]
  37. M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
    [PubMed]
  38. S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys., A Mater. Sci. Process. 101(2), 309–312 (2010).
  39. E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
  40. J. Huang, S. Beckemper, A. Gillner, and K. Wang, “Tunable surface texturing by polarization-controlled three-beam interference,” J. Micromech. Microeng. 20(9), 95004 (2010).
  41. M. Garliauskas, E. Stankevičius, and G. Račiukaitis, “Laser intensity-based geometry control of periodic submicron polymer structures fabricated by laser interference lithography,” Opt. Mater. Express 7(1), 179 (2017).
  42. J. Bekesi, P. Simon, and J. Ihlemann, “Deterministic sub-micron 2D grating structures on steel by UV-fs-laser interference patterning,” Appl. Phys., A Mater. Sci. Process. 114(1), 69–73 (2014).
  43. F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138, 107–110 (1999).
  44. D. Asoubar, C. Hellmann, H. Schweitzer, M. Kuhn, and F. Wyrowski, “Customized homogenization and shaping of LED light by micro cells arrays,” Proc. SPIE 9383, 93831B (2015).
  45. LightTrans International UG, “Illumination Systems Design. Homogenization and Shaping of LED and Excimer Laser Light,” http://www.lighttrans.com/1001.html .
  46. G. Fowles, Introduction to Modern Optics, 2nd ed. (Holt, Rinehart and Winston, 1975).
  47. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Co, 2005).
  48. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  49. Filmetrics Inc, “Brechungsindex von Estar, Melinex, Mylar,” http://www.filmetrics.de/refractive-index-database/PET/Estar-Melinex-Mylar .
  50. T. Roch, E. Beyer, and A. Lasagni, “Surface modification of thin tetrahedral amorphous carbon films by means of UV direct laser interference patterning,” Diamond Related Materials 19(12), 1472–1477 (2010).
  51. A. Lasagni, “Bringing the direct laser interference patterning method to industry. a one tool-complete solution for surface functionalization,” J. Laser Micro Nanoeng. 10(3), 340–344 (2015).
  52. M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
  53. A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
  54. A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
  55. S. Alamri and A. F. Lasagni, “Direct laser interference patterning of transparent and colored polymer substrates: ablation, swelling, and the development of a simulation model,” Proc. SPIE 10092, 1009219 (2017).
  56. S. Lazare and V. Granier, “ultraviolet laser photoablation of polymers. a review and recent results,” Laser Chem. 10(1), 25–40 (1989).
  57. J. T. C. Yeh, “Laser ablation of polymers,” J. Vac. Sci. Technol. A 4(3), 653–658 (1986).
  58. S. Alamri and A. F. Lasagni, “Development of a general model for direct laser interference patterning of polymers,” Opt. Express 25(9), 9603–9616 (2017).
    [PubMed]
  59. T. Kunze, C. Zwahr, B. Krupop, S. Alamri, F. Rößler, and A. F. Lasagni, “Development of a scanner-based direct laser interference patterning optical head: new surface structuring opportunities,” Proc. SPIE 10092, 1009214 (2017).

2017 (5)

E. Roitero, F. Lasserre, M. Anglada, F. Mücklich, and E. Jiménez-Piqué, “A parametric study of laser interference surface patterning of dental zirconia: Effects of laser parameters on topography and surface quality,” Dent. Mater. 33(1), e28–e38 (2017).
[PubMed]

M. Garliauskas, E. Stankevičius, and G. Račiukaitis, “Laser intensity-based geometry control of periodic submicron polymer structures fabricated by laser interference lithography,” Opt. Mater. Express 7(1), 179 (2017).

S. Alamri and A. F. Lasagni, “Direct laser interference patterning of transparent and colored polymer substrates: ablation, swelling, and the development of a simulation model,” Proc. SPIE 10092, 1009219 (2017).

S. Alamri and A. F. Lasagni, “Development of a general model for direct laser interference patterning of polymers,” Opt. Express 25(9), 9603–9616 (2017).
[PubMed]

T. Kunze, C. Zwahr, B. Krupop, S. Alamri, F. Rößler, and A. F. Lasagni, “Development of a scanner-based direct laser interference patterning optical head: new surface structuring opportunities,” Proc. SPIE 10092, 1009214 (2017).

2016 (2)

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).

A. Rosenkranz, C. Gachot, E. Ramos-Moore, and F. Mücklich, “Laser interference patterning of steel surfaces - influence on the frictional performance under dry and lubricated sliding conditions,” Tribology Online 11(2), 575–582 (2016).

2015 (5)

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

S. L. Yeh and S. T. Lin, “Anticounterfeiting method for a dot-matrix hologram composed of grating dots with different fringe orientations,” Opt. Eng. 54(11), 113106 (2015).

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).

D. Asoubar, C. Hellmann, H. Schweitzer, M. Kuhn, and F. Wyrowski, “Customized homogenization and shaping of LED light by micro cells arrays,” Proc. SPIE 9383, 93831B (2015).

A. Lasagni, “Bringing the direct laser interference patterning method to industry. a one tool-complete solution for surface functionalization,” J. Laser Micro Nanoeng. 10(3), 340–344 (2015).

2014 (3)

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).

J. Bekesi, P. Simon, and J. Ihlemann, “Deterministic sub-micron 2D grating structures on steel by UV-fs-laser interference patterning,” Appl. Phys., A Mater. Sci. Process. 114(1), 69–73 (2014).

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

2013 (1)

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).

2012 (1)

H. Perez-Hernandez and A. F. Lasagni, “Fast and efficient manufacturing method of one- and two-dimensional polyethylene terephthalate transmission diffraction gratings by direct laser interference patterning,” Polym. Eng. Sci. 52(9), 1903–1908 (2012).

2011 (3)

2010 (4)

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys., A Mater. Sci. Process. 101(2), 309–312 (2010).

J. Huang, S. Beckemper, A. Gillner, and K. Wang, “Tunable surface texturing by polarization-controlled three-beam interference,” J. Micromech. Microeng. 20(9), 95004 (2010).

M. Bieda, E. Beyer, and A. F. Lasagni, “Direct Fabrication of Hierarchical Microstructures on Metals by Means of Direct Laser Interference Patterning,” J. Eng. Mater. Technol. 132(3), 31015 (2010).

T. Roch, E. Beyer, and A. Lasagni, “Surface modification of thin tetrahedral amorphous carbon films by means of UV direct laser interference patterning,” Diamond Related Materials 19(12), 1472–1477 (2010).

2009 (2)

Y. Nakayama, J. Yamamoto, and H. Kawada, “Sub-50-nm pitch size grating reference for CD-SEM magnification calibration,” Proc. SPIE 7272, 727224 (2009).

W. Zhou, “Study and design for coding system of the star-array code base on the information optical storage,” Proc. SPIE 7512, 75120G (2009).

2008 (2)

M.-F. Chen, Y.-P. Chen, W.-T. Hsiao, S.-Y. Wu, C.-W. Hu, and Z.-P. Gu, “A scribing laser marking system using DSP controller,” Opt. Lasers Eng. 46(5), 410–418 (2008).

T. J. Soon, “QR code,” Synthesis 2008, 59–78 (2008).

2007 (1)

M. Andrulevičius, T. Tamulevičius, and S. Tamulevičius, “Formation and analysis of dot-matrix holograms,” Mater. Sci. 13(4), 278–281 (2007).

2006 (2)

B. Gu, “Review - 40 years of laser-marking - industrial applications,” Proc. SPIE 6106, 61061 (2006).

S. L. Yeh, “Dot-matrix hologram with an encrypted figure,” Opt. Eng. 45(9), 95801 (2006).

2005 (2)

Z. Chen, N. K. Bao, and P. S. Chung, “Encoded cell grating array in anti-counterfeit technology,” Chin. Opt. Lett. 3(6), 319–321 (2005).

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical Gratings in Mixed-Oxide Films by Laser-Interference Irradiation,” Adv. Mater. 17(18), 2228–2232 (2005).

2003 (2)

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett. 83(23), 4707–4709 (2003).

Y. T. Lu and S. Chi, “Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications,” Optik (Stuttg.) 114(4), 161–167 (2003).

2001 (1)

L. C. Ferri, “Visualization of 3D information with digital holography using laser printers,” Comput. Graph. 25(2), 309–321 (2001).

2000 (1)

1999 (1)

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138, 107–110 (1999).

1997 (2)

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 517–518 (1997).

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci. 109, 25–29 (1997).

1996 (2)

1995 (1)

1989 (1)

S. Lazare and V. Granier, “ultraviolet laser photoablation of polymers. a review and recent results,” Laser Chem. 10(1), 25–40 (1989).

1986 (1)

J. T. C. Yeh, “Laser ablation of polymers,” J. Vac. Sci. Technol. A 4(3), 653–658 (1986).

1985 (1)

S. M. Arnold, “Electron beam fabrication of computer-generated holograms,” Opt. Eng. 24(5), 803–807 (1985).

Alamri, S.

S. Alamri and A. F. Lasagni, “Direct laser interference patterning of transparent and colored polymer substrates: ablation, swelling, and the development of a simulation model,” Proc. SPIE 10092, 1009219 (2017).

T. Kunze, C. Zwahr, B. Krupop, S. Alamri, F. Rößler, and A. F. Lasagni, “Development of a scanner-based direct laser interference patterning optical head: new surface structuring opportunities,” Proc. SPIE 10092, 1009214 (2017).

S. Alamri and A. F. Lasagni, “Development of a general model for direct laser interference patterning of polymers,” Opt. Express 25(9), 9603–9616 (2017).
[PubMed]

Albrecht, M.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

Andrulevicius, M.

M. Andrulevičius, T. Tamulevičius, and S. Tamulevičius, “Formation and analysis of dot-matrix holograms,” Mater. Sci. 13(4), 278–281 (2007).

Anglada, M.

E. Roitero, F. Lasserre, M. Anglada, F. Mücklich, and E. Jiménez-Piqué, “A parametric study of laser interference surface patterning of dental zirconia: Effects of laser parameters on topography and surface quality,” Dent. Mater. 33(1), e28–e38 (2017).
[PubMed]

Anselmetti, D.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138, 107–110 (1999).

Arnold, S. M.

S. M. Arnold, “Electron beam fabrication of computer-generated holograms,” Opt. Eng. 24(5), 803–807 (1985).

Asoubar, D.

D. Asoubar, C. Hellmann, H. Schweitzer, M. Kuhn, and F. Wyrowski, “Customized homogenization and shaping of LED light by micro cells arrays,” Proc. SPIE 9383, 93831B (2015).

Bao, N. K.

Baumann, I.

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 517–518 (1997).

Beckemper, S.

J. Huang, S. Beckemper, A. Gillner, and K. Wang, “Tunable surface texturing by polarization-controlled three-beam interference,” J. Micromech. Microeng. 20(9), 95004 (2010).

Beinhorn, F.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138, 107–110 (1999).

Bekesi, J.

J. Bekesi, P. Simon, and J. Ihlemann, “Deterministic sub-micron 2D grating structures on steel by UV-fs-laser interference patterning,” Appl. Phys., A Mater. Sci. Process. 114(1), 69–73 (2014).

Benke, D.

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).

Berger, J.

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).

Beyer, E.

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).

T. Roch, E. Beyer, and A. Lasagni, “Surface modification of thin tetrahedral amorphous carbon films by means of UV direct laser interference patterning,” Diamond Related Materials 19(12), 1472–1477 (2010).

M. Bieda, E. Beyer, and A. F. Lasagni, “Direct Fabrication of Hierarchical Microstructures on Metals by Means of Direct Laser Interference Patterning,” J. Eng. Mater. Technol. 132(3), 31015 (2010).

Beyerlein, M.

Bieda, M.

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).

M. Bieda, E. Beyer, and A. F. Lasagni, “Direct Fabrication of Hierarchical Microstructures on Metals by Means of Direct Laser Interference Patterning,” J. Eng. Mater. Technol. 132(3), 31015 (2010).

Blyth, J.

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

Boneberg, J.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys., A Mater. Sci. Process. 101(2), 309–312 (2010).

Boutsikaris, L.

Bracun, D.

J. Diaci, D. Bračun, A. Gorkič, and J. Možina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Lasers Eng. 49(2), 195–199 (2011).

Butt, H.

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

Chang, L. Y.-Y.

Chen, K.

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 517–518 (1997).

Chen, M.-F.

M.-F. Chen, Y.-P. Chen, W.-T. Hsiao, S.-Y. Wu, C.-W. Hu, and Z.-P. Gu, “A scribing laser marking system using DSP controller,” Opt. Lasers Eng. 46(5), 410–418 (2008).

Chen, N.

Chen, Y.-P.

M.-F. Chen, Y.-P. Chen, W.-T. Hsiao, S.-Y. Wu, C.-W. Hu, and Z.-P. Gu, “A scribing laser marking system using DSP controller,” Opt. Lasers Eng. 46(5), 410–418 (2008).

Chen, Z.

Chi, S.

Y. T. Lu and S. Chi, “Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications,” Optik (Stuttg.) 114(4), 161–167 (2003).

Choi, H.-J.

Chow, Y. T.

Chung, P. S.

Dainty, P.

Davidson, C. A. B.

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

Diaci, J.

J. Diaci, D. Bračun, A. Gorkič, and J. Možina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Lasers Eng. 49(2), 195–199 (2011).

Dresel, T.

Edlinger, J.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138, 107–110 (1999).

Fainman, Y.

Ferri, L. C.

L. C. Ferri, “Visualization of 3D information with digital holography using laser printers,” Comput. Graph. 25(2), 309–321 (2001).

Fonin, M.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

Ford, J. E.

Gachot, C.

A. Rosenkranz, C. Gachot, E. Ramos-Moore, and F. Mücklich, “Laser interference patterning of steel surfaces - influence on the frictional performance under dry and lubricated sliding conditions,” Tribology Online 11(2), 575–582 (2016).

Garliauskas, M.

Gedvilas, M.

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).

Gillner, A.

J. Huang, S. Beckemper, A. Gillner, and K. Wang, “Tunable surface texturing by polarization-controlled three-beam interference,” J. Micromech. Microeng. 20(9), 95004 (2010).

Gorkic, A.

J. Diaci, D. Bračun, A. Gorkič, and J. Možina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Lasers Eng. 49(2), 195–199 (2011).

Granier, V.

S. Lazare and V. Granier, “ultraviolet laser photoablation of polymers. a review and recent results,” Laser Chem. 10(1), 25–40 (1989).

Graus, P.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

Grigore, A.

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

Gu, B.

B. Gu, “Review - 40 years of laser-marking - industrial applications,” Proc. SPIE 6106, 61061 (2006).

Gu, Z.-P.

M.-F. Chen, Y.-P. Chen, W.-T. Hsiao, S.-Y. Wu, C.-W. Hu, and Z.-P. Gu, “A scribing laser marking system using DSP controller,” Opt. Lasers Eng. 46(5), 410–418 (2008).

Hahn, J.

Hall, T. J.

Han, Y.-A.

Hebler, B.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

Hellmann, C.

D. Asoubar, C. Hellmann, H. Schweitzer, M. Kuhn, and F. Wyrowski, “Customized homogenization and shaping of LED light by micro cells arrays,” Proc. SPIE 9383, 93831B (2015).

Hinzke, D.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

Holzapfel, C.

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical Gratings in Mixed-Oxide Films by Laser-Interference Irradiation,” Adv. Mater. 17(18), 2228–2232 (2005).

Hong, J.

Hsiao, W.-T.

M.-F. Chen, Y.-P. Chen, W.-T. Hsiao, S.-Y. Wu, C.-W. Hu, and Z.-P. Gu, “A scribing laser marking system using DSP controller,” Opt. Lasers Eng. 46(5), 410–418 (2008).

Hsieh, J. C.-T.

Hu, C.-W.

M.-F. Chen, Y.-P. Chen, W.-T. Hsiao, S.-Y. Wu, C.-W. Hu, and Z.-P. Gu, “A scribing laser marking system using DSP controller,” Opt. Lasers Eng. 46(5), 410–418 (2008).

Huang, J.

J. Huang, S. Beckemper, A. Gillner, and K. Wang, “Tunable surface texturing by polarization-controlled three-beam interference,” J. Micromech. Microeng. 20(9), 95004 (2010).

Ihlemann, J.

J. Bekesi, P. Simon, and J. Ihlemann, “Deterministic sub-micron 2D grating structures on steel by UV-fs-laser interference patterning,” Appl. Phys., A Mater. Sci. Process. 114(1), 69–73 (2014).

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138, 107–110 (1999).

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 517–518 (1997).

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci. 109, 25–29 (1997).

Jia, W.

Jiménez-Piqué, E.

E. Roitero, F. Lasserre, M. Anglada, F. Mücklich, and E. Jiménez-Piqué, “A parametric study of laser interference surface patterning of dental zirconia: Effects of laser parameters on topography and surface quality,” Dent. Mater. 33(1), e28–e38 (2017).
[PubMed]

Kawada, H.

Y. Nakayama, J. Yamamoto, and H. Kawada, “Sub-50-nm pitch size grating reference for CD-SEM magnification calibration,” Proc. SPIE 7272, 727224 (2009).

Kim, H.

Kim, Y.

Klein-Wiele, J.-H.

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett. 83(23), 4707–4709 (2003).

Krupop, B.

T. Kunze, C. Zwahr, B. Krupop, S. Alamri, F. Rößler, and A. F. Lasagni, “Development of a scanner-based direct laser interference patterning optical head: new surface structuring opportunities,” Proc. SPIE 10092, 1009214 (2017).

Kuhn, M.

D. Asoubar, C. Hellmann, H. Schweitzer, M. Kuhn, and F. Wyrowski, “Customized homogenization and shaping of LED light by micro cells arrays,” Proc. SPIE 9383, 93831B (2015).

Kunze, T.

T. Kunze, C. Zwahr, B. Krupop, S. Alamri, F. Rößler, and A. F. Lasagni, “Development of a scanner-based direct laser interference patterning optical head: new surface structuring opportunities,” Proc. SPIE 10092, 1009214 (2017).

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).

Lang, V.

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).

Lasagni, A.

A. Lasagni, “Bringing the direct laser interference patterning method to industry. a one tool-complete solution for surface functionalization,” J. Laser Micro Nanoeng. 10(3), 340–344 (2015).

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).

T. Roch, E. Beyer, and A. Lasagni, “Surface modification of thin tetrahedral amorphous carbon films by means of UV direct laser interference patterning,” Diamond Related Materials 19(12), 1472–1477 (2010).

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical Gratings in Mixed-Oxide Films by Laser-Interference Irradiation,” Adv. Mater. 17(18), 2228–2232 (2005).

Lasagni, A. F.

S. Alamri and A. F. Lasagni, “Direct laser interference patterning of transparent and colored polymer substrates: ablation, swelling, and the development of a simulation model,” Proc. SPIE 10092, 1009219 (2017).

T. Kunze, C. Zwahr, B. Krupop, S. Alamri, F. Rößler, and A. F. Lasagni, “Development of a scanner-based direct laser interference patterning optical head: new surface structuring opportunities,” Proc. SPIE 10092, 1009214 (2017).

S. Alamri and A. F. Lasagni, “Development of a general model for direct laser interference patterning of polymers,” Opt. Express 25(9), 9603–9616 (2017).
[PubMed]

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).

H. Perez-Hernandez and A. F. Lasagni, “Fast and efficient manufacturing method of one- and two-dimensional polyethylene terephthalate transmission diffraction gratings by direct laser interference patterning,” Polym. Eng. Sci. 52(9), 1903–1908 (2012).

M. Bieda, E. Beyer, and A. F. Lasagni, “Direct Fabrication of Hierarchical Microstructures on Metals by Means of Direct Laser Interference Patterning,” J. Eng. Mater. Technol. 132(3), 31015 (2010).

Lasserre, F.

E. Roitero, F. Lasserre, M. Anglada, F. Mücklich, and E. Jiménez-Piqué, “A parametric study of laser interference surface patterning of dental zirconia: Effects of laser parameters on topography and surface quality,” Dent. Mater. 33(1), e28–e38 (2017).
[PubMed]

Lazare, S.

S. Lazare and V. Granier, “ultraviolet laser photoablation of polymers. a review and recent results,” Laser Chem. 10(1), 25–40 (1989).

Lee, B.

Lee, C.-K.

Lee, J. T.

Leiderer, P.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys., A Mater. Sci. Process. 101(2), 309–312 (2010).

Liao, E. H.-Z.

Lin, H.-H.

Lin, S. T.

S. L. Yeh and S. T. Lin, “Anticounterfeiting method for a dot-matrix hologram composed of grating dots with different fringe orientations,” Opt. Eng. 54(11), 113106 (2015).

Lowe, C. R.

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

Lu, Y. T.

Y. T. Lu and S. Chi, “Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications,” Optik (Stuttg.) 114(4), 161–167 (2003).

Maier, W. F.

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical Gratings in Mixed-Oxide Films by Laser-Interference Irradiation,” Adv. Mater. 17(18), 2228–2232 (2005).

Mailis, S.

Maisenhölder, B.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138, 107–110 (1999).

Malinauskas, M.

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).

Marowsky, G.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138, 107–110 (1999).

Min, S.-W.

Monteiro, M. J.

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

Montelongo, Y.

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

Možina, J.

J. Diaci, D. Bračun, A. Gorkič, and J. Možina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Lasers Eng. 49(2), 195–199 (2011).

Mücklich, F.

E. Roitero, F. Lasserre, M. Anglada, F. Mücklich, and E. Jiménez-Piqué, “A parametric study of laser interference surface patterning of dental zirconia: Effects of laser parameters on topography and surface quality,” Dent. Mater. 33(1), e28–e38 (2017).
[PubMed]

A. Rosenkranz, C. Gachot, E. Ramos-Moore, and F. Mücklich, “Laser interference patterning of steel surfaces - influence on the frictional performance under dry and lubricated sliding conditions,” Tribology Online 11(2), 575–582 (2016).

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical Gratings in Mixed-Oxide Films by Laser-Interference Irradiation,” Adv. Mater. 17(18), 2228–2232 (2005).

Nakayama, Y.

Y. Nakayama, J. Yamamoto, and H. Kawada, “Sub-50-nm pitch size grating reference for CD-SEM magnification calibration,” Proc. SPIE 7272, 727224 (2009).

Neuschäfer, D.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138, 107–110 (1999).

Nissen, D.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

Nowak, U.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

Park, J.-H.

Parmiter, P. J.

Perez-Hernandez, H.

H. Perez-Hernandez and A. F. Lasagni, “Fast and efficient manufacturing method of one- and two-dimensional polyethylene terephthalate transmission diffraction gratings by direct laser interference patterning,” Polym. Eng. Sci. 52(9), 1903–1908 (2012).

Pissadakis, S.

Raciukaitis, G.

M. Garliauskas, E. Stankevičius, and G. Račiukaitis, “Laser intensity-based geometry control of periodic submicron polymer structures fabricated by laser interference lithography,” Opt. Mater. Express 7(1), 179 (2017).

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).

Ramos-Moore, E.

A. Rosenkranz, C. Gachot, E. Ramos-Moore, and F. Mücklich, “Laser interference patterning of steel surfaces - influence on the frictional performance under dry and lubricated sliding conditions,” Tribology Online 11(2), 575–582 (2016).

Riedel, S.

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys., A Mater. Sci. Process. 101(2), 309–312 (2010).

Roch, T.

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).

T. Roch, E. Beyer, and A. Lasagni, “Surface modification of thin tetrahedral amorphous carbon films by means of UV direct laser interference patterning,” Diamond Related Materials 19(12), 1472–1477 (2010).

Roitero, E.

E. Roitero, F. Lasserre, M. Anglada, F. Mücklich, and E. Jiménez-Piqué, “A parametric study of laser interference surface patterning of dental zirconia: Effects of laser parameters on topography and surface quality,” Dent. Mater. 33(1), e28–e38 (2017).
[PubMed]

Rosenkranz, A.

A. Rosenkranz, C. Gachot, E. Ramos-Moore, and F. Mücklich, “Laser interference patterning of steel surfaces - influence on the frictional performance under dry and lubricated sliding conditions,” Tribology Online 11(2), 575–582 (2016).

Rößler, F.

T. Kunze, C. Zwahr, B. Krupop, S. Alamri, F. Rößler, and A. F. Lasagni, “Development of a scanner-based direct laser interference patterning optical head: new surface structuring opportunities,” Proc. SPIE 10092, 1009214 (2017).

Scheer, E.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

Schlickeiser, F.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

Schmotz, M.

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys., A Mater. Sci. Process. 101(2), 309–312 (2010).

Schweitzer, H.

D. Asoubar, C. Hellmann, H. Schweitzer, M. Kuhn, and F. Wyrowski, “Customized homogenization and shaping of LED light by micro cells arrays,” Proc. SPIE 9383, 93831B (2015).

Schwider, J.

Seyler, M.

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical Gratings in Mixed-Oxide Films by Laser-Interference Irradiation,” Adv. Mater. 17(18), 2228–2232 (2005).

Siebold, M.

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).

Simon, P.

J. Bekesi, P. Simon, and J. Ihlemann, “Deterministic sub-micron 2D grating structures on steel by UV-fs-laser interference patterning,” Appl. Phys., A Mater. Sci. Process. 114(1), 69–73 (2014).

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett. 83(23), 4707–4709 (2003).

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138, 107–110 (1999).

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci. 109, 25–29 (1997).

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 517–518 (1997).

Sohler, W.

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 517–518 (1997).

Soon, T. J.

T. J. Soon, “QR code,” Synthesis 2008, 59–78 (2008).

Stankevicius, E.

M. Garliauskas, E. Stankevičius, and G. Račiukaitis, “Laser intensity-based geometry control of periodic submicron polymer structures fabricated by laser interference lithography,” Opt. Mater. Express 7(1), 179 (2017).

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).

Stärk, M.

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

Tamulevicius, S.

M. Andrulevičius, T. Tamulevičius, and S. Tamulevičius, “Formation and analysis of dot-matrix holograms,” Mater. Sci. 13(4), 278–281 (2007).

Tamulevicius, T.

M. Andrulevičius, T. Tamulevičius, and S. Tamulevičius, “Formation and analysis of dot-matrix holograms,” Mater. Sci. 13(4), 278–281 (2007).

Tsai, I.-E.

Tu, C.-W.

Vainos, N. A.

Vasconcellos, F. C.

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

Voisiat, B.

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).

Wang, K.

J. Huang, S. Beckemper, A. Gillner, and K. Wang, “Tunable surface texturing by polarization-controlled three-beam interference,” J. Micromech. Microeng. 20(9), 95004 (2010).

Wen, F. J.

Wilkinson, T. D.

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

Wu, J. W.-J.

Wu, S.-Y.

M.-F. Chen, Y.-P. Chen, W.-T. Hsiao, S.-Y. Wu, C.-W. Hu, and Z.-P. Gu, “A scribing laser marking system using DSP controller,” Opt. Lasers Eng. 46(5), 410–418 (2008).

Wyrowski, F.

D. Asoubar, C. Hellmann, H. Schweitzer, M. Kuhn, and F. Wyrowski, “Customized homogenization and shaping of LED light by micro cells arrays,” Proc. SPIE 9383, 93831B (2015).

Xu, F.

Yamamoto, J.

Y. Nakayama, J. Yamamoto, and H. Kawada, “Sub-50-nm pitch size grating reference for CD-SEM magnification calibration,” Proc. SPIE 7272, 727224 (2009).

Yeh, J. T. C.

J. T. C. Yeh, “Laser ablation of polymers,” J. Vac. Sci. Technol. A 4(3), 653–658 (1986).

Yeh, S. L.

S. L. Yeh and S. T. Lin, “Anticounterfeiting method for a dot-matrix hologram composed of grating dots with different fringe orientations,” Opt. Eng. 54(11), 113106 (2015).

S. L. Yeh, “Dot-matrix hologram with an encrypted figure,” Opt. Eng. 45(9), 95801 (2006).

Yeh, S.-L.

Yetisen, A. K.

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

Zhou, C.

Zhou, W.

W. Zhou, “Study and design for coding system of the star-array code base on the information optical storage,” Proc. SPIE 7512, 75120G (2009).

Zwahr, C.

T. Kunze, C. Zwahr, B. Krupop, S. Alamri, F. Rößler, and A. F. Lasagni, “Development of a scanner-based direct laser interference patterning optical head: new surface structuring opportunities,” Proc. SPIE 10092, 1009214 (2017).

ACS Photonics (1)

F. C. Vasconcellos, A. K. Yetisen, Y. Montelongo, H. Butt, A. Grigore, C. A. B. Davidson, J. Blyth, M. J. Monteiro, T. D. Wilkinson, and C. R. Lowe, “Printable surface holograms via laser ablation,” ACS Photonics 1(6), 489–495 (2014).

Adv. Mater. (1)

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical Gratings in Mixed-Oxide Films by Laser-Interference Irradiation,” Adv. Mater. 17(18), 2228–2232 (2005).

Appl. Opt. (6)

Appl. Phys. Lett. (1)

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett. 83(23), 4707–4709 (2003).

Appl. Phys., A Mater. Sci. Process. (3)

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys., A Mater. Sci. Process. 101(2), 309–312 (2010).

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 517–518 (1997).

J. Bekesi, P. Simon, and J. Ihlemann, “Deterministic sub-micron 2D grating structures on steel by UV-fs-laser interference patterning,” Appl. Phys., A Mater. Sci. Process. 114(1), 69–73 (2014).

Appl. Surf. Sci. (3)

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138, 107–110 (1999).

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci. 109, 25–29 (1997).

Chin. Opt. Lett. (1)

Comput. Graph. (1)

L. C. Ferri, “Visualization of 3D information with digital holography using laser printers,” Comput. Graph. 25(2), 309–321 (2001).

Dent. Mater. (1)

E. Roitero, F. Lasserre, M. Anglada, F. Mücklich, and E. Jiménez-Piqué, “A parametric study of laser interference surface patterning of dental zirconia: Effects of laser parameters on topography and surface quality,” Dent. Mater. 33(1), e28–e38 (2017).
[PubMed]

Diamond Related Materials (1)

T. Roch, E. Beyer, and A. Lasagni, “Surface modification of thin tetrahedral amorphous carbon films by means of UV direct laser interference patterning,” Diamond Related Materials 19(12), 1472–1477 (2010).

J. Eng. Mater. Technol. (1)

M. Bieda, E. Beyer, and A. F. Lasagni, “Direct Fabrication of Hierarchical Microstructures on Metals by Means of Direct Laser Interference Patterning,” J. Eng. Mater. Technol. 132(3), 31015 (2010).

J. Laser Micro Nanoeng. (1)

A. Lasagni, “Bringing the direct laser interference patterning method to industry. a one tool-complete solution for surface functionalization,” J. Laser Micro Nanoeng. 10(3), 340–344 (2015).

J. Micromech. Microeng. (1)

J. Huang, S. Beckemper, A. Gillner, and K. Wang, “Tunable surface texturing by polarization-controlled three-beam interference,” J. Micromech. Microeng. 20(9), 95004 (2010).

J. Vac. Sci. Technol. A (1)

J. T. C. Yeh, “Laser ablation of polymers,” J. Vac. Sci. Technol. A 4(3), 653–658 (1986).

Laser Chem. (1)

S. Lazare and V. Granier, “ultraviolet laser photoablation of polymers. a review and recent results,” Laser Chem. 10(1), 25–40 (1989).

Lith. J. Phys. (1)

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).

Mater. Sci. (1)

M. Andrulevičius, T. Tamulevičius, and S. Tamulevičius, “Formation and analysis of dot-matrix holograms,” Mater. Sci. 13(4), 278–281 (2007).

Nanotechnology (1)

M. Stärk, F. Schlickeiser, D. Nissen, B. Hebler, P. Graus, D. Hinzke, E. Scheer, P. Leiderer, M. Fonin, M. Albrecht, U. Nowak, and J. Boneberg, “Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning,” Nanotechnology 26(20), 205302 (2015).
[PubMed]

Opt. Eng. (3)

S. M. Arnold, “Electron beam fabrication of computer-generated holograms,” Opt. Eng. 24(5), 803–807 (1985).

S. L. Yeh and S. T. Lin, “Anticounterfeiting method for a dot-matrix hologram composed of grating dots with different fringe orientations,” Opt. Eng. 54(11), 113106 (2015).

S. L. Yeh, “Dot-matrix hologram with an encrypted figure,” Opt. Eng. 45(9), 95801 (2006).

Opt. Express (1)

Opt. Lasers Eng. (2)

M.-F. Chen, Y.-P. Chen, W.-T. Hsiao, S.-Y. Wu, C.-W. Hu, and Z.-P. Gu, “A scribing laser marking system using DSP controller,” Opt. Lasers Eng. 46(5), 410–418 (2008).

J. Diaci, D. Bračun, A. Gorkič, and J. Možina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Lasers Eng. 49(2), 195–199 (2011).

Opt. Mater. Express (1)

Optik (Stuttg.) (1)

Y. T. Lu and S. Chi, “Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications,” Optik (Stuttg.) 114(4), 161–167 (2003).

Polym. Eng. Sci. (1)

H. Perez-Hernandez and A. F. Lasagni, “Fast and efficient manufacturing method of one- and two-dimensional polyethylene terephthalate transmission diffraction gratings by direct laser interference patterning,” Polym. Eng. Sci. 52(9), 1903–1908 (2012).

Proc. SPIE (8)

B. Gu, “Review - 40 years of laser-marking - industrial applications,” Proc. SPIE 6106, 61061 (2006).

Y. Nakayama, J. Yamamoto, and H. Kawada, “Sub-50-nm pitch size grating reference for CD-SEM magnification calibration,” Proc. SPIE 7272, 727224 (2009).

W. Zhou, “Study and design for coding system of the star-array code base on the information optical storage,” Proc. SPIE 7512, 75120G (2009).

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).

S. Alamri and A. F. Lasagni, “Direct laser interference patterning of transparent and colored polymer substrates: ablation, swelling, and the development of a simulation model,” Proc. SPIE 10092, 1009219 (2017).

D. Asoubar, C. Hellmann, H. Schweitzer, M. Kuhn, and F. Wyrowski, “Customized homogenization and shaping of LED light by micro cells arrays,” Proc. SPIE 9383, 93831B (2015).

T. Kunze, C. Zwahr, B. Krupop, S. Alamri, F. Rößler, and A. F. Lasagni, “Development of a scanner-based direct laser interference patterning optical head: new surface structuring opportunities,” Proc. SPIE 10092, 1009214 (2017).

Synthesis (1)

T. J. Soon, “QR code,” Synthesis 2008, 59–78 (2008).

Tribology Online (1)

A. Rosenkranz, C. Gachot, E. Ramos-Moore, and F. Mücklich, “Laser interference patterning of steel surfaces - influence on the frictional performance under dry and lubricated sliding conditions,” Tribology Online 11(2), 575–582 (2016).

Other (13)

T. Staake, F. Thiesse, and E. Fleisch, “Extending the EPC network,” in Proceedings of the 2005 ACM symposium on applied computing, H. M. Haddad, L. M. Liebrock, ed. (Association for computing machinery, 2005), pp. 1607–1612.

K. Seino, S. Kuwabara, S. Mikami, Y. Takahashi, M. Yoshikawa, H. Narumi, K. Koganezaki, T. Wakabayashi, and A. Nagano, “Development of the traceability system which secures the safety of fishery products using the QR code and a digital signature,” in Proceedings of MTS/IEEE Techno-Ocean ’04 (MTS/IEEE, 2005), pp. 476–481.

European Union, “Commission Delegated Regulation (EU) 2016/161,” Off. J. Eur. Union L 32, 1–27 (2015).

M. USAMI, “An ultra small RFID chip: µ-chip,” in Proceedings of IEEE radio frequency integrated circuits symposium (IEEE, 2004), pp. 241–244.

C. Pille, “In-process-embedding of piezo sensors and RFID transponders into cast parts for autonomous manufacturing logistics,” in Proceedings of Smart systems integration, T Gessner, ed. (VDE Verlag, 2010), pp. 1–10.

VDMA, VDMA Studie Produktpiraterie 2016 (VDMA, 2016).

European Commission, Report on EU customs enforcement of intellectual property rights. Results at the EU border (Publications Office of the European Union, 2015).

A. Harris, Orgalime Guide Combating Counterfeiting. A practical guide for European engineering companies (Orgalime, 2001).

LightTrans International UG, “Illumination Systems Design. Homogenization and Shaping of LED and Excimer Laser Light,” http://www.lighttrans.com/1001.html .

G. Fowles, Introduction to Modern Optics, 2nd ed. (Holt, Rinehart and Winston, 1975).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Co, 2005).

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

Filmetrics Inc, “Brechungsindex von Estar, Melinex, Mylar,” http://www.filmetrics.de/refractive-index-database/PET/Estar-Melinex-Mylar .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) A periodic surface structure with spatial period Λ is illuminated by a laser source, which results in a dot-like diffraction pattern on a screen in a distance L. Multiple gratings can be arranged in an array. (b) Different diffraction patterns appear on the screen. Depending on the period Λ and the orientation φ, the position (Λ, φ) of the first orders are used to set-up the final image.
Fig. 2
Fig. 2 (a) An input bitmap with the GCA information, (b) the calculation step to generate coordinates for fabrication, (c) schematically grating array in the surface and (d) diffracted light of a red laser with the input information
Fig. 3
Fig. 3 (a) DLIP-setup with a DLIP optical head, XYZ linear stages and a rotation axis, (b) Principle of the optical configuration for two-beam DLIP using a DOE, a prim and a lens. (c) Resulting laser intensity distribution within the interference volume and (d) resulting spatial period as function of the distance between the used DOE and prism.
Fig. 4
Fig. 4 Fabricated dot-matrix holograms (DMH) with GCA elements in (a) the gear wheel (upper part) of the LMO logo and (b) in the “I”, “W” and “S” letters of the Fraunhofer IWS logo. The macroscopic appearance of the GCA is distinguished by position dependent changes of the diffractive colors while the DMH with constant period shows a characteristic rainbow diffraction colors with varying the viewing angle. (c-f) Example of holographic elements with different grating orientation (92°, 0°, 33°, 132°) and spatial period (1.26 µm, 1.75 µm, 1.35 µm, 1.14 µm, respectively).
Fig. 5
Fig. 5 Surface profiles of two different surface gratings with (a) 1.78 µm and (b) 1.62 µm spatial periods. The maximum structure depth follows a Gaussian envelope and has a maximum depth of (a) 0.35 µm and (b) 0.1 µm.
Fig. 6
Fig. 6 Examples of diffraction patterns of illuminated CGAs with red (a-e) and green (f-k) laser pointers. (a, f) Line-geometry consisting of 9 first diffraction orders; (b-d, g-i) letters “I”, “W” and “S” obtained when irradiating the GCAs showed in Fig. 4(b) (the different CGA elements were produced in each letter of the Fraunhofer IWS logo). (e, k) Logo of the Technische Universität Dresden from the CGA depicted in Fig. 4(a).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E(X,Y)~FT(E(x,y)).
E(x,y)= E 0 (x,y) e ikΔnz(x,y) .
sinα= nλ Λ .
r=L tanα.
r=1/Λ.
( ξ η )=DOS( n m ).
( r φ )=( ( ξ ξ max /2 ) 2 + ( η η max ) 2 ±arctan( η η max ξ ξ max /2 ) )
( X Y )=( cosφ sinφ sinφ cosφ )( x y ).
Λ= λ 2sin( θ/2 )

Metrics